用户名: 密码: 验证码:
内置钢箱—混凝土组合梁受力性能与设计方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
内置钢箱-混凝土组合梁是指采用槽钢或钢板焊接成钢箱,然后在钢箱外围绑扎钢筋骨架并浇筑混凝土而形成的由混凝土、内置钢箱及钢筋骨架组合而成的梁。内置钢箱-混凝土组合梁既可用于常规新建工程,也可用于既有房屋的新增套建增层结构一层顶盖的主梁或次梁,还可用于巨型框架房屋巨型结构层的框架梁或次梁。用于常规新建结构可明显降低结构自重。因可在钢箱下挂底模,并以底模为支承设置侧模,在施工阶段钢箱可承受流态混凝土自重及施工荷载,故内置钢箱-混凝土组合梁在用于既有房屋的新增套建增层结构一层顶和巨型框架结构房屋建造时,可实现施工阶段楼盖的自承重,以保障在套建增层施工中既有建筑的安全和降低巨型框架结构房屋施工的支撑费用,并缩短施工工期。
     内置钢箱-混凝土组合梁与内置H型钢-混凝土组合梁相比具有其自身特点,同时超静定型钢-混凝土组合梁的塑性性能研究尚未见系统报道。针对这些问题,完成了5根内置钢箱-混凝土简支组合梁和4根内置钢箱-混凝土连续组合梁试验,积累了宝贵的试验数据。
     与内置H型钢-混凝土组合梁相比,内置钢箱-混凝土组合梁单位长度钢箱与混凝土的接触面积同钢箱截面面积的比值相对较小,且内置钢箱对其腹板两侧的混凝土无法形成如内置H型钢对混凝土的有效约束。针对这一特点,在基于平截面假定建立的正截面受弯承载力计算公式中引入了折减系数,以考虑内置钢箱-混凝土组合梁正截面受弯承载力相对较低这一特点。通过对试验结果及电算结果的对比分析,给出了折减系数的取值,从而完善了内置钢箱-混凝土组合梁正截面受弯承载力计算公式。
     针对内置钢箱-混凝土组合梁单位长度钢箱与混凝土的接触面积相对较小及钢箱与混凝土之间粘结性能相对较差的特点,通过采用受拉钢箱与混凝土的实际接触面积并引入粘结性能折减系数,实现了对内置钢箱-混凝土组合梁平均裂缝间距计算公式的修正;通过对试验数据分析,计算得到了内置钢箱-混凝土组合梁裂缝间混凝土自身伸长对裂缝宽度的影响系数取值,得到了反映内置钢箱-混凝土组合梁自身特点的平均裂缝宽度计算公式;通过裂缝分布直方图拟合曲线得到了考虑裂缝分布不均匀的扩大系数取值。给出了内置钢箱-混凝土组合梁裂缝宽度计算公式。
     针对内置钢箱-混凝土组合梁钢箱内部中空、内置钢箱对混凝土无法形成有效约束及钢箱与混凝土之间滑移相对较大的特点,提出了内置钢箱-混凝土组合梁的刚度等于内置钢箱对开裂截面中和轴的刚度与其外围钢筋混凝土梁刚度之和的思想,给出内置钢箱-混凝土组合梁刚度计算公式。
     一般房屋的框架梁和楼盖中的连续次梁是允许按塑性设计的。通常超静定钢梁可发生充分的塑性内力重分布,可按截面完全达到塑性进行计算。众多学者对钢筋混凝土连续梁板的塑性设计进行了系统研究,其弯矩调幅系数有表可查。在钢梁和钢筋混凝土梁板塑性设计的基础上,提出了内置钢箱-混凝土连续组合梁弯矩调幅对象的思想,即将支座控制截面弹性弯矩计算值中高于正截面承载能力极限状态下按平截面假定计算的钢箱所承担弯矩的剩余部分作为弯矩调幅对象。基于试验结果,分别以钢箱受拉翼缘屈服及受拉纵筋屈服为塑性铰出现标志,提出了与相应标志对应的等效塑性铰区长度的取值和以塑性转角为自变量的弯矩调幅系数计算公式,还提出了以混凝土相对受压区高度为自变量的弯矩调幅系数计算公式。
     以附录形式提出了包括总则、材料与截面选择、抗力计算、裂缝控制及验算、变形控制及验算、构造要求等的内置钢箱-混凝土组合梁设计建议。
Concrete beam with encased steel box (CBESB) refers to the beam composed of concerete, encased steel box and reinforcement cage, in which steel box is made up of channel or steel plate welded into box and reinforcement cage is binded around the steel box, at last, concrete is cast. CBESB can be either used in the ordinary new building or used for main beam or secondary beam in the first top floor of new-added outer-jacketing structure for adding stories around the existing buildings; also it can be used for frame beam or secondary beam in mega story of mega structure. It can greatly decrease self-weight of structure when used in new building. The floor is selt-supporting during construction when used in outer-jacketing structure or mega structure because the bottom formwork can be hung from the steel box, on which side formwork can be installed, and the steel box can carry the fluid concrete weight and construction load. The self-supporting floor can ensure the safety of the existing building and decrease the expense of shore in construction of mega frame structure building and shorten the construction period.
     Compared with concrete beam with encased H-steel, CBESB has its own characteristics, and at the same time, there is no systematic report on plastic properties of indeterminate CBESB. In consideration of these problems, experiments on 5 simple CBESB and 4 continuous CBESB are performed, and the valuable test data are got.
     Compared with concrete beam with encased H-steel, the ratio of touching area of steel box in unit length and concrete to the cross section area of steel box usually is relatively smaller. On the other hand, the encased steel box can not restrain the concrete beside the web effectively as that of encased H-steel. Considering these characteristics, the reduction factor of flexural bearing capacity is introduced into the calculation formula of flexural bearing capacity which is based on the plane section assumption. This reduction factor can reflect the characteristic that the flexural bearing capacity of CBESB is relatively small. The value of the reduction factor is given by comparing and analyzing test results and calculated results. In this way, the calculation formula of flexural bearing capacity of CBESB is perfected.
     In view that the touching area of steel box in unit length and concrete is relatively smaller and the bond property between steel box and concrete is weak, the calculation formula of the average crack spacing is amended by using actual touching area and the reduction factor of bond property in the calculation formula; the value of influence factor of elongation of concrete to crack width between cracks is calculated through analyzing test data, so the calculation formula of the average crack width of CBESB is obtained; the magnification factor showing the ununiformity of crack width is got by fitting crack distribution frequency diagram. At last, calculation formula of crack width of CBESB is brought forward.
     Considering the fact that steel box is hollow, and it can not restraint the concrete beside web effectively and the slippage between steel box and concrete is relatively bigger, the idea for calculating stiffness of CBESB is introduced, that is: the total stiffness is composed of stiffness of steel box to neutral axis of cracked transformed section and stiffness of concrete beam around the steel box. Then, the calculation formula of stiffness of CBESB is given.
     The frame beams and continuous secondary beams in floor are allowed to be designed in plastic method in ordinary building. Usually, the sufficient redistribution of plastic internal force can occur in indeterminate steel beams, and it can be designed on condition that all the fibers in section enter into plastic stage. A lot of scholars have made researches on plastic design of concrete continuous beams and slabs, and the moment modification coefficient has been listed in table. Based on plastic design of steel beams and concrete beams and slabs, the object can be modified is put forward, which is the residual of removing flexural moment of steel box in ultimate limit state on the plane section assumption from elastic calculated moment of crictical section at intermediate support. Based on test results, and making yield of tensile flange of steel box and yield of tensile of longitudinal reinforcement as occurrence sign of plastic hinge respectively, the value of the length of equivalent plastic hinge zone and the calculation formula of moment modification coefficient with the variable of plastic rotation are presented. Morever, the calculation formula of moment modification coefficient with the variable of relative depth of concrete compression zone is presented.
     Design propositions are presented for CBESB including general principles, selection of materials and sections, calculation of resistance, control and check of crack, control and check of deflection, construction detail requirements and so on.
引文
1. 苏联劲性钢筋砼结构设计指南(СИ3-78).冶金建筑研究总院译,1983,7
    2. 白国良,赵鸿铁,文双玲. 实腹式型钢混凝土(SRC)梁正截面承载力计算.钢结构,1999,14(4):22~25
    3. 白国良,赵鸿铁. 实腹式型钢混凝土梁抗弯承载力计算方法.西安建筑科技大学学报,1999,31(3):211~214
    4. 冯鹏,叶列平,庄崖屏. 均匀配筋及配置工形型钢高强混凝土偏心受压构件正截面承载力.建筑结构,2000,30(10):11~13
    5. 刚度与裂缝宽度专题组.劲性钢筋混凝土受弯构件受力性能与计算方法. 混凝土结构研究报告选集 3,中国建筑科学研究院主编,中国建筑工业出版社,1994
    6. 张培信. 钢-混凝土组合结构设计,上海科学技术出版社,2004,3
    7. 贾金青,赵国藩,张树建. 钢骨钢筋高强混凝土构件正截面承载力. 大连理工大学学报,2001,41(6):726~730
    8. 李峰,秦士洪,杨波,丁智潮. 预应力钢骨混凝土梁受弯性能试验研究. 全国第九届后张预应力学术交流会论文集. 2006,10:120-126
    9. 王庆利,康清梁,曹平周. 矩形截面型钢混凝土梁抗弯承载力计算方法探讨.河海大学学报,2002,30,(5):103~105
    10. 王向峰,张仲先,阮成堂,徐麟. 钢骨混凝土梁的受弯性能试验研究.特种结构,2002,19(1):1~4
    11. 郑宇. 钢骨混凝土梁力学性能的基础试验研究. 华南理工大学硕士学位论文. 2002,5
    12. 叶列平,方鄂华. 钢骨混凝土构件的受力性能研究综述. 土木工程学报,2000,33(5):1~12
    13. E.J. Barbero, S.H. Fu, L. Raftoyiannis. Ultimate Bending Strength of Composite Beams. Journal of Materials in Civil Engineering,1991,3(4):292-306.
    14. M. Gaetano, F. Giovanni, C. Edoardo. Modeling of Steel-Concrete Composite Beams Under Negative Bending. Journal of Engineering Mechanics, 1999, 125(6): 654-662.
    15. S.Morino. Recent Development in Hybrid Structures in Japan-Research,Design and Construction. Engineering Structures,20,1998
    16. Xiao, Hui. Experimental study on ultimate flexural capacity of steel encased concrete composite beams. Journal of Southeast University (English Edition), 2005, 21(2): 191-196
    17. 日本建築學會. 铁骨铁筋コンクリ—ト構造計算規準同解説[S].日本国东京都:丸善株式会社,1987
    18. 日本建筑学会. 钢骨钢筋混凝土结构计算标准及解说. 冯乃谦、叶列平等译.北京:能源出版社,1998
    19. [日]中野昭郎等著,谢大璋译.非对称型钢混凝土梁的试验.铁道建筑,1995,(2):27~33
    20. 叶列平,方鄂华. 钢骨混凝土构件正截面承载力计算.建筑结构,1999,(8):56~60
    21. 叶列平,赵树红,方鄂华. 钢骨混凝土构件正截面承载力计算.工程力学,1999,16(2):29~36
    22. 叶列平. 钢骨混凝土梁的设计方法.建筑结构,1997,(10):33~35
    23. 叶列平. 钢骨混凝土柱的设计方法.建筑结构,1997,(5):8~12
    24. 徐麟,张仲先,阮成堂,王向峰. 钢骨混凝土受弯构件正截面承载力计算的一种新方法.工业建筑,2003,33(2):65~70
    25. 李少泉,沙镇平. 钢骨混凝土梁正截面承载力计算的叠加方法.土木工程学报.2004,37(7):1~5
    26. Eurocode No.4. Design of Composite Steel and Concrete Structures. Part 1.1:General Rules for Building,Revised Draft,1992.
    27. European Convention For Constructional Steelwork. Composite Structure. The Construction Press. London and New York,1981
    28. British Standards Institution. Structural use of concrete: BS8110. London,1985
    29. Furlong, R. W., Strength of steel-encased concrete beam, proceeding of ASCE, Journal of the strength Division, 1967, 93(ST5)
    30. Furlong, R. W., Strength of steel-encased concrete beam-column, proceeding of ASCE, Journal of the strength Division, 1968, 94(ST1)
    31. Abolhassan Astaneh-Asl. Behavior and design of steel and composite structures including seismic effects. University of California, Berkeley, 2004,5
    32. CE 122-Design of Steel Structures, University of California, Berkeley, 2004
    33. Kindmann, R., Bergmann, R. Effect of reinforced concrete between the flanges of the steel profile of partially encased composite beams. Journal of Constructional Steel Research, 1993:27(1-3): 107-122
    34. Chicoine, Thierry, Massicotte, Bruno, Tremblay, Robert. Long-term behavior and strength of partially encased composite columns made with built-up steel shapes. Journal of Structural Engineering, 2003, 129(2): 141-150
    35. JGJ 138-2001.型钢混凝土组合结构技术规程
    36. YB 9082-97.钢骨混凝土结构设计规程
    37. 白国良,姜维山,赵鸿铁. 型钢混凝土梁的裂缝宽度计算.西安建筑科技大学学报,1995,27(3):320~328
    38. 刚度与裂缝宽度专题组.劲性钢筋混凝土受弯构件短期刚度与裂缝宽度的试验研究. 混凝土结构研究报告选集 3,中国建筑科学研究院主编,中国建筑工业出版社,1994
    39. 施建平,赵世春. 钢骨混凝土受弯构件刚度和裂缝宽度的研究.工业建筑,1997,27(4):34~36
    40. 叶列平. SRC 梁的刚度及裂缝宽度计算.工程力学增刊,1995
    41. 赵鸿铁. 钢与混凝土组合结构.科学出版社,2001
    42. GB50010-2002.混凝土结构设计规范
    43. R.P. Johnson. Composite Structures of Steel and Concrete. Oxford :Blackwell Scientific,1994
    44. W. Minoru. Composite Construction in Steel and Concrete. New York Noy Hamphire,1987
    45. Kim C, White SR. Analysis of Thick Hollow Composite Beams Under General Loadings. Compos Struct, 1996, 34:263–77
    46. Murthy MVVS, Mahapatra DR, Badarinarayana K, Gopalakrishnan S. A Refined Higher Order Finite Element for Asymmetric Composite Beams. Compos Struct, 2005, 67:27–35
    47. K.S. Virdi,P.J. Dowling. A Unified Design Method for Composite Columns. CESUC Report CCU, Imperial College, London, 1975
    48. C. Faella, V. Consalvo, E. Nigro. Some Remarks on the Ultimate and Serviceability Checks of Steel-Concrete Composite Beams According toEurocode 4. Proceedings of the Engineering Foundation Conference. Reston, USA: ASCE, 1996, 406-419
    49. GHALI, A. Deflection of reinforced concrete members: a critical review. ACI Structural Journal , 1993, 90: 364-373
    50. 汤昱川,叶列平. 钢骨混凝土梁刚度计算的内力分配法.工业建筑,2001,31(12):33~36
    51. 聂建国,刘明,叶列平. 钢-混凝土组合结构. 中国建筑工业出版社,2005,3
    52. 刘凡,朱聘儒. 钢骨混凝土梁抗弯刚度的计算方法研究.工业建筑,2001,31(12):37~39
    53. 李惠. 高强混凝土及其组合结构. 科学出版社,2004,7
    54. 赵世春. 型钢混凝土组合结构计算原理. 西南交通大学出版社,2004
    55. 王连广. 钢与混凝土组合结构理论与计算. 科学出版社,2005,3
    56. 赵世春,施建平. 型钢混凝土梁受弯刚度计算.西南交通大学学报,2004,39(6):730~733
    57. Lopes, S.M.R., Bernardo, L.F.A.. Plastic rotation capacity of high-strength concrete beams. Materials and Structures/Materiaux et Constructions,2003, 36(255):22-31
    58. Pecce, Marisa, Fabbrocino, Giovanni. Plastic rotation capacity of beams in normal and high-performance concrete. ACI Structural Journal, 1999, 96(2): 290-296
    59. Thuerlimann, Bruno. Plastic analysis of reinforced concrete beams. ASTM Special Technical Publication, 1979, 71-90
    60. Kosaka, Yoshio, Tanigawa, Yasuo, Hatanaka, Shigemitsu; Miwa, Ryuji. Stress-strain relations for concrete in plastic hinge zone of RC beams. Transactions of the Japan Concrete Institute, 1986, 8: 465-472
    61. Bigaj, Agnieszka, Walraven, Joost. Size effects in plastic hinges of reinforced concrete members. Heron, 2002, 47(1): 53-75
    62. Fenwick, R.C., Megget, L.M.. Elongation and load deflection characteristics of reinforced concrete members containing plastic hinges. Bulletin of the New Zealand National Society for Earthquake Engineering, 1993, 26(1): 28-41
    63. Scott, Michael H., Fenves, Gregory L.. A plastic hinge simulation model forreinforced concrete members. 17th Analysis and Computation Specialty Conference, v 2006, 17th Analysis and Computation Specialty Conference, 2006, 7
    64. Inel, Mehmet, Ozmen, Hayri Baytan. Effects of plastic hinge properties in nonlinear analysis of reinforced concrete buildings. Engineering Structures, 2006, 28(11):1494-1502
    65. Mendis, P. Plastic hinge lengths of normal and high-strength concrete in flexure. Advances in Structural Engineering, 2001, 4(4): 189-195
    66. Hsu, H.-L., Yu, H.-L. Seismic performance of concrete-filled tubes with restrained plastic hinge zones. Journal of Constructional Steel Research, 2003, 59(5): 587-608
    67. W. F. Chen. Plasticity in Reinforced Concrete,1982
    68. G.W.Washa, P.G.U. Fluck. Effect of Compressive Reinforcement on the Plastic Flow of Reinforced Concrete Beams,. ACI Journal 24(2), S. 89–108, 1952
    69. Al-Shaikh, A.H., Al-Zaid, R.Z., Effect of reinforcement ratio on the effective moment of inertia of reinforced concrete beams. ACI Structural Journal, 1993, 90: 144-149
    70. P.R. Barnard, R.P. Johnson. Plastic behaviour of continuous composite beams.Proc.Inst.civ.Eng.,1965,32(2):180~197
    71. M.Z. Cohn, V.A. Petcu. Moment Redistribution and Rotation Capacity of Plastic Hinges in Redundant Reinforced Concrete Beams. 1963
    72. D.R.J. Owen, E. Hinton. Finite Element in Plasticity, Theory and Practice, Pinerige Press Limited,1980
    73. 邓宗才,马俊. 钢筋混凝土连续梁塑性分析的试验研究.建筑结构,1997,(5):16~18
    74. 杨春峰. 无粘结预应力混凝土连续梁截面曲率延性分析与塑性设计. 哈尔滨工业大学硕士学位论文. 2003.9
    75. 清华大学土木与环境工程系,山西省建筑科学研究所.钢筋混凝土连续梁弯矩调幅限值的试验研究.山西建筑,1981,(1):1~33
    76. 史文田. 钢筋混凝土连续梁塑性转动能力的研究.西北水力发电,1986,(1):35~44
    77. 袁必果. 钢筋混凝土压弯构件塑性铰的试验研究.南京工学院学报,1981,(3):117~129
    78. 郑文忠,李和平,王英. 超静定预应力混凝土结构塑性设计. 哈尔滨工业大学出版社,2002,3
    79. CEB 欧洲国际混凝土委员会. 1990CEB-FIP 模式规范. 北京:中国建筑科学研究院结构所规范室译,1991
    80. 构件弹塑性计算专题研究组.钢筋混凝土连续梁弯矩调幅限值的研究.建筑结构,1982,(4):37~42
    81. 石平府. 部分预应力混凝土超静定结构的内力重分布和弯矩调幅. 东南大学硕士学位论文. 1995
    82. 自密实高性能混凝土设计与施工指南(第二次送审稿). 2005,5
    83. 沈银良. 型钢混凝土梁受力性能试验研究. 南京理工大学硕士学位论文. 2005.6.9
    84. 李灏. 高强型钢混凝土受弯构件的受力性能研究. 西安建筑科技大学硕士论文.2005.6
    85. R.Park, T.Paulay. Reinforced Concrete Structures. 1975
    86. Williams, A. Design of reinforced concrete structures. 中国水利水电出版社,2002,3
    87. Z.P. Bazant. Finite Element Analysis of Reinforced Concrete. May,ASCE New York, 1982
    88. T. Wang, T.C.H. Thomas. Nonlinear Finite Element Analysis of Concrete Structures,179, 2001
    89. 李明顺,徐有邻. 混凝土结构设计规范实施手册. 知识产权出版社,2005,9
    90. 过镇海. 混凝土的强度和本构关系-原理与应用,中国建筑工业出版社,2004,3
    91. 哈尔滨工业大学 大连理工大学等合编. 混凝土及砌体结构(上册). 中国建筑工业出版社,2002,9
    92. P. Fangning, Nonlinear Modles of Reinforced and Post-tensioned Concrete Beams. Element Journal of Structural Engineering, 2001
    93. K.B. Prodyot. Partially Prestressed Continuous Composite Beams 1. Journal of Structural Engineering ASCE,1987, 113(9)
    94. G. Fabbrocino, G. Manfredi, E.Cosenza. Analysis of Continuous Composite Beams Including Partial Interaction and Bond. Journal of StructureEngineering, 2000, 126(12):1288-1294.
    95. Roy, P.K. Singha, Mittal, Amit; Bapat, S.G.. Self-compacting concrete. Indian Concrete Journal, 2004, 78(10): 11-13
    96. Brouwers, H.J.H., Radix, H.J. Self-compacting concrete: Theoretical and experimental study. Cement and Concrete Research, 2005, 35(11): 2116-2136
    97. Abou-Zeid, Mohamed Nagib, Roushdy, Mohamed Samir. Performance and uniformity of self-compacting concrete. Transportation Research Record, 2005: 71-80
    98. Day, Richard; Gaimster, Rob; Gibbs, John. Self-compacting concrete part two: Production and use. Concrete (London), 2005, 39(10): 40-42
    99. Choi, Yun Wang, Kim, Yong Jic; Shin, Hwa Cheol; Moon, Han Young. An experimental research on the fluidity and mechanical properties of high-strength lightweight self-compacting concrete. Cement and Concrete Research, 2006, 36(9): 1595-1602
    100. M. H. Harajli. Effect of Span-depth Ratio on the Ultimate Steel Stress in Unbonded Prestressed Concrete Member. ACI Structural Journal. 1990, 87(8): 305~312
    101. A. E. Naaman and F. M. Alkhairi. Stress at Ultimate in Unbonded Prestressing Tendons: Part2-Proposed Methodology. ACI Structural Journal. 1991, 88(6): 683~692
    102. 郑文忠,王英,李和平.预应力混凝土连续梁结构塑性设计新模式(下)——预应力混凝土连续梁结构塑性设计建议. 哈尔滨建筑大学学报,2002,35(6):10-13
    103. Lin T Y, Load balancing method for design and analysis of prestressed concrete structures. ACI Journal, 1963

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700