用户名: 密码: 验证码:
吲哚胺2,3-双加氧酶抑制小鼠心脏移植排斥反应作用机制的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本课题旨在研究吲哚胺2,3-双加氧酶(IDO)在小鼠异位心脏移植排斥反应中的抑制作用及其机制,采用转染IDO基因的供体小鼠树突细胞(IDO+C)与色氨酸代谢产物(TC)联合对受体进行干预,以期使增殖T细胞在DC传递抗原期间处于色氨酸饥饿且TC大量累积的状态中,造成T细胞增殖抑制或克隆删除,检验在此状态下抑制移植排斥反应的强度,为成功诱导免疫耐受提供实验基础。
     第一部分IDO+DC和TC联合应用对T细胞的抑制作用
     目的:研究IDO+DC和TC对体外培养T淋巴细胞的抑制作用。方法:通过携带IDO基因的腺病毒转染供体DC而获得IDO+DC。在体外实验中,获取受体脾CD4+T淋巴细胞,分别与供体DC、DC+TC、IDO+DC和IDO+DC+TC进行混合培养。在体内实验中,分别向受体注射供体DC、TC、IDO+DC及IDO+DC+TC,5天后获取受体脾CD4+T淋巴细胞,分别与供体DC进行混合培养。IDO+DC+TC注射组获取的受体脾CD4+T淋巴细胞再分别与供体DC和第三系DC进行混合培养。各组均检测T细胞凋亡率及增殖刺激指数(SI)。结果:在体外实验中,与IDO+DC+TC混合培养的受体T细胞SI明显降低,而T细胞凋亡率明显升高(P<0.01)。在体内实验中,注射IDO+DC+TC的受体T细胞SI亦明显降低,而T细胞凋亡率明显升高(P<0.01)。供体DC刺激的IDO+DC+TC注射组T细胞SI较第三系DC的SI低,而其T细胞凋亡率明显升高,差异均具有统计学意义(P<0.01)。结论:联合应用IDO+DC及TC较单独给予这两种干预因素对T淋巴细胞具有更强的抑制作用,并有可能诱导针对供体的抗原特异性免疫抑制。
     第二部分小鼠同种异位心脏移植模型的建立
     目的:建立稳定、可靠的小鼠同种异位心脏移植模型,为体内实验结果的准确性提供保障。方法:通过显微外科技术分两阶段建立该动物模型,第一阶段为模型制作训练阶段,第二阶段为稳定阶段,并对麻醉方式、供心处理等方面进行相应改进。结果:稳定阶段进行手术80例,手术成功率(91.25%)较训练阶段(29%)明显提高(P<0.01),且两阶段中无一动物死于麻醉意外。模型稳定阶段中,血管吻合失败率、移植心缺血时间及手术时间等较训练阶段均明显缩短(P<0.01)。结论:长期进行显微外科技术训练对避免实验动物的浪费和保障后续实验结果的准确性具有重要的意义。成功的麻醉是手术成功的前提,提高血管吻合质量是手术成功的关键,此模型稳定可靠,是研究器官移植排斥反应的理想动物模型。
     第三部分IDO+DC和TC联合应用对小鼠异位心脏移植排斥反应的抑制作用及其机制研究
     目的:研究联合应用供体IDO+DC和TC对移植排斥反应的抑制作用,探讨IDO抗排斥反应的作用机制。方法:术前给予受体不同干预,包括注射PBS、未转染DC、空病毒转染DC、CsA(10mg/kg/d)、TC、IDO+DC、IDO+DC+TC等。观察移植物存活时间。术后7天获取移植物行组织病理学检查、qRT-PCR检测细胞因子和IDO mRNA的表达水平、Western Blot及免疫组化染色检测IDO蛋白的表达水平。获取受体外周血行流式细胞学检测T细胞凋亡率。结果:与PBS组、未转染DC组、空病毒转染DC组比较,TC和IDO+DC组的供心生存期明显延长(P<0.01),病理分级程度下降(P<0.05),IDOmRNA和蛋白表达水平明显增高(P<0.01),TNF-amRNA的表达量降低(P<0.05),而IL-10mRNA和蛋白表达水平增高(P<0.05),且T细胞凋亡率明显升高(P<0.01)。与TC和IDO+DC组比较,IDO+DC+TC组供心生存期延长(P<0.05),IDOmRNA和蛋白表达水平增高(P<0.05),IL-2、IFN-γ、TNF-amRNA的表达量均降低(除与IDO+DC组相比IL-2mRNA下降无统计学差异,P<0.05),IL-10mRNA和蛋白表达水均增高(P<0.05),T细胞凋亡率明显升高(P<0.01),而病理分级程度虽有所降低但无统计学差异(P>0.05)。结论:术前注射转染IDO基因的供体DC及TC对小鼠心脏移植排斥反应的抑制作用较单独应用这两种干预因素更强,表明IDO通过色氨酸耗竭和色氨酸代谢产物累积两条途径同时发挥抗排斥作用。
     第四部分IDO+DC和TC联合应用抑制排斥反应的抗原特异性研究
     目的:观察联合应用转染IDO基因的供体DC和TC对小鼠心脏移植后皮肤移植排斥反应的抑制作用。方法:按第三部分方法建立IDO+DC+TC实验组,对其中供心存活超过30天的受体分别进行供体来源和第三系来源的皮肤移植,观察移植皮片的存活情况及病理学表现。结果:供体来源的移植皮片在术后两周仍存活,仅出现轻度的皮肤卷边和毛发脱落,皮下组织少量炎性细胞浸润。而第三系来源的移植皮片在术后十天已完全结痂、脱落,皮下组织大量炎性细胞浸润。结论:联合应用转染IDO基因的供体DC和TC可以延长供体来源移植皮肤的生存时间,提示术前注射IDO+DC+TC可诱导针对供体抗原的特异性免疫抑制,进而可能诱导免疫耐受。
Suppressive effect of indoleamine2,3-dioxygenase (IDO) on rejection of mice cardiac transplantation was studied in this experiment. Suppressive effect of transfected IDO positive dendritic cells (IDO+DC) and tryptophan catabolites (TC) were used to induce immune tolerance by suppressing T lymphocyte proliferation during the antigen presenting state of DC. Suppression of T lymphocytes proliferation or clone deletion was achieved when T lymphocytes underwent tryptophan starvation state with accumulation of TC. The suppressive effect on rejection of mice cardiac transplantation was evaluated, which provided experimental evidence for further research in the field of immune tolerance.
     Part I Suppressive Effect of IDO+DC in Combination with TC on T Lymphocyte
     Objective To evaluate the in vitro and in vivo suppressive effect of IDO+DC and TC on T lymphocyte. Method Adenovirus vector containing IDO gene was used to infect donor (C57BL/6) DC to obtain IDO+DC. In vitro, CD4+T lymphocytes were isolated from the spleen of untreated recipient (BALB/c) mouse, and then treated with either donor DC, TC with donor DC, IDO+DC or Co-administration of IDO+DC and TC. In vivo effect of treatments were examined by injection of either donor DC, TC, IDO+DC or Co-administration of IDO+DC and TC into recipient mouse, and CD4+T lymphocytes were isolated and harvested from the spleen five days after injection. Harvested CD4+T lymphocytes of the treated recipient mouse were mixed cultured with donor DC. Meanwhile, CD4+T lymphocytes harvested from recipient mouse treated with Co-administration of IDO+DC and TC were mixed cultured with tertiary origin DC from C3H/He mouse. T lymphocyte apoptosis rate (AR) and proliferation stimulation index (SI) were evaluated for both in vitro and in vivo effect of treatments. Result Both in vitro and in vivo effect of treatments with Co-administration of IDO+DC and TC showed significant decrease in T lymphocytes proliferation SI, and significant increase in T lymphocyte AR (P<0.01). By using CD4+T lymphocytes from recipient mouse injected with Co-administration of IDO+DC and TC, mixed cultured with donor origin DC showed significant decrease in T lymphocyte SI, and significant increase in T lymphocyte AR (P<0.01) compare with that when mixed cultured with tertiary origin DC. Conclusion IDO+DC or TC alone is less effective comparing with combination administration of IDO+DC and TC, which showed stronger suppressing effect on T lymphocytes and might be able to induce antigen-specific immune suppression.
     Part II Establishment of Heterotropic Cardiac Transplantation Model in Mice
     Objective To establish a stable and reliable mouse heterotopic cardiac transplantation model for accurate in vivo results. Method Mouse heterotopic cardiac transplantation (HCT) model was established using C57BL/6mouse as the donor and BALB/c mouse as the recipient. Establishment of model was divided into two phases.100and80pairs of HCT were performed respectively in the training phase and stable phase. Anesthesia technique and method of harvesting the graft heart were also improved accordingly during both phases. Result Surgical success rate of HCT in stable phase (91.25%) was significantly increased when compared with that in training phase (29%)(P<0.01), and no recipients were dead due to anesthesia in both phases. Vascular anastomosis failure rate, donor heart ischemia time and surgical time all showed significant improvement in stable phase when compare to those in traning phase (P<0.01). Conclusion Long-term training of microsurgical technique avoids wasting of experimental animals and at the same time ensures the quality of the model to be used for further experiments. Prerequisite for successful establishment of HCT model is successful anesthesia for the mouse, and ensuring the quality of vascular anastomosis is the key to successful establishment of HCT model. Mice HCT model is a stable and reliable model for further research in organ transplant rejection.
     Part III Suppressive Effect of IDO+DC in Combination with TC on Rejection in Mice Heterotopic Cardiac Transplantation
     Objective To examine the combination effect of IDO+DC and TC on transplantation rejection and possible anti-rejection mechanism. Method Donor mice were divided into two major groups, the control group and treatment group. Control group was further divided into four subgroups, including injection of PBS, untransfected DC, vector-virus DC, or Cyclosporine (10mg/kg/d). Treatment group was divided into three subgroups, including injection of TC, IDO+DC or Co-administration of IDO+DC and TC. Survival time of the donor heart in every groups was observed. Meanwhile, donor hearts were harvested7days post transplantation for different examinations, including pathological examination through H&E, mRNA expression of IDO and different cytokines through qRT-PCR, IDO protein expression through western blot and immunohistochemistry. Peripheral blood of recipient was also harvested for T lymphocyte apoptosis rate examination through FACS. Result Compared with PBS, untransfected DC, vector-virus DC control groups, IDO+DC and TC treatment significantly prolonged the survival time of donor hearts (P<0.01). Pathological grading was significantly decreased (P<0.05). Boeh IDO mRNA and protein expression showed significant increase (P<0.01). mRNA expression of TNF-a was decreased (P<0.05), while IL-10was significantly increased (P<0.01). Furthermore, the T lymphocyte apoptosis rate was also significantly increased (P<0.01). Compared with treatment group with IDO+DC or TC alone, co-administration of IDO+DC and TC treatment significantly prolonged the survival time of the donor heart (P<0.05). Both IDO mRNA and protein expression showed significant increase (P<0.05). mRNA expression of IL-2, IFN-γ, and TNF-a were significantly decreased (P<0.05), with the exception for the IDO+DC treatment group of IL-2(P>0.05), and expression of IL-10was also significantly increased (P<0.05). Furthermore, the T lymphocyte apoptosis rate was significantly increased as well (P<0.01). Pathological grading was decreased, but without significant difference (P>0.05). Conclusion Suppressive effect of co-administration of IDO+DC with TC was much more effective than administration of IDO+DC or TC alone, which suggested that IDO achieved immune suppressive effect through the pathway of tryptophan depletion and accumulation of TC.
     Part IV Antigen-specific Suppressive Effect of IDO+DC in Combination with TC on Transplant Rejection
     Objective To observe the suppressive effect of combination treatment with IDO+DC and TC on skin graft rejection of post cardiac transplantation mice. Method C57BL/6or C3H/He mouse was used as the donor, and BALB/c mouse treated with combination of IDO+DC (C57BL/6origin) and TC underwent HCT with donor heart survival>30days was used as the recipient to establish skin transplantation model. Then the condition of skin graft was monitored. Result Skin graft of C57BL/6origin survived>2weeks post transplantation, with mild skin curl and hair loss. Skin graft of C3H/He origin totally scab and fall off10days post transplantation. Conclusion Transplant rejection of skin graft decreased in mouse underwent treatment with combination of IDO+DC and TC, which indicated that combination treatment with IDO+DC and TC might induce antigen-specific immune tolerance.
引文
[1]Cahoon W D, Ensor C R, Shullo M A. Alemtuzumab for cytolytic induction of immunosuppression in heart transplant recipients[J]. Prog Transplant,2012,22(4): 344.349,350.
    [2]Tepperman E, Ramzy D, Prodger J, et al. Surgical biology for the clinician: vascular effects of immunosuppression[J]. Can J Surg,2010,53(1):57-63.
    [3]邱甬鄞,朱同玉.调节性B淋巴细胞在免疫耐受中作用的研究进展[J].中华器官移植杂志,2012,33(5):315-317.
    [4]杨阳,岳波,韩岩,等.维持树突状细胞未成熟状态诱导同种异体组织移植免疫耐受的研究进展[J].中华外科杂志,2011,49(1):87-90.
    [5]Tiurbe G, Matuschek A, Kammerer U, et al. Inhibitory effects of rat bone marrow-derived dendritic cells on naive and alloantigen-specific CD4+T cells:a comparison between dendritic cells generated with GM-CSF plus IL-4 and dendritic cells generated with GM-CSF plus IL-10[J]. BMC Res Notes,2009,2:12.
    [6]Adorini L, Penna G. Dendritic cell tolerogenicity:a key mechanism in immunomodulation by vitamin D receptor agonists[J]. Hum Immunol,2009, 70(5):345-352.
    [7]Onishi Y, Fehervari Z, Yamaguchi T, et al. Foxp3+natural regulatory T cells preferentially form aggregates on dendritic cells in vitro and actively inhibit their maturation[J]. Proc Natl Acad Sci U S A,2008,105(29):10113-10118.
    [8]Munn D H, Sharma M D, Lee J R, et al. Potential regulatory function of human dendritic cells expressing indoleamine 2,3-dioxygenase[J]. Science,2002, 297(5588):1867-1870.
    [9]Munn D H, Zhou M, Attwood J T, et al. Prevention of allogeneic fetal rejection by tryptophan catabolism[J]. Science,1998,281(5380):1191-1193.
    [10]Tan P H, Beutelspacher S C, Xue S A, et al. Modulation of human dendritic-cell function following transduction with viral vectors:implications for gene therapy[J].Blood,2005,105(10):3824-3832.
    [11]孙星,裘国强,徐军明,等.大鼠肝移植后的排斥反应与吲哚胺2,3双加氧 酶基因的关系[J].中华器官移植杂志,2006,27(7):392-395.
    [12]Ge W, Jiang J, Arp J, et al. Regulatory T-cell generation and kidney allograft tolerance induced by mesenchymal stem cells associated with indoleamine 2,3-dioxygenase expression[J]. Transplantation,2010,90(12):1312-1320.
    [13]Stone T W, Stoy N, Darlington L G. An expanding range of targets for kynurenine metabolites of tryptophan[J]. Trends Pharmacol Sci,2013,34(2):136-143.
    [14]Terness P, Bauer T M, Rose L, et al. Inhibition of allogeneic T cell proliferation by indoleamine 2,3-dioxygenase-expressing dendritic cells:mediation of suppression by tryptophan metabolites [J]. J Exp Med,2002,196(4):447-457.
    [15]Bauer T M, Jiga L P, Chuang J J, et al. Studying the immunosuppressive role of indoleamine 2,3-dioxygenase:tryptophan metabolites suppress rat allogeneic T-cell responses in vitro and in vivo[J]. Transpl Int,2005,18(1):95-100.
    [16]戴向晨,刘彤,张树建,等.吲哚胺2,3双加氧酶对小鼠CD4+T细胞增殖的抑制作用[J].中华实验外科杂志,2011,28(9):1434-1437.
    [17]Dai X, Zhu B T. Suppression of T-cell response and prolongation of allograft survival in a rat model by tryptophan catabolites[J]. Eur J Pharmacol,2009, 606(1-3):225-232.
    [18]Wan H, Dupasquier M. Dendritic cells in vivo and in vitro[J]. Cell Mol Immunol,2005,2(1):28-35.
    [19]Morel P A, Feili-Hariri M, Coates P T, et al. Dendritic cells, T cell tolerance and therapy of adverse immune reactions[J]. Clin Exp Immunol,2003,133(1):1-10.
    [20]Reis E S C. Activation of dendritic cells:translating innate into adaptive immunity[J]. Curr Opin Immunol,2004,16(1):21-25.
    [21]Arce F, Rowe H M, Chain B, et al. Lentiviral vectors transduce proliferating dendritic cell precursors leading to persistent antigen presentation and immunization[J]. Mol Ther,2009,17(9):1643-1650.
    [22]Chen Q, He F, Kwang J, et al. GM-CSF and IL-4 stimulate antibody responses in humanized mice by promoting T, B, and dendritic cell maturation[J]. J Immunol,2012,189(11):5223-5229.
    [23]Williams P, Bouchentouf M, Rafei M, et al. A dendritic cell population generated by a fusion of GM-CSF and IL-21 induces tumor-antigen-specific immunity[J]. J Immunol,2010,185(12):7358-7366.
    [24]Schwarz M, Taubitz A, Eltrich N, et al. Analysis of TNF-mediated recruitment and activation of glomerular dendritic cells in mouse kidneys by compartment-specific flow cytometry[J]. Kidney Int,2013.
    [25]An X J, Bai C X, Xia J B, et al. Immature dendritic cells expressing indoleamine 2,3-dioxygenase suppress ovalbumin-induced allergic airway inflammation in mice[J]. J Investig Allergol Clin Immunol,2011,21(3):185-192.
    [26]Zhou D, O'Brien C, Shum J, et al. LF 15-0195, a novel immunosuppressive agent prevents rejection and induces operational tolerance in a mouse cardiac allograft model[J]. Transplantation,2003,76(4):644-650.
    [27]Min W P, Zhou D, Ichim T E, et al. Synergistic tolerance induced by LF15-0195 and anti-CD45RB monoclonal antibody through suppressive dendritic cells[J]. Transplantation,2003,75(8):1160-1165.
    [28]Seamon J, Wang X, Cui F, et al. Adenoviral Delivery of the VEGF and BMP-6 Genes to Rat Mesenchymal Stem Cells Potentiates Osteogenesis[J]. Bone Marrow Res,2013,2013:737580.
    [29]Voigtlander R, Haase R, Muck-Hausl M, et al. A Novel Adenoviral Hybrid-vector System Carrying a Plasmid Replicon for Safe and Efficient Cell and Gene Therapeutic Applications[J]. Mol Ther Nucleic Acids,2013,2:e83.
    [30]Jenne L, Schuler G, Steinkasserer A. Viral vectors for dendritic cell-based immunotherapy[J]. Trends Immunol,2001,22(2):102-107.
    [31]Humrich J, Jenne L. Viral vectors for dendritic cell-based immunotherapy[J]. Curr Top Microbiol Immunol,2003,276:241-259.
    [32]Braidy N, Guillemin G J, Mansour H, et al. Changes in kynurenine pathway metabolism in the brain, liver and kidney of aged female Wistar rats[J]. FEBS J,2011,278(22):4425-4434.
    [33]Hoshi M, Matsumoto K, Ito H, et al. L-tryptophan-kynurenine pathway metabolites regulate type I IFNs of acute viral myocarditis in mice[J]. J Immunol,2012,188(8):3980-3987.
    [34]孙星,王兆文,巩子君,等.微透析技术连续监测大鼠肝移植后吲哚胺2,3- 双加氧酶在体活性[J].中华实验外科杂志,2011,28(8):1324-1326.
    [35]Meisel R, Zibert A, Laryea M, et al. Human bone marrow stromal cells inhibit allogeneic T-cell responses by indoleamine 2,3-dioxygenase-mediated tryptophan degradation[J]. Blood,2004,103(12):4619-4621.
    [36]Mellor A L, Keskin D B, Johnson T, et al. Cells expressing indoleamine 2,3-dioxygenase inhibit T cell responses[J]. J Immunol,2002,168(8):3771-3776.
    [37]Fukunaga M, Yamamoto Y, Kawasoe M, et al. Studies on tissue and cellular distribution of indoleamine 2,3-dioxygenase 2:the absence of IDO1 upregulates IDO2 expression in the epididymis[J]. J Histochem Cytochem,2012,60(11):854-860.
    [38]Dai X, Zhu B T. Indoleamine 2,3-dioxygenase tissue distribution and cellular localization in mice:implications for its biological functions[J]. J Histochem Cytochem,2010,58(1):17-28.
    [39]谢启超,朱波,陈正堂.IDO基因转染小鼠树突状细胞体外诱导Treg细胞增殖的研究[J].重庆医学,2011,40(20):1977-1978,1981.
    [40]闵军,刘璐,商昌珍,等.丁酸钠增强未成熟树突状细胞表达吲哚胺2,3双加氧酶抑制T细胞增殖[J].中华实验外科杂志,2009,26(2):169-171.
    [41]Mellor A. Indoleamine 2,3 dioxygenase and regulation of T cell immunity [J]. Biochem Biophys Res Commun,2005,338(1):20-24.
    [42]Mellor A L, Munn D H. IDO expression by dendritic cells:tolerance and tryptophan catabolism[J]. Nat Rev Immunol,2004,4(10):762-774.
    [43]Fallarino F, Grohmann U, You S, et al. The combined effects of tryptophan starvation and tryptophan catabolites down-regulate T cell receptor zeta-chain and induce a regulatory phenotype in naive T cells[J]. J Immunol,2006,176(11): 6752-6761.
    [44]Fallarino F, Grohmann U, Vacca C, et al. T cell apoptosis by tryptophan catabolism[J]. Cell Death Differ,2002,9(10):1069-1077.
    [45]Frumento G, Rotondo R, Tonetti M, et al. Tryptophan-derived catabolites are responsible for inhibition of T and natural killer cell proliferation induced by indoleamine 2,3-dioxygenase[J]. J Exp Med,2002,196(4):459-468.
    [46]苏松.小鼠器官移植模型的现状和展望[J].中华器官移植杂 志,2007,28(4):251-252.
    [47]Tao R, Wang L, Han R, et al. Differential effects of B and T lymphocyte attenuator and programmed death-1 on acceptance of partially versus fully MHC-mismatched cardiac allografts[J]. J Immunol,2005,175(9):5774-5782.
    [48]朱鹏,陈义发,张宜江,等.建立小鼠腹部心脏移植模型的体会[J].中国普通外科杂志,2007,16(2):133-135.
    [49]Hasegawa T, Visovatti S H, Hyman M C, et al. Heterotopic vascularized murine cardiac transplantation to study graft arteriopathy[J]. Nat Protoc,2007,2(3):471-480.
    [50]Camirand G. New perspectives in transplantation through intravital microscopy imaging[J]. Curr Opin Organ Transplant,2013,18(1):6-12.
    [51]刘小孙,张富祥,容松.小鼠腹部异位心脏移植模型制作的改良(附视频)[J].中华移植杂志(电子版),2012,06(1):38-39.
    [52]张纲,陈国栋,陈立中.小鼠腹部异位心脏移植手术技巧[J].中华实验外科杂志,2012,29(5):906.
    [53]严国锋,张健,周勇,等.保温措施对小鼠麻醉效果的影响[J].实验动物与比较医学,2008,28(5):341-342.
    [54]Liu F, Kang S M. Heterotopic heart transplantation in mice[J]. J Vis Exp,2007(6):238.
    [55]Brenner P, Keller M, Beiras-Fernandez A, et al. Prevention of hyperacute xenograft rejection through direct thrombin inhibition with hirudin[J]. Ann Transplant,2010,15(4):30-37.
    [56]Li S, Guan Q, Chen Z, et al. Reduction of cold ischemia-reperfusion injury by graft-expressing clusterin in heart transplantation[J]. J Heart Lung Transplant,2011,30(7):819-826.
    [57]Stewart S, Winters G L, Fishbein M C, et al. Revision of the 1990 working formulation for the standardization of nomenclature in the diagnosis of heart rejection[J]. J Heart Lung Transplant,2005,24(11):1710-1720.
    [58]Bustin S A. Quantification of mRNA using real-time reverse transcription PCR (RT-PCR):trends and problems[J]. J Mol Endocrinol,2002,29(1):23-39.
    [59]Crockett A O, Wittwer C T. Fluorescein-labeled oligonucleotides for real-time pcr:using the inherent quenching of deoxyguanosine nucleotides[J]. Anal Biochem,2001,290(1):89-97.
    [60]Liang Y, Hou X, Cui Q, et al. Skp2 expression unfavorably impacts survival in resectable esophageal squamous cell carcinoma[J]. J Transl Med,2012,10:73.
    [61]Munn D H, Mellor A L. Indoleamine 2,3-dioxygenase and tumor-induced tolerance[J]. J Clin Invest,2007,117(5):1147-1154.
    [62]Wood K J, Sawitzki B. Interferon gamma:a crucial role in the function of induced regulatory T cells in vivo[J]. Trends Immunol,2006,27(4):183-187.
    [63]King N J, Thomas S R. Molecules in focus:indoleamine 2,3-dioxygenase[J]. Int J Biochem Cell Biol,2007,39(12):2167-2172.
    [64]Hwang S L, Chung N P, Chan J K, et al. Indoleamine 2,3-dioxygenase (IDO) is essential for dendritic cell activation and chemotactic responsiveness to chemokines[J]. Cell Res,2005,15(3):167-175.
    [65]Favre D, Mold J, Hunt P W, et al. Tryptophan catabolism by indoleamine 2,3-dioxygenase 1 alters the balance of TH17 to regulatory T cells in HIV- disease[J]. Sci Transl Med,2010,2(32):32r-36r.
    [66]Fallarino F, Grohmann U, You S, et al. Tryptophan catabolism generates autoimmune-preventive regulatory T cells[J]. Transpl Immunol,2006,17(1):58-60.
    [67]瞿紫微,刘彤,王鹏志.阻断共刺激信号抑制小鼠小肠移植排斥反应机制的研究[J].中华器官移植杂志,2007,28(6):336-338.
    [68]Mayer E, Holzl M, Ahmadi S, et al. CTLA4-Ig immunosuppressive activity at the level of dendritic cell/T cell crosstalk[J]. Int Immunopharmacol,2013, 15(3):638-645.
    [69]Harden J L, Egilmez N K. Indoleamine 2,3-dioxygenase and dendritic cell tolerogenicity[J]. Immunol Invest,2012,41(6-7):738-764.
    [70]Grohmann U, Fallarino F, Bianchi R, et al. A defect in tryptophan catabolism impairs tolerance in nonobese diabetic mice[J]. J Exp Med,2003,198(1):153-160.
    [71]Kuales M A, Wenzel J, Schmid-Wendtner M H, et al. Myeloid CD11c+S100+ dendritic cells express indoleamine 2,3-dioxygenase at the inflammatory border to invasive lower lip squamous cell carcinoma[J]. Histol Histopathol,2011, 26(8):997-1006.
    [72]Baban B, Hansen A M, Chandler P R, et al. A minor population of splenic dendritic cells expressing CD 19 mediates IDO-dependent T cell suppression via type IIFN signaling following B7 ligation[J]. Int Immunol,2005,17(7):909-919.
    [73]Fallarino F, Vacca C, Orabona C, et al. Functional expression of indoleamine 2,3-dioxygenase by murine CD8 alpha(+) dendritic cells[J]. Int Immunol,2002, 14(1):65-68.
    [74]戴向晨,刘彤,朱理玮,等.小鼠肠移植术前输注表达吲哚胺2,3双加氧酶的供者树突细胞抑制排斥反应[J].中华器官移植杂志,2007,28(2):74-77.
    [75]Suarez-Fuentetaja N, Domenech-Garcia N, Paniagua-Martin M J, et al. Indoleamine,2-3 dioxygenase activity could be an early marker of graft rejection in heart transplantation[J]. Transplant Proc,2012,44(9):2645-2648.
    [76]Brandacher G, Margreiter R, Fuchs D. Clinical relevance of indoleamine 2,3-dioxygenase for alloimmunity and transplantation[J]. Curr Opin Organ Transplant,2008,13(1):10-15.
    [77]Beutelspacher S C, Pillai R, Watson M P, et al. Function of indoleamine 2,3-dioxygenase in corneal allograft rejection and prolongation of allograft survival by over-expression[J]. Eur J Immunol,2006,36(3):690-700.
    [78]Zaher S S, Germain C, Fu H, et al.3-hydroxykynurenine suppresses CD4+ T-cell proliferation, induces T-regulatory-cell development, and prolongs corneal allograft survival[J]. Invest Ophthalmol Vis Sci,2011,52(5):2640-2648.
    [79]Yu G, Fang M, Gong M, et al. Steady state dendritic cells with forced IDO expression induce skin allograft tolerance by upregulation of regulatory T cells[J]. Transpl Immunol,2008,18(3):208-219.
    [80]Wee J L, Christiansen D, Li Y Q, et al. Suppression of cytotoxic and proliferative xenogeneic T-cell responses by transgenic expression of indoleamine 2,3-dioxygenase[J]. Immunol Cell Biol,2008,86(5):460-465.
    [81]Mulley W R, Li Y Q, Wee J L, et al. Local expression of IDO, either alone or in combination with CD40Ig, IL10 or CTLA4Ig, inhibits indirect xenorejection responses[J]. Xenotransplantation,2008,15(3):174-183.
    [82]郭庆,黄君龄,王祥慧,等.环孢素对心脏移植大鼠急性排斥反应及血清IDO 活性的影响[J].上海交通大学学报(医学版),2010,30(7):779-782,811.
    [83]Brandacher G, Cakar F, Winkler C, et al. Non-invasive monitoring of kidney allograft rejection through IDO metabolism evaluation[J]. Kidney Int,2007, 71(1):60-67.
    [84]Mellor A L, Munn D H. Tryptophan catabolism and regulation of adaptive immunity[J]. J Immunol,2003,170(12):5809-5813.
    [85]Mellor A L, Baban B, Chandler P, et al. Cutting edge:induced indoleamine 2,3 dioxygenase expression in dendritic cell subsets suppresses T cell clonal expansion[J]. J Immunol,2003,171(4):1652-1655.
    [86]Lee G K, Park H J, Macleod M, et al. Tryptophan deprivation sensitizes activated T cells to apoptosis prior to cell division[J]. Immunology,2002, 107(4):452-460.
    [87]韩波,胡燕华.CTLA4Ig基因修饰的树突状细胞抑制角膜移植排斥反应的机制研究[J].眼科研究,2007,25(5):347-350.
    [88]Jasperson L K, Bucher C, Panoskaltsis-Mortari A, et al. Inducing the tryptophan catabolic pathway, indoleamine 2,3-dioxygenase (IDO), for suppression of graft-versus-host disease (GVHD) lethality[J]. Blood,2009,114(24):5062-5070.
    [89]Fox J M, Sage L K, Huang L, et al. Inhibition of indoleamine 2,3-dioxygenase (IDO) enhances the T cell response to influenza virus infection[J]. J Gen Virol,2013.
    [90]Orabona C, Puccetti P, Vacca C, et al. Toward the identification of a tolerogenic signature in IDO-competent dendritic cells[J]. Blood,2006,107(7):2846-2854.
    [91]Kwidzinski E, Bunse J, Aktas O, et al. Indolamine 2,3-dioxygenase is expressed in the CNS and down-regulates autoimmune inflammation[J]. FASEB J,2005,19(10):1347-1349.
    [92]Clark D A, Blois S, Kandil J, et al. Reduced uterine indoleamine 2,3-dioxygenase versus increased Thl/Th2 cytokine ratios as a basis for occult and clinical pregnancy failure in mice and humans [J]. Am J Reprod Immunol, 2005,54(4):203-216.
    [93]Yuan J Z, Ye Q F, Zhao L L, et al. Preoperative risk factor analysis in orthotopic liver transplantation with pretransplant artificial liver support therapy [J]. World J Gastroenterol,2006,12(31):5055-5059.
    [94]Azarpira N, Aghdaie M H, Geramizadeh B, et al. Cytokine gene polymorphisms in renal transplant recipients[J]. Exp Clin Transplant,2006,4(2):528-531.
    [95]Karczewski J, Karczewski M, Glyda M, et al. Role of TH1/TH2 cytokines in kidney allograft rejection[J]. Transplant Proc,2008,40(10):3390-3392.
    [96]Jergens A E, Sonea I M, O'Connor A M, et al. Intestinal cytokine mRNA expression in canine inflammatory bowel disease:a meta-analysis with critical appraisal[J]. Comp Med,2009,59(2):153-162.
    [97]English K, Wood K J. Mesenchymal stromal cells in transplantation rejection and tolerance[J]. Cold Spring Harb Perspect Med,2013,3(5).
    [98]Safinia N, Leech J, Hernandez-Fuentes M, et al. Promoting transplantation tolerance; adoptive regulatory T cell therapy[J]. Clin Exp Immunol,2013, 172(2):158-168.
    [99]Guillonneau C, Hill M, Hubert F X, et al. CD40Ig treatment results in allograft acceptance mediated by CD8CD45RC T cells, IFN-gamma, and indoleamine 2,3-dioxygenase[J]. J Clin Invest,2007,117(4):1096-1106.
    [100]Laurence J M, Wang C, Park E T, et al. Blocking indoleamine dioxygenase activity early after rat liver transplantation prevents long-term survival but does not cause acute rejection[J]. Transplantation,2008,85(9):1357-1361.
    [101]Cook C H, Bickerstaff A A, Wang J J, et al. Spontaneous renal allograft acceptance associated with "regulatory" dendritic cells and IDO[J]. J Immunol, 2008,180(5):3103-3112.
    [102]Grohmann U, Orabona C, Fallarino F, et al. CTLA-4-Ig regulates tryptophan catabolism in vivo[J]. Nat Immunol,2002,3(11):1097-1101.
    [1]杨阳,岳波,韩岩,等.维持树突状细胞未成熟状态诱导同种异体组织移植免疫耐受的研究进展[J].中华外科杂志,2011,49(01).
    [2]Munn D H, Zhou M, Attwood J T, et al. Prevention of allogeneic fetal rejection by tryptophan catabolism[J]. Science,1998,281 (5380):1191-1193.
    [3]Munn D H. Blocking IDO activity to enhance anti-tumor immunity[J]. Front Biosci (Elite Ed),2012,4:734-745.
    [4]Lob S, Konigsrainer A, Rammensee H G, et al. Inhibitors of indoleamine-2,3-dioxygenase for cancer therapy:can we see the wood for the trees?[J]. Nat Rev Cancer,2009,9(6):445-452.
    [5]Orabona C, Pallotta M T, Grohmann U. Different partners, opposite outcomes:a new perspective of the immunobiology of indoleamine 2,3-dioxygenase[J]. Mol Med,2012,18:834-842.
    [6]Fujigaki H, Seishima M, Saito K. Posttranslational modification of indoleamine 2,3-dioxygenase[J]. Anal Bioanal Chem,2012,403(7):1777-1782.
    [7]Sugimoto H, Oda S, Otsuki T, et al. Crystal structure of human indoleamine 2,3-dioxygenase:catalytic mechanism of 02 incorporation by a heme-containing dioxygenase[J]. Proc Natl Acad Sci U S A,2006,103(8):2611-2616.
    [8]Mulley W R, Nikolic-Paterson D J. Indoleamine 2,3-dioxygenase in transplantation[J]. Nephrology (Carlton),2008,13(3):204-211.
    [9]Wojas J, Pajtasz-Piasecka E. [Dendritic cell-regulatory T-cell interaction][J]. Postepy Hig Med Dosw (Online),2010,64:167-174.
    [10]Terness P, Bauer T M, Rose L, et al. Inhibition of allogeneic T cell proliferation by indoleamine 2,3-dioxygenase-expressing dendritic cells:mediation of suppression by tryptophan metabolites [J]. J Exp Med,2002,196(4):447-457.
    [11]Grohmann U, Fallarino F, Bianchi R, et al. A defect in tryptophan catabolism impairs tolerance in nonobese diabetic mice[J]. J Exp Med,2003,198(1):153-160.
    [12]Fallarino F, Vacca C, Orabona C, et al. Functional expression of indoleamine 2,3-dioxygenase by murine CD8 alpha(+) dendritic cells[J]. Int Immunol,2002,14(1):65-68.
    [13]Baban B, Hansen A M, Chandler P R, et al. A minor population of splenic dendritic cells expressing CD 19 mediates IDO-dependent T cell suppression via type IIFN signaling following B7 ligation[J]. Int Immunol,2005,17(7):909-919.
    [14]Kuales M A, Wenzel J, Schmid-Wendtner M H, et al. Myeloid CD11c+S100+ dendritic cells express indoleamine 2,3-dioxygenase at the inflammatory border to invasive lower lip squamous cell carcinoma[J]. Histol Histopathol,2011, 26(8): 997-1006.
    [15]Hwang S L, Chung N P, Chan J K, et al. Indoleamine 2,3-dioxygenase (IDO) is essential for dendritic cell activation and chemotactic responsiveness to chemokines[J]. Cell Res,2005,15(3):167-175.
    [16]Tan P H, Beutelspacher S C, Xue S A, et al. Modulation of human dendritic-cell function following transduction with viral vectors:implications for gene therapy[J].Blood,2005,105(10):3824-3832.
    [17]Jia L, Tian P, Ding C. Immunoregulatory effects of indoleamine 2, 3-dioxygenase in transplantation[J]. Transpl Immunol,2009,21(1):18-22.
    [18]Fallarino F, Grohmann U, Vacca C, et al. T cell apoptosis by tryptophan catabolism[J]. Cell Death Differ,2002,9(10):1069-1077.
    [19]Xu H, Zhang G X, Ciric B, et al. IDO:a double-edged sword for T(H)1/T(H)2 regulation[J]. Immunol Lett,2008,121(1):1-6.
    [20]Li Y, Tredget E E, Ghaffari A, et al. Local expression of indoleamine 2,3-dioxygenase protects engraftment of xenogeneic skin substitute[J]. J Invest Dermatol,2006,126(1):128-136.
    [21]Grohmann U, Orabona C, Fallarino F, et al. CTLA-4-Ig regulates tryptophan catabolism in vivo[J]. Nat Immunol,2002,3(11):1097-1101.
    [22]Fallarino F, Grohmann U, You S, et al. The combined effects of tryptophan starvation and tryptophan catabolites down-regulate T cell receptor zeta-chain and induce a regulatory phenotype · in naive T cells[J]. J Immunol,2006,176(11):6752-6761.
    [23]Abumaree M H, Stone P R, Chamley L W. The effects of apoptotic, deported human placental trophoblast on macrophages:possible consequences for pregnancy[J]. J Reprod Immunol,2006,72(1-2):33-45.
    [24]孙星,裘国强,徐军明,等.大鼠肝移植后的排斥反应与吲哚胺2,3双加氧酶基因的关系[J].中华器官移植杂志,2006,27(7):392-395.
    [25]Ge W, Jiang J, Arp J, et al. Regulatory T-cell generation and kidney allograft tolerance induced by mesenchymal stem cells associated with indoleamine 2,3-dioxygenase expression[J]. Transplantation,2010,90(12):1312-1320.
    [26]Beutelspacher S C, Pillai R, Watson M P, et al. Function of indoleamine 2,3-dioxygenase in corneal allograft rejection and prolongation of allograft survival by over-expression[J]. Eur J Immunol,2006,36(3):690-700.
    [27]Zaher S S, Germain C, Fu H, et al.3-hydroxykynurenine suppresses CD4+ T-cell proliferation, induces T-regulatory-cell development, and prolongs corneal allograft survival[J], Invest Ophthalmol Vis Sci,2011,52(5):2640-2648.
    [28]Yu G, Fang M, Gong M, et al. Steady state dendritic cells with forced IDO expression induce skin allograft tolerance by upregulation of regulatory T cells[J]. Transpl Immunol,2008,18(3):208-219.
    [29]Wee J L, Christiansen D, Li Y Q, et al. Suppression of cytotoxic and proliferative xenogeneic T-cell responses by transgenic expression of indoleamine 2,3-dioxygenase[J]. Immunol Cell Biol,2008,86(5):460-465.
    [30]Mulley W R, Li Y Q, Wee J L, et al. Local expression of IDO, either alone or in combination with CD40Ig, IL10 or CTLA4Ig, inhibits indirect xenorejection responses [J]. Xenotransplantation,2008,15(3):174-183.
    [31]Laurence J M, Wang C, Park E T, et al. Blocking indoleamine dioxygenase activity early after rat liver transplantation prevents long-term survival but does not cause acute rejection[J]. Transplantation,2008,85(9):1357-1361.
    [32]Cook C H, Bickerstaff A A, Wang J J, et al. Spontaneous renal allograft acceptance associated with "regulatory" dendritic cells and IDO[J]. J Immunol,2008,180(5):3103-3112.
    [33]Guillonneau C, Hill M, Hubert·F X, et al. CD40Ig treatment results in allograft acceptance mediated by CD8CD45RC T cells, IFN-gamma, and indoleamine 2,3-dioxygenase[J]. J Clin Invest,2007,117(4):1096-1106.
    [34]Jurgens B, Raberger J, Fuchs D, et al. Indoleamine 2,3-dioxygenase in human hematopoietic stem cell transplantation [J]. Int J Tryptophan Res,2010,3:77-90.
    [35]Hainz U, Jurgens B, Wekerle T, et al. Indoleamine 2,3-dioxygenase in hematopoietic stem cell transplantation[J]. Curr Drug Metab,2007,8(3):267-272.
    [36]Jasperson L K, Bucher C, Panoskaltsis-Mortari A, et al. Indoleamine 2,3-dioxygenase is a critical regulator of acute graft-versus-host disease lethality[J]. Blood,2008,111(6):3257-3265.
    [37]Le Blanc K, Frassoni F, Ball L, et al. Mesenchymal stem cells for treatment of steroid-resistant, severe, acute graft-versus-host disease:a phase Ⅱ study [J]. Lancet,2008,371 (9624):1579-1586.
    [38]Wu K H, Chan C K, Tsai C, et al. Effective treatment of severe steroid-resistant acute graft-versus-host disease with umbilical cord-derived mesenchymal stem cells[J]. Transplantation,2011,91(12):1412-1416.
    [39]Zhang L S, Liu Q F, Huang K, et al. [Mesenchymal stem cells for treatment of steroid-resistant chronic graft-versus-host disease] [J]. Zhonghua Nei Ke Za Zhi,2009,48(7):542-546.
    [40]Meisel R, Zibert A, Laryea M, et al. Human bone marrow stromal cells inhibit allogeneic T-cell responses by indoleamine 2,3-dioxygenase-mediated tryptophan degradation[J].Blood,2004,103(12):4619-4621.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700