用户名: 密码: 验证码:
两种金粟兰属植物的化学成分及相关生物活性的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
银线草Chloranthus japonicus Sieb.和多穗金粟兰Chloranthus multistachys Pei属于金粟兰科Chloranthaceae金粟兰属Chloranthus多年生草本植物,全草或根入药。具有抗菌消炎、散瘀活血等功效。在民间是治疗跌打损伤、瘀血肿痛、风湿痛、毒蛇咬伤、疖疮肿毒的良药,具有很高的药用价值。长期以来,由于缺乏对银线草和多穗金粟兰的生物活性物质基础及其作用机制的研究,限制了对它们的开发与利用。本课题应用植物解剖学、组织化学、植物化学、药理学和毒理学等方法,从形态结构、化学成分和生物活性三个方面对银线草和多穗金粟兰进行了研究,为进一步开发利用金粟兰属植物奠定基础。论文的主要结果如下:
     1.银线草和多穗金粟兰营养器官形态结构研究。两种植物营养器官形态结构具有很多相同点,主要表现在:根中皮层宽广,内皮层明显,维管组织的初生木质部和初生韧皮部均属外始式发育;茎断面中空,具较大的髓腔,根状茎中皮层宽广,内皮层不明显,韧皮部狭窄;叶为异面叶,栅栏组织和海绵组织分化明显,叶的气孔长椭圆形,韧皮部较窄,木质部发达;叶片上、下表皮均无任何毛被,细胞近多边形或不规则形,只有下表皮分布有气孔器,为不规则型。除此之外,两种植物营养器官形态结构具有明显的不同点,主要表现在:银线草的根皮层细胞排列整齐,细胞间隙较小,韧皮部较窄,维管组织中导管数目较多;茎皮层细胞排列整齐,在韧皮部外方包围有多层束状纤维束;根茎木质部导管数目较少;叶的海绵组织由各种形状的细胞组成,具有较小的胞间隙,厚角组织内为形状不规则的薄壁组织细胞,细胞间隙较大,排列不整齐;主叶脉角质膜不具有乳状突起;多穗金粟兰的根皮层细胞排列不整齐,细胞间隙较大,韧皮部宽广,维管组织中导管数目较少;茎皮层细胞排列不整齐,在韧皮部外方仅包围有少数几层束状纤维束;根茎木质部导管数目较多。叶的海绵组织多以近圆形细胞组成,且具有较大的胞间隙;厚角组织内为类圆形薄壁组织细胞,细胞间隙较小,排列整齐;主叶脉角质膜具有明显乳状突起。
     2.萜类和黄酮类化合物在银线草和多穗金粟兰不同营养器官中的组织化学定位结果类似,均主要分布在根的皮层、茎的皮层及韧皮部细胞中。但二者在含量上有所区别。萜类化合物在银线草茎中皮层的薄壁组织细胞以及韧皮部细胞被染为淡红色,而在多穗金粟兰中被染成淡红棕色,提示多穗金粟兰中含有的萜类化合物含量较多。黄酮类化合物在银线草根的皮层细胞中显示绿色荧光,在茎中,皮层和韧皮部细胞呈现绿色荧光;而在多穗金粟兰根的皮层细胞中显示强烈的绿色荧光,在茎中,皮层和韧皮部细胞呈现蓝绿色荧光,提示多穗金粟兰中黄酮类化合物的含量较银线草中多。该结果与植物化学研究结果相一致。
     3.通过水蒸气蒸馏法并采用气相色谱-质谱联用技术提取、鉴定银线草和多穗金粟兰全草的挥发性成分。共分离鉴定出59个成分,两种植物中相同的成分有28种。其中,银线草全草中分离鉴定出48种成分,占挥发油色谱峰面积的95.56%,多穗金粟兰全草中分离鉴定出39种成分,占挥发油色谱峰面积的94.58%。已鉴定的化合物中,绝大部分是萜类化合物,其中以单萜和倍半萜及其含氧类化合物为主。银线草挥发性成分中单萜及含氧单萜类化合物为77.04%,倍半萜及含氧倍半萜类化合物为16.37%;多穗金粟兰挥发性成分中单萜及含氧单萜类化合物为46.64%,倍半萜及含氧倍半萜类化合物为14.20%。乙酸龙脑酯是银线草和多穗金粟兰全草挥发性成分中的主要成分,分别占30.98%和35.99%。银线草和多穗金粟兰全草挥发性成分中最显著的区别是多穗金粟兰中还含有较大比例的肉豆蔻醚。
     4.采用索氏提取法和气相色谱-质谱联用技术(GC-MS)对银线草和多穗粟兰的脂溶性成分进行分离和鉴定。银线草脂溶性成分中共鉴定出24种化合物,占检出物总质量分数的99.03%。包括14种脂肪酸,其中饱和脂肪酸9种,占总质量分数的22.32%,不饱和脂肪酸5种,占总质量分数的70.02%。多穗金粟兰脂溶性成分中共鉴定出15种化合物,占检出物总质量分数的92.59%。包括12种脂肪酸,其中饱和脂肪酸7种,占总质量分数的15.73%,不饱和脂肪酸6种,占总质量分数的54.71%。
     5.采用Phenomenex C18色谱柱(250mm×4.6mm,5μm),以甲醇-0.1%甲酸水溶液梯度洗脱,波长分别为254nm和323nm,光电二极管阵列检测器和电喷雾质谱同时在线检测,全离子扫描模式扫描,通过质谱分析及文献对照,鉴定出没食子酸、咖啡酸、异秦皮啶和迷迭香酸,并测定其含量。结果显示多穗金粟兰中没食子酸、咖啡酸、迷迭香酸的含量均高于银线草。银线草中的含量分别为0.372 mg/g,0.111 mg/g和2.073 mg/g,多穗金粟兰中的含量分别为1.173 mg/g,0.173 mg/g和7.228 mg/g。银线草和多穗金粟兰中香豆素类异秦皮啶的含量分别为0.507 mg/g和0.292 mg/g。
     银线草和多穗金粟兰中不同部位的酚类和香豆素类含量差异也较大。没食子酸在银线草和多穗金粟兰不同部位的含量均为茎>根>叶,且多穗金粟兰茎中的含量明显高于银线草。咖啡酸和迷迭香酸在银线草和多穗金粟兰不同部位中的含量为根>叶>茎,迷迭香酸在银线草和多穗金粟兰不同部位中的含量差异很大,在银线草根中含量为34.623 mg/g、叶中含量为1.432mg/g;在多穗金粟兰根中含量为4.582 mg/g、叶中含量为23.572 mg/g。异秦皮啶在银线草和多穗金粟兰不同部位中的含量也表现为根>茎>叶,但含量差异很大,在银线草根中为0.601mg/g,而在多穗金粟兰中仅为0.094 mg/g。
     6.利用超声技术提取银线草和多穗金粟兰中的总黄酮,同时应用响应面分析法优化其提取工艺参数,得到银线草总黄酮提取的最佳工艺条件:甲醇浓度57%,料液比1:17,提取时间6 min,提取温度60℃。多穗金粟兰总黄酮提取的最佳工艺条件:甲醇浓度70%,料液比1:8,提取时间28min,提取温度27℃,模型预测结果和实验检测结果基本吻合
     7.采用微波消解-火焰原子吸收法测定秦岭山区两种金粟兰属药用植物银线草和多穗金粟兰中铁、锌、铜、锰、钙、镁、钠、钾的含量。结果显示:银线草和多穗金粟兰中含有丰富的大量和微量元素,银线草中所测元素含量依次为K>Ca>Na>Mg>Fe>Zn>Mn>Cu,多穗金粟兰为K>Ca>Mg>Na>Fe>Mn>Zn>Cu;所测得的8种元素中,银线草中的含量均高于多穗金粟兰。
     8.采用滤纸片法和96孔板法分别检测银线草和多穗金粟兰全草挥发性成分的抑菌活性。结果显示银线草和多穗金粟兰挥发油对8种革兰氏阳性菌、3种革兰氏阴性菌和4种真菌均有抑制和灭活作用,对所试菌种的作用强度依次为革兰氏阳性菌>真菌>革兰氏阴性菌。其中银线草挥发油对蜡状芽孢杆菌的抑制效果最强,抑菌圈直径为22.2 mm,与盐酸四环素的抑菌效果21.4 mm相当,最小抑菌浓度MIC为0.39 mg/mL,最小杀菌浓度MBC为0.78mg/ml;多穗金粟兰挥发油的抑菌效果总体比银线草弱,但表现出相同的趋势,对蜡状芽孢杆菌和解脂假丝酵母菌的抑制效果最强,抑菌圈直径分别为18.8 mm和17.8 mm,最小抑菌浓度MIC为0.78 mg/mL,最小杀菌浓度MBC为1.56 mg/ml;另外,银线草挥发油对蜡状芽孢杆菌、凝结芽孢杆菌和藤黄八叠球菌的效果优于多穗金粟兰挥发油,而对粘红酵母的抑制效果低于多穗金粟兰挥发油。
     9.建立了银线草和多穗金粟兰提取物体外抗氧化评价体系。采用DPPH-自由基清除活性、超氧自由基清除、β-胡萝卜素-亚油酸漂白以及DNA损伤保护活性等4种方法对银线草和多穗金粟兰不同提取物的体外抗氧化能力进行了综合评价。结果显示银线草和多穗金粟兰甲醇总提取物具有优于其它提取部位的较强抗氧化活性。
     10.采用改良寇氏法、组织学和免疫组织化学方法进行银线草和多穗金粟兰提取物对小鼠的急性毒性试验。结果显示,银线草和多穗金粟兰甲醇提取物对小鼠的半数致死量LDso分别为50.91g/kg和45.74g/kg,LD50的95%可信区间分别为42.25-61.34 g/kg和42.60-49.04g/kg。为临床推荐生药用量的124-318和112-286倍。参照中药毒性分级标准,银线草和多穗金粟兰分属于小毒和有毒中药。小鼠中毒表现呈剂量依赖性加剧,死亡率亦随之增高。中毒损害是全身性的,靶器官与组织主要是肝、肾、心、脾和全身血管。
     11.对银线草和多穗金粟兰甲醇提取物进行镇痛抗炎活性的研究。采用醋酸扭体法、热板法和福尔马林法确定银线草和多穗金粟兰甲醇提取物的镇痛效应和类型;采用二甲苯致小鼠耳廓肿胀、醋酸致小鼠腹腔毛细血管通透性变化探讨它们的抗炎效应。结果显示,两种甲醇提取物中、高剂量对化学物质(醋酸)和热刺激引发的疼痛反应均有显著的抑制作用,且还可对抗由福尔马林诱发的第二相疼痛,其镇痛作用机制可能通过外周与中枢两种机制介导。银线草和多穗金粟兰甲醇提取物浸膏对小鼠的多种急性炎症具有明显的抗炎作用,且其效果与浓度呈正相关。
Chloranthus japonicus Sieb. and Chloranthus multistachys Pei, which belong to the genus Chloranthus in Chloranthaceae family are two perennial herbaceous plants. As folklore medicines native to the Qinling Mountains of China, the whole plants and their roots have been traditionally used for hundreds of years to treat boils, dermatopathia, enteric fever, detumescence, snake bite, bone fractures, cough, and rheumatic pain. Their various bioactivities have now gained attention from researchers because of their antifungal, cytotoxic, hepatoprotective, and tyrosinase-inhibitory properties. However, the active constituents and the mechanism for their function still remain unclear. In this study, we used anatomical, histochemical, phytochemical, pharmacological and toxicological methods were used to investigate structure, chemical composition and biological activities of C. japonicus and C. multistachys. The research will be beneficial to the further exploitation and utilization of the Chloranthus plants. The main results are as follows:
     1. The morphological structure of vegetative organs of C. japonicus and C. multistachys were analyzed and compared. The main similarities were as follows:cortexs in the root and the rhizome were broad; stems got large hollow pith cavities; leaves had the bifacial structure, palisade tissue and sponge tissue were clearly differentiated, and leaf veins had a narrow phloem and a developed xylem; there were no hairs on the upper and lower epidermis of the leaf, the stomatal apparatuses fell into anomocytic type and occurs only on the lower epidermis. In addition, there were some obvious differences in the structures of two species. In C. japonicus, the root cortex cells were arranged in order and had smaller intercellular spaces, and the root phloem was narrow; the stem cortex cells were also arranged in order, and the stem phloem was surrounded by strands of fiber; the leaf sponge tissue of were composed of cells with various shapes, which had a small intercellular space, there were parenchyma cells with irregular shapes, which have large intercellular spaces inside collenchyma of main leaf vein, and the epidermis cells of the main vein had no papilla. In C. multistachys, however, the root cortex cells got arranged irregularly and had large intercellular spaces, the root phloem was broad as well; the stem cortex cells were misaligned, with its phloem surrounded by a few layers of fiber; the leaf sponge tissue was composed of round-like cells which had large intercellular space; there were nearly round parenchyma cells which had small intercellular space inside the collenchyma of main leaf vein, and the epidermis cells of the main vein had obvious papilla.
     2. The histochemistry results of terpenoids and flavonoids localization were similar in different vegetative organs in C. japonicus and C. multistachys, both of which were mainly distributed in the cortex of root, the cortex of stem and phloem cell. Otherwise, the only difference just lied in their contents in two species. Terpenoids were dyed reddish in the cortex parenchyma stem cells and phloem cells in C. japonicus, and was dyed reddish brown in C. multistachys, which indicated that C. multistachys. contained more terpenoids than those in C. japonicus. Flavonoids showed strong yellow-green fluorescence in the cortex cells of root and displayed yellow-green fluorescence in stem cortex and phloem cells in C. japonicus. On the contrary, in C. multistachys, strong green fluorescence was shown in the cortex cells and blue-green fluorescence in stem cortex and phloem cells. From the above, the conclusion could be drawn that the contents of flavonoids in C. multistachys were more than those in C. japonicus, which was consistent with the phytochemical results.
     3. The essential oils of C.japonicus and C. multistachys were obtained by hydrodistillation and analyzed by GC and GC-MS. In all of them,48 and 39 compounds were identified, accounting for 95.56% and 94.58% of all constituents in the oil from C.japonicus and C. multistachys, respectively. Up to 28 compounds were found in common between the two oils, which featured a high relatively content of monoterpenes and their oxygenated monoterpenes (77.04%,46.64%). Bornyl acetate was the most abundant compound in these oils, which ranged from 30.98% to 35.99%. In addition, the telling distinguishing feature was that there was a high proportion of myristicin in C. multistachys.
     4. The fat-soluble components in C. japonicus and C. multistachys were extracted by soxlet extraction, and then esterified and analyzed by GC-MS. There were twenty-four fat-soluble components detected and identified in C. japonicus, amounting to 99.03% of the total contents, among which the saturated fatty acid and unsaturated fatty acid were 22.32% and 70.02%, respectively. There are fifteen fat-soluble components detected and identified in C. multistachys, amounting to 92.59% of the total contents, among which the saturated fatty acid and unsaturated fatty acid were 15.73% and 54.71%, respectively.
     5. The sample solution were analyzed by a Phenomenex C18 column (250mm×4.6mm,5μm) with a gradient mobile phase composed of methanol and 0.1% formic acid solution. Both DAD and mass spectrometry detector were used simultaneously, full-scan detection mode was evaluated for the identification of LC peaks. As a result, gallic acid, caffeic acid, isofraxidin and rosmarinic acid were identified; in addition, the contents of gallic acid, caffeic acid, and rosmarinic acid were higher in the methanol extract of C. multistachys (0.372mg/g, 0.111mg/g, and 2.073mg/g) than those of C. japonicus (1.173mg/g,0.173mg/g, and 7.228mg/g). The amount of isofraxidin in C.japonicus and C. multistachys were 0.507 mg/g and 0.292mg/g, respectively.
     Significant difference was found in contents of phenols and counarins in the different parts of C. japonicus and C. multistachys. The contents of gallic acid in C. japonicus and C. multistachys were both stems>roots>leaves, and the content in the stems of C. multistachys were much more than those in C. japonicus. The contents of caffeic acid and rosmarinic acid in C. japonicus and C. multistachys were both roots>leaves>stems, and the rosmarinic acid content were 34.623 mg/g and 1.432 mg/g in the roots and lesves of C. japonicus, respectively, but 4.582 mg/g and 23.572 mg/g in C. multistachys. The contents of isofraxidin in C. japonicus and C. multistachys were both roots>stems >leaves,0.601mg/g and 0.094 mg/g in the roots of the two plants, respectively.
     6. Ultrasound-assisted extraction response surface method (RSM) was applied to optimize the extraction condition of the total flavonoids in both C. japonicus and C. multistachys. The influence factors of methanol concentration, extraction temperature, extraction time, and ratio of material to solvent were evaluated using a fractional factorial design. The experimental data were disposed by Design-Expert 7.1.3 program. The optimum extraction conditions were confirmed as follows:In C. japonicus, methanol concentration 57%, ratio of material to solvent 1:17, extraction time 6 min, extraction temperature 60℃; In C. multistachys, methanol concentration 70%, ratio of material to solvent 1:8, extraction time 28 min, extraction temperature 27℃. The extraction rate of flavonoids under this condition agreed with the experimental values.
     7. The microwave digestion and flame atomic absorption spectrophotometry (FAAS) were employed to determine the macro and trace elements (iron, zinc, copper, manganese, calcium, potassium, sodium and magnesium) in C. japonicus and C. multistachys. The results revealed that the order of concentrations of macro and trace elements in C. japonicus and C. multistachys were K>Ca>Na>Mg>Fe>Zn>Mn>Cu and K>Ca>Mg>Na>Fe>Mn>Zn>Cu, respectively. On the whole, the contents of these elements in C. japonicus were higer than those in C.multistachys.
     8. Antimicrobial properties of the essential oils of C. japonicus and C. multistachys were evaluated in vitro via disc-diffusion and microbroth dilution assays. Activities were strong against 15 tested microorganisms (8 gram-positive bacteria,3 gram-negative bacteria,3 yeasts). Oil from C. japonicus was generally more efficient for inhibiting bacterial growth. MIC and MBC determinations indicated that gram-positive bacteria and yeasts were more sensitive to both oils than were gram-negative bacteria. The oil of C. japonicus showed the strongest bactericidal activity against B. cereus, as evidenced by the lowest values for MIC (0.39 mg/mL) and MBC (0.78 mg/mL). In contrast, oil from C. multistachys exerted the strongest bactericidal activity against B. cereus and Candida lipolytica, with the lowest MIC (0.78 mg/mL) and MBC (1.56 mg/mL), respectively. C. japonicus oil was stronger against B. cereus, B. coagulans, and Sarcina lutea than was C. multistachys, but the former oil was weaker against Rhodotorula glutinis.
     9. The antioxidant activities of different extracts of C. japonicus and C. multistachys were evaluated with several antioxidant testing systems such as DPPH radical scavenging assay, superoxide radical scavenging assay,β-carotene-linoleic acid assay (β-CLA), and a plasmid DNA damage protection potential assay. The results revealed that the methanol extracts of the two plants showed higher antioxidant activity than other extracts.
     10. Karber's method, histological and immunohistochemical method were used to explore the acute toxicity of the methanol extracts of C. japonicus and C. multistachys in mice. The results showed that the 50% lethal dose (LD50) were 50.91g/kg (42.25-61.34g/kg) and 45.74 g/kg (42.60-49.04 g/kg), respectively. According to the toxicity grading criteria, C. japonicus and C. multistachys were slightly and moderately poisonous medicinal plants. The main acute toxic effects were enhanced in a dose-dependent manner. The methanol extracts of C. japonicus and C. multistachys acted on target organs and tissues including kidney, liver, heart, spleen and systemic blood-vessel.
     11. To investigate the analgesic and anti-inflammatory activity of the methanol extracts of C. japonicus and C. multistachys, the researcher used the acetic acid induced writhing test, hot p late test and formalin test to determine this effect and its analgesic type. The anti-inflammatory effect was determined by using the model of xylene-induced mice ear edema and increased vascular permeability induced by histamine phosphate in mice. The results showed that oral administration of extraction from C. japonicus and C. multistachys could improve the mice's pain threshold, significantly inhibit the inflammatory edema induced by various inflammatory agents and reduce the times of body writhing induced by acetic acid in mice. In addition, the extraction was remarkably active in the second phase of formalin-induced pain. C. japonicus and C. multistachys might have peripheral and central analgesic properties and have marked anti-inflammatory activity both on the acute phase.
引文
Adams R. P. Identification of Essential Oil Components by Gas Chromatography /Quadrupole Mass Spectroscopy. Allured Publishing Corp., Carol Stream, IL, USA.1995.
    Amini M., Younesi H. Application of response surface methodology for optimization of lead biosorption in an aqueous solution by Aspergillusniger [J]. Journal of Hazardous Materials,2008,154 (1/3):694-702.
    Andrews R. E., Parks L.W., Spence K.D. Some effects of Douglas firterpenes on certain microorganisms [J]. Appl. Environ. Microb.1980,40:301-304.
    Azaz D., Demirci F., Satil F., Kurkcuoglu F., Baser K.H.C. Antimicrobial activity of some Satureja essential oils[J]. Zeitschrift fur Naturforschung,2002,57c: 817-821.
    Bassole I.H.N., Quattara A.S., Nebie R., Quattara C.A.T., Kabore Z.I., Traore S.A. Chemical composition and antibacterial activities of the essential oils of Lippia chevalieri and Lippia multi-flora from Burkina Faso[J]. Phytochemistry,2003, 62:209-212.
    Benavides A., Bassarello C. Flavonoids and isoflavonoids from Gynerium sagittatum[J]. Phytochemistry,2007,68(9):1277-1284.
    Bohlman F., Zoero C., King R. M., et al. Onoseriolid, Ein neues sesquiterpenlaction aus Onoseros albicans[J]. Phytochemistry,1980,19:689.
    Braga P. C., Sasso M. Dal., Culici M., et al. Eugenol and thymol, alone or in combination, induce morphological alterations in the envelope of Candida albicans[J]. Fitoterapia,2007,78(6):396-400.
    Brand-Williams W., Cuvelier M.E., Berset C. Use of free radical method to evaluate antioxidant activity[J]. Lebensmittel-Wissenschaft und-Technologie,1995,28: 25-30.
    Burda S., Oleszek W. Antioxident and antiradical activities of flavonoids [J]. Journal of Agricultural and Food Chemistry,2001,49(6):2774-2779.
    Damiani E., Greci L., Hrelia P. Cyto-and genotoxic effects of novel aromatic nitroxide radicals in vitro[J]. Free Radic Biol Med,2000,28:330-336.
    Dapkevicius A., Venskutonis R., Van Beek T. A., Linssen P. H. Antioxidant activity of extracts obtained by different isolation procedures from some aromatic herbs grown in Lithuania[J]. Journal of the Science of Food and Agriculture,1998, 77:140-146.
    Dorman H.J.D., Deans S.G. Antimicrobial agents from plants:antibacterial activity of plant volatile oils[J]. J. Appl. Microbiol,2000,88,308-316.
    Filipowicz N., Kaminski M., Kurlenda J., Asztemborska M. Antibacterial and antifungal activity of Juniper Berry oil and its selected components [J]. Phytother. Res, 2003,17:227-231.
    Finlay W. J., Logan N.A., Sutherland A.D. Bacillus cereus produces most emetic toxin at lower temperatures [J]. Lett Appl Microbiol,2000,31 (5):385-389.
    Fujisawa S., Atsumi T., Kadoma Y., Sakagami H. Antioxidant and prooxidant action of eugenol-related compounds and their cytotoxicity[J]. Toxicology,2002,177: 39-54.
    Helander I.M., Alakomi H.L., Latva-Kala K., Mattila-Sandholm T., Pol I., Smid E.J., Leon G.M.G., vonWright A. Characterization of the action of selected essential oil components on gram-negative bacteria[J]. J. Agr. Food Chem.1998,46: 3590-3595.
    Jia Z., Tang M., Wu J. The determination of flavonoid contents in mμLberry and their scavenging effects on superoxide radicals [J]. Food Chem,1999,64:555-559.
    Juliano C., Mattana A., Usai M. Composition and in vitro antimicrobial activity of the essential oil of Thymus herba-barona Loisel growing wild in Sardinia[J]. J. Essent. Oil Res.2000.12:516-522.
    Jung B.S., Shin M.K. Encyclopedia of Illustrated Korean Natural Drugs[M]. Young Lim Sa, Seoul,1998, pp.813-814.
    Juven B.J., Kanner J., Schved F., Weisslowicz H. Factors that interact with the antibacterial action of thyme essential oil and its active constituents [J]. J. Appl. Bacteriol.1994,76:626-631.
    Li C. J., Zhang D. M., Luo Y. M., et al. Bis-sesquiterpenes and diterpenes from Chloranthus henryi[J]. Phytochemistry,2008:2867-2874.
    GiuLia D.C., Maseolo N., Angelo A.I., et al. Flavonoids:old and new aspects of a class of natural therapeutic drugs[J]. Life Seienee,2002,13:78-79.
    Goverdina C.H. Derksen, Harm A.G. Niederlander, Teris A. van Beek.Analysis of anthraquinones in Rubia tinctorum L. by liquid chromatography coupled with diode-array UV and mass spectrometric detection [J]. Journal of Chromatography A,2002,978:119-127.
    Heo J.E., Jin J.L., Lee Y.Y., et al. Chemical constituents of the serial parts of Chloranthus japonicus Sieb. [J]. Nat Prod Sci,2005,11(1):41.
    Horrobin D. F. High levels of polyunsaturated fat may inhibit cancer growth[J]. BMJ, 1996,312:511-512.
    Kawabata J., Fukushi E., Mizutani J. Sesquiterpene dimers from Chloranthus japonicus[J]. Phytochemistry,1995,39(1):121-125.
    Kawabata J., Fukushi E., Mizutani J. Sesquiterpene dimmer and trimer from Chloranthus japonicus[J]. Phytochemistry,1998,47(2):231-235.
    Kawabata J., Fukushi Y., Tahara S., et al. Shizukaol A, a sesquiterpene dimmer from Chloranthus japonicus[J]. Phytochemistry,1990,29(7):2332-2334.
    Kawabata J., Fukushi Y., Tahara S., et al. Structures of novel sesquiterpen ketones from Chloranthus serratus(Chloranthaceae)[J]. Agric Biol Chem,1985,49(5): 1479-1485.
    Kawabata J., Fukushi Y., Tahara S., et al. Structures of novel sesquiterpene alcohols from Chloranthus japonicus[J]. Agric Biol Chem,1984,48(3):713-717.
    Kawabata J., Mizutani J. Dimeric sesquiterpenoid esters from Chloranthus serratus[J]. Phytochemistry,1992,31(4):1293-1296.
    Kawabata J., Mizutani J. Distribution of Iindenanolides in the Chloranthaceae [J]. Agric Biol Chem,1988,52(11):2965.
    Kawabata J., Mizutani J. Shizukanolides D, E and F, novel Iindenanolides from Chloranthus spp.(Chloranthaceae) [J]. Agric Biol Chem,1989,53(1):203-207.
    Kawabata J., Tahara S., Mizutani J. Isolation and structural elucidation of four sesquiterpenes from Chloranthus japonicus[J]. Agric Biol Chem,1981,45(6): 1447-1453.
    Kite G. C., Howes M. J., Simmonds M. S., Metabolomic analysis of saponins in crude extracts of Quillaja saponaria by liquid chromatography/mass spectrometry for product authentication[J]. Rapidcammun Mass Sp,2004,18 (23):2859-2870.
    Knoblock K., Pauli A., Iberl B., Weis N., Weigand H. Antibacterial activity and antifungal properties of essential oil components [J]. J. Essent. Oil Res.,1988,1: 119-128.
    Kordali S., Cakir A., Mavi A., Kilic H., Yildirim A. Screening of chemical composition and antifungal and antioxidant activities of the essential oils from three Turkish Artemisia species[J]. J. Agr. Food Chem.2005a,53:1408-1416.
    Kordali S., Kotan R., Cakir A., Screening of antifungal activities of 21 oxygenated monoterpenes in vitro as plant disease control agents[J]. Allelopathy J.,2007, 19:373-391.
    Kordali S., Kotan R., Mavi A., Cakir A., Ala A., Yildirim A., Determination of the chemical composition and antioxidant activity of the essential oil of Artemisia dracunculus and of the antifungal and antibacterial activities of Turkish Artemisia absinthium, A. dracunculus, A. santonicum and A. spicigera essential oils[J]. J. Agr. Food Chem.2005b,53:9452-9458.
    Kubo. Histochemistry Ⅰ:Ginsenosides in ginseng(Panax ginseng root)[J].Journal of natural Products(L logdia),1980,43(2):278-284.
    Kusano G., Abe M., Koike Y., et al. Studies on the constituents of Chloranthus spp. followed studies on the constituents of Chloranthus japonicus[J]. Yakugaku Zasshi,1991,111(12):756-764.
    Kwon O. E., Lee H. S., Lee S. W., et al. Dimmer sesquiterpenoids isolated from Chloranthus japonicus inhibited the expression of cell adhesion molecules[J]. J Ethnopharmacol,2006,104(1-2):270-277.
    Liyana-Pathirana C. M., Shahidi F., The antioxidant potential of milling fractions from breadwheat and durum[J]. Journal of Cereal Science,2007,45:238-247.
    Luchtefeld R., Kostoryz E., Smith R. E. Determination of ginsenosides Rbl, Rc, and Re in different dosage forms of ginseng by negative ion electrosp ray liquid chromatography-mass spectrometry[J]. J. Agr. Food. Chem,2004,52(16): 4953-4956.
    Luo Q., Cai Y. Z., Yan J., Sun M., Corke H. Hypoglycemic and hypolipidemic effects and antioxidant activity of fruit extracts from Lycium barbarum[J]. Life Sciences,2004,76:137-149.
    Magiatis P., Melliou E., Skaltsounis A.L., Chinou I.B., Mitaku S., Chemical composition and antimicrobial activity of the essential oils of Pistacia lentiscus var. chia[J]. Planta Med.1999.65:749-752.
    Masaaki U., Yutaka K., Genjiro K., et al. Six sesquiterpenes from Chloranthus japonicus[J]. Chem Pharm Bull,1980,28(1):92-102.
    Wijnands L.M., Dufrenne J.B., Rombouts F.M., Veld P.H.in't, Leusden F.M.van., Prevalence of potentially pathogenic Bacillus cereus in food commodities in the Netherlands[J]. Journal of Food Protection,2006,69:2587-2594.
    Mirjana S., Nada B., Valerija D., Phytochemical composition and antimicrobial activities of the essential oils from Satureja subspicata Vis. growing in Croatia[J]. Food Chem.,2006.96:20-28.
    Lee M. R., Lin C.Y., Li Z. G., Tsai T. F. Simultaneous analysis of antioxidants and preservatives in cosmetics by supercritical fluid extraction combined with liquid chromatography-mass spectrometry [J]. Journal of Chromatography A, 2006,1120:244-251.
    National Committee for Clinical Laboratory Standards, Performance standards for antimicrobial disk susceptibility test (6th ed.). Approved standard M2-A6, Wayne, PA, USA,1997.
    National Committee for Clinical Laboratory Standards, Performance standards for antimicrobial susceptibility test. Ninth International Supplement M100-S9, Wayne, PA,USA,1999.
    Newman D. J., Cragg G. M. Natural products as sources of new drugs over the last 25 years [J]. J Nat Prod,2007,70:461-477.
    Panizzi L., Flamini G., Cioni P.L., Morelli I. Composition and antimicrobial properties of essential oils of four mediteranean lamiaceses[J]. J. Ethnopharmacol,1993, 39:169-170.
    Paola Bonaccorsi, Corrado Caristi, Claudia Gargiulli, Ugo Leuzzi. Flavonol glucosides in Allium species:A comparative study by means of HPLC-DAD-ESI-MS-MS [J]. Food Chemistry,2008,107:1668-1673.
    Parejo I., Jauregui O., Sanchez-Rabaneda F., et al. Separation and characterization of phenolic compounds in fennel (Foeniculum vulgare) using liquid chromatography-negative electrospray ionization tanderm mass spectrometry [J]. J. Agr. Food Chem.,2004,52 (12):3679-3687.
    P'ei C. Chloranthus of China. Sinensia,1935,6:665-688.
    Pitarokili D., Tzakou O., Loukis A., Harvala C., Volatile metabolites from Salvia fruticosa as antifungal agents in soilborne pathogens [J]. J. Agr. Food Chem. 2003.51:3294-3301.
    Robak J., Gryglewski R.J., Flavonoids are scavenging of superoxide anions[J]. Biochemical Pharmacology,1988,37:837-841.
    Roberta M., Roberta D.B., Rosaria V., et al. Novel mechanisms of natural antioxidant compounds in biological systems:involvement of glutathione and glutathione-related enzymes[J]. The Joumal of Nutritional Biochemistry,2005, 16(10):577-586.
    Roynette C. E., Calder P. C., Dnpertnis Y. M. n-3 Polyunsaturated fatty acids and colon cancer prevention[J]. Clin. Nutr.,2004,24:139-151.
    Russo A., Acquaviva R., Campisi A., Sorrenti V., Di Giacomo C., Virgata G., Barcellona M.L., Vanella A., Bioflavonoids as antiradicals, antioxidants and DNA cleavage protectors[J]. Cell Biology and Toxicology,2000,16:91-98.
    Runyoro D., Ngassapa O., Vagionas K., Aligiannis N., Graikou K., Chinou I.,Chemical composition and antimicrobial activity of the essential oils of four Ocimum species growing in Tanzania, Food Chem,2010,119:311-316.
    Shui G., Leong L.P. Analysis of polyphenolic antioxidants in star fruit using liquid chromatography and mass spectrometry [J]. J ChromatogrA,2004,1022 (122): 67-75.
    Sivropoulou A., Papanikolaou E., Nikolaou C., Kokkini S., Lanaras T., Arsenakis M. Antimicrobial and cytotoxic activities of Origanum essential oils[J]. J. Agr. Food Chem.,1996.44:1202-1205.
    Sokmen A., Vardar-Unlu G., Polissiou M., Daferera D., Sokmen M., Donmez E. Antimicrobial activity of essential oil and methanol extracts of Achillea sintenisii Hub Mor. (Asteraceae) [J]. Phytother. Res.,2003.17:1005-1010.
    Kim S.Y., Kashiwada Y., Kawazoe K., et al. Spicachlorantins A and B, new dimeric sesquiterpenes from the roots of Chloranthus spicatus [J]. Phytochemistry Letters,2009,2:1-4.
    Tabanca N., Kirimer N., Demirci B., Demirci F., Baser K.H.C. Composition and antimicrobial activity of the essential oils of Micromeria cristata subsp. phyrgia and the enantiomeric distribution of borneol[J]. J. Agr. Food Chem. 2001,49:4300-4303.
    Tepe B., Donmez E., Unlu M., Candan F., Daferera D., Vardar-Unlu G., Polissiou M., Sokmen A. Antimicrobial and antioxidative activities of the essential oils and methanol extracts of Salvia cryptantha (Montbret et Aucher ex. Benth.) and Salvia multicaulis (vahl) [J]. Food Chem.2004.84,519-525.
    Tesso H., Konig W.A., Son P.T., Giang P.M. Composition of the essential oil of flowers of Chloranthus spicatus (Thunb.) Makino[J]. Flav. Fragr. J.2006,21:592-597.
    Tsunematsu T., Masaaki U., Jenjiro K. Studies on-the constituents of Chloranthus spp. The sesquiterpenes from Chloranthus serratus[J]. Chem Pharm Bull,1976, 24(3):531.
    Tsunematsu T., Masaaki U., Kazuhiro K., et al. Studies on the constituents of Chloranthusspp. The structures of two new amides from Chloranthus serratus and the isolation of isofraxidin from Chloranthus japonicus[J]. Chem Pharm Bull,1975,23(5):1161.
    Ultee A., Kets E.P.W., Alberda M., Hoekstra F.A., Smid E.J. Adaptation of the foodborne pathogen Bacillus cereus to carvacrol[J]. Arch. Microbiol.2000a, 174:233-238.
    Ultee A., Slump R.A., Steging G., Smid E.J. Antimicrobial activity of carvacrol toward Bacillus cereus on rice[J]. J. Food Protect.2000 b,63:620-624.
    Ulubelen A., Topcu G., Eris C. Terpenoids from Salvia sclarea[J]. Phytochemistry, 1994,36:971-974.
    Uribe S., Ramirez T., Pena A. Effects of β-pinene on yeast membrane functions[J]. J. Bacteriol.,1985,161:1195-1200.
    Verdcourt B. Notes on Malesian Chloranthaceae[J]. Kew Bull,1985,40(1):213-224.
    Verdcourt B. Chloranthaceae. In:van Steenis C.G.G.J.(ed). Flora Malesiana.1986, 10(2):123-144.
    Verdcourt B. Chloranthaceae. In:Smitinand T., Larsen K.(eds). Flora of Thailand 5,4. Bangkok:Chutima Press.424-430.
    Wania A., Kaur D., Ahmed I., et al. Extraction optimization of watermelon seed protein using response surface methodology[J]. LWT Food Science and Technology, 2008,41(8):1514-1520.
    Wang X. C., Wu W.Q., MA S. P., et al. A New Sesquiterpenoid from the Roots of Chloranthus fortunei [J]. Chinese Journal of Natural Medicines,2008,6(6): 404-407.
    Wu B., He S., Pan Y. J. Sesquiterpenoid with new skeleton from Chloranthus henryi[J]. Tetra Lett,2007,48:453-456.
    Wu B., He S., Wu X. D., et al. Bioactive terpenes from the roots of Chloranthus henryi[J]. Planta med,2006,72(14):1334-1338.
    Wu T., Annie B. S. W., Gu L., et al. SimμLtaneous determination of six isoflavonoids in commercial Radix Astragali by HPLC-UV[J]. Fitoterapia,2005,76 (2): 157-165.
    Xu Y.J., Tang C.P., Ke C.Q., Zhang J.B., Weiss H.C., Gesing E.R., Ye Y., Mono-and di-sesquiterpenoids from Chloranthus spicatus[J]. J. Nat. Prod.,2007,70: 1987-1990.
    Yang S. P., Yue J. M., Chloramultilide A., a highly complex sesquiterpenoid dimmer from Chloranthus multistachys [J]. Tetrahedron Lett,2006,47:1129-1132.
    Yang S. P., Gao Z. B., Wu Y., et al. Chlorahololides C-F:a new class of potent and selective potassium channel blockers from Chloranthus holostegius[J]. Tetrahedron,2008,64:2027-2034.
    Yang S. P., Yue J.M. Chloramultilide A, a highly complex sesquiterpenoid dimmer from Chloranthus multistachys [J]. Tetrahedron Letters,2006,47:1129-1132.
    Zhang Y., Wang Z.Z., Influence of drying methods on chemical composition of the essential oil of Glechoma longituba[J]. Chem. Nat. Compd.,2007,43: 625-628.
    Zhu S.Y., Yang Y., Yu H.D., Ying Y., Zou G.L., Chemical composition and antimicrobial activity of the essential oils of Chrysanthemum indicum[J]. J. Ethnopharmacol. 2005,96:151-158.
    曹聪梅,彭勇,肖培根.金粟兰属植物的化学成分和药理作用研究进展[J].中国中药杂志,2008,33(13):1509-1515.
    曹治权.微量元素与中医药[M].北京:中国中医药出版社,1993.
    陈海山,程用谦.金粟兰科的起源、分化和地理分布研究[J].热带亚热带植物学报,1994,2(4):31-38.
    程晓卫,吴立明.毒性中药的致毒原因及减毒应用[J].国医论坛,2009,24(1):46-47.
    戴家杰.内服四叶细辛中毒1例临床病理分析[J].浙江中西医结合杂志,1997,7(6):381-382.
    顿玉慧,赵更峰,郑启伟.蜡样芽孢杆菌致吐毒素的研究现状[J].食品科学,2009,9:259-263.
    高诚伟,陈于谢,谢家敏等.四块瓦化学成分的研究[J].高等学校化学学报,1987,8(2):141-142.
    高锦明.植物化学[M].北京:科学出版社,2003:168.
    龚跃新,陆小龙.20味中药炒炭前后的溶出液中微量元素的研究[J].中国中药杂志,1991,16(2):85-87.
    关建红,翁维良.对中药“毒性”与毒性分级的思考[J],中国中药杂志,2008,33(4):485-487.
    笪红远.中药毒理学研究进展[J].中药药理与临床,2005,21(6):87-89.
    郭孝武.现代分离科学与技术丛书超声提取分离[M].北京:化学工业出版社,2008.
    郭增军,卜筱茜,王军宪等.陕西“七药”植物资源及研究概要[J].中国民族民间医药杂志,2006,79:9-81.
    韩建平,李伟,张超等.水飞蓟宾的负离子电喷雾离子阱质谱研究[J].质谱学报,2009,30(1):6-11.
    胡锡琴,赵梅英,卫培峰.中药毒性分级剂量标准的统一性[J].陕西中医,2005,26(7):705-706.
    胡瑛,杜予民,刘慧.壳聚糖-百里香酚复合物的抑菌活性研究[J].武汉大学学报:理学版,2003,49(2):261-265.
    滑艳,邓雁如,汪汉卿.各种挥发油的药理活性及在医学方面的应用[J].天然产物研究与开发,2003,14(5):467-469.
    黄梅,王学军,杨凯.中药抗氧化成分及抗氧化活性的体外评价方法.重庆科技学院学报(自然科学版)[J].2006,3(8):109-112.
    黄世军,陈惜秋等.丝穗金粟兰和及己的LD50实验研究[J].实用法医学杂志,1993,4(3):63-64.
    黄世军,褚建新.丝穗金粟兰中毒病理学变化的初步研究[J],1994,1(2):55-57.
    黄泰康,丁志遵,赵守训等.现代本草纲目[M].北京:中国医药科技出社,2000,2574-2575.
    贾天柱,傅宝庆,袁昌鲁.肉豆蔻不同炮制品挥发油含量及其化学成分比较[J].中药材,1992,15(1):27-29.
    江苏植物研究所,中国医学科学院药物研究所,中国科学院昆明植物研究所等.新华本草纲要[M](第2册).上海:上海科学技术出版社,1991,64-67.
    江泽荣.我国金粟兰药用植物的研究进展[J].沈阳药学院学报,1988,5(1):76-77.
    孔宏智.宽叶金粟兰及其近缘类群的修订[J].植物分类学报,2000,38(4):355-365.
    匡蕾,罗永明,李创军等.宽叶金粟兰挥发油的化学成分研究[J].江西中医学院学报,2007,19(5):63-64.
    乐兆升,刘娴芳.53种中草药抗血小板作用的初步观察[J].中药通报,1985,10(1):44-45.
    雷载权,张廷模.中华临床中药学,北京:人民卫生出版社.1998:112-115.
    李创军,张东明,罗永明.宽叶金粟兰化学成分的研究[J].药学学报,2005,40(6):525-528.
    李海霞,王钊,刘延泽.丹宁类化合物防癌抗癌活性研究[J].中药材,2003,26(6):444-447.
    李石蓉,姚红.丝穗金粟兰挥发油成分的分析[J].江西中医学院学报,2005,17(6):48-50.
    李时珍,本草纲目.第13卷[M].北京:人民卫生出版社,1982:820.
    李松林,崔熙,乔传卓等.五种金粟兰植物的挥发油成分及其抗真菌活性研究[J].中药材,1992,15(7):28-31.
    李伟光,粱敬钰.迷迭香酸的研究进展[J].海峡药,2004,16(1):1-4.
    李晓光,叶富强,徐鸿华.乙酸龙脑酯药理作用的实验研究[J].浙江中医学院学报,2001,25(3):49-50.
    李秀芳,吴立军,贾天柱,袁子民,高慧媛.肉豆蔻的化学成分[J].沈阳药科大学学报,2006,23(11):698-701.
    梁晟,李雅文,赵晨曦等.GC-MS结合保留指数对中药挥发油的定性[J].分析测试学报,2008,27(1):84-87.
    刘福艳,刘福强,谢元超,于英俊.液质联用技术在药物分析中的应用研究进展[J].中国药品标准,2008,9(6):443-446.
    刘海英等.地榆多酚的组分分析及功能研究[D].西安:陕西师范大学,2009.
    刘启,韩定献,苏明武.宽叶金粟兰收缩子宫成分的研究[J].中国医院药学杂志,1994,14(11):509.
    刘世彪,胡正海.绞股蓝龙须茶的人参皂甙组织定位及皂甙含量的季节变化[J],西北植物学报,2005,25(2):388-392.
    刘样东,梁琼麟,罗国安等.液质联用在医药领域中的应用[J].药物分析杂志,2005,25(1):110-116.
    吕邵娃,匡海学.银线草抗肿瘤有效部位的化学成分和生物活性研究[D].黑龙江:黑龙江中医药大学,2007:41-118.
    吕邵娃,杨炳友,毕姗姗,王振月,匡海学.银线草的生药鉴定[J].中药材,2009,32(2):1074-1076.
    罗奇志,戴开金,马安德.肿节风化学成分的高效液相色谱2电喷雾串联质谱分析[J],中药材,2009,32(4):526-529.
    罗永明,李创军,黄璐琪.金粟兰科药用植物的研究概况[J].江西中医学院学报,2007,19(1):64-68.
    孟昭礼,袁忠林,曲宝涵等.人工模拟杀菌剂绿帝的研制和应用[J].中国农业科学,2001,34(2):168-172.
    庞志功,汪宝琪,曹治权.中药中微量元素存在状态与活性关系的探讨[J].西北药学杂志,1994,9(5):233-235.
    冉小蓉,杨辉华,梁琼麟等.质谱差谱方法及其在中药复方研究中的应用[J].高等学校化学学报,2007,28(2):250-253.
    申亮,纪洪芳,柴建国等.对九种天然产物清除自由基活性的理论评价[J].生物物理学报,2005,21(5):332-338.
    沈梅,马安德.微波消化在药品微量元素测定中的应用[J].中国测试技术,2007,33(4):123-125.
    孙敬昌.关于中药毒性现代研究的几点设想[J],中医杂志,2009,50(7):649-650.
    孙圆媛,高月.中药毒性的研究概况[J],航空航天医药,2003,14(4):253-255.
    谭仁祥.植物成分分析[M].北京:科学出版社,2002:486-502.
    田雪菲,蒲小萍.咖啡酸对神经毒素MPP+诱发大鼠小脑颗粒细胞凋亡的保护作用[J].北京大学学报(医学版),2004,36(1):27-30.
    田云,卢向阳,易克等.天然植物抗氧化剂研究进展[J],中草药,2005,36(3):468-470.
    王兵娥,王洪军.白四块瓦性状与显微特征研究[J].中药材,2005,28:17-18.
    王德群,黄世华,武祖发.安徽金粟兰属初步研究[J].植物研究,1984,4(4):173-182.
    王健,贾仁勇,黎晓敏等.中药的现代功效与无机元素关系的研究[J].微量元素与健康研究,1996,13(4):29-30.
    王静,陈雨洁,徐燃等.民族药材白四块瓦的基源及质量标准研究[J].中南民族大学学报(自然科学版),2009,28(3):58-62.
    王天松,黄爱今,孙亦梁等.珠兰花挥发成分的分离与鉴定[J].植物学报,1987,29(2):184-188.
    王燕,罗文谦,张志琪.响应表面优化法及其在天然产物成分提取中的应用[J].安康学院学报,2009,21(1):77-81.
    王永菲,王成国.响应面法的理论与应用[J]中央民族大学学报(自然科学版),2005,14(3):236-240.
    吴国芳,吴征镒.中国植物志[M].北京:科学出版社,1982,20:77-97.
    吴建章,郁建平,赵东亮.迷迭香酸的研究进展[J].天然产物研究与开发,2005,17(3):383-388.
    吴晓松,李晓光,肖飞等.砂仁挥发油中乙酸龙脑酯镇痛抗炎作用的研究[J].中药材,2004,27(6):438-439.
    吴晓松,肖飞,张志东等.砂仁挥发油中乙酸龙脑酯的镇痛作用及其机制研究[J],中药材,2005,28(6):505-507.
    吴征镒,周太炎,肖培根.新华本草纲要[M].上海:科学技术出版社,1991:64.
    夏永刚,杨炳友,梁军等.银线草挥发油化学成分的GC-MS分析[J].中药材,2009.32(7):1074-1076.
    肖卫华,韩鲁佳,杨增玲等.响应面法优化黄芪黄酮提取工艺的研究[J].中国农业大学学报,2007,12(5):52-56.
    徐叔云,陈修,卞如廉.药理实验方法学[M].北京:人民卫生出版社,2002.690-701.
    许高燕,刘莹雯,银董红.高效液相色谱-串联质谱法同时测定水溶性迷迭香提取物中迷迭香酸、阿魏酸和咖啡酸的含量[J].分析科学学报,2006,22(5):567-569.
    杨秀伟.中药新药有效成分研究及其标准制定的科学依据[J].中草药,2009,40:8-13.
    姚淦,王铁僧.我国华东地区金粟兰科药用植物的鉴定[J].中草药,1983,14(8):35-37.
    姚新生.天然药物化学(第三版)[M].北京:人民卫生出版社,2002.245-246.
    于智敏,王克林,李海玉等.常用有毒中药的毒性分析与配伍禁忌[M].北京:科学技术文献出版社,2005.
    余清,许慧星,肖小蓉等.基于响应面分析法优化的乌饭树叶总黄酮提取条件[J].食品科学,2008,24(1):93-98.
    俞青芬,吴启勋.五味中草药中微量元素的综合评价[J].中医药学报,2009,37(4):68-70.
    俞永琼.浅谈肉豆蔻的炮制[J].云南中医中药杂志,2001,22(3):46.
    喻庆禄.多穗金粟兰挥发油成分的GC/MS分析[J].中国现代应用药学杂志,2002,19(4):327-329.
    袁子民,贾天柱,王静.肉豆蔻挥发油的研究进展[J].时珍国医国药,2005,16(12):1201-1202.
    张根水,汤翠英.痹痛方镇痛抗炎作用研究[J].中华中医药学刊,2007,25(4):788-790.
    张惠源,张志英,岳俊三等.中国中药资源志要[M].北京:科学出版社,1994:392.
    张洁,薛金龙.银线草的形态组织鉴定[J].中药材,1999,22(6):287-289.
    张静,冯岗,袁旭超等.百里香酚抑菌活性初探[J].中国农学通报,2009,25(21):277-280.
    张囡,杜丽丽,王冬等,中药酚酸类成分的研究进展[J].中国现代中药,2006,8(2):25-28.
    张遂申,王勇.中国金粟兰科解剖的初步研究[J].西北植物研究,1983,3(2):117-121.
    张武,朱建军,程利宝等.急性及已中毒的实验病理学研究.法医学杂志,2006,22(1):15-17.
    赵晨曦,梁逸曾,胡黔楠等.气相色谱保留指数定性方法研究进展[J].分析化学评述与进展,2005,33(5):715-721.
    郑友兰,李向高.吉林人参和西洋参生药学和组织化学的比较研究[J].吉林农业大学学报,1986,8(4):30-35.
    郑子新,张荣欣.构成脂肪的脂肪酸和必需脂肪酸(营养与健康卷)[M].成都:四川人民出版,1999,(6):50-51.
    中国科学院中国植物志编辑委员会.中国植物志(20卷1分册)[M].北京:科学出版社,1982,79-80.
    中国药材公司.中国中药资源志要[M].北京:科学出版社,1994,391-392.
    中国药典.2005年版(一部)[S].2005:附录64.
    周伯庭.我国金粟兰属药用植物化学成分与药理作用的研究进展[J].中药材,2004,27(7):539-542.
    周大勇,徐青,薛兴亚等.高效液相色谱-电喷雾质谱法测定枳壳中黄酮苷类化合物[J].分析化学,2006,34(9):31-35.
    周国仪,舒静等.响应面法优化超声提取芝麻叶黄酮的研究[J].食品与机械,2008,23(3):77-81.
    周立国.药物毒理学[M].武汉:湖北科学技术出版社,2000.41-42.
    朱有昌,吴德成,李景富等.东北药用植物[M].哈尔滨:黑龙江科学技术出版社,1989:1982-1991.
    邹雍,刘传珍.金粟兰属药用植物研究进展[J].江西中医学院学报,2009,21(3):98-100.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700