用户名: 密码: 验证码:
微细球形TiO_2可控制备过程及其动力学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
粒度小、粒径分布窄、分散性好的微细球形二氧化钛具有比表面积大、白度好、折射率高、耐光、耐候性好、化学稳定性高等优点,因此广泛应用在涂料、塑胶、油墨、造纸、冶金、化妆品等领域。
     目前,高品质微细球形TiO_2的工业化生产工艺仅被少数国家所掌握,颗粒的分散性和粒径分布是该工艺需解决的核心问题。当前中国国内化纤和高级油墨用TiO_2几乎全部进口。虽然采用钛醇盐或酯类等昂贵体系,可以制备出分散性好、粒径分布窄的化纤和高级油墨用微细球形TiO_2,但却存在成本高、工艺复杂、环境污染大、颗粒团聚严重、粒径分布宽等缺点。本文则从微细TiO_2沉淀结晶过程的理论分析入手,开展以廉价钛盐为原料的常压水解法制备高品质微细球形TiO_2的经济有效工艺及其相关动力学研究,从而确定制备工艺的关键因素及相关参数。此外,还利用微波的加热特性,对微波辅助条件下制备微细球形TiO_2的钛盐水解过程进行了初步研究。其主要结论有:
     ①进行对比实验得到了经济可行的制备微细球形TiO_2的实验方法,并进行了相关理论研究。对比实验确定常压直接水解法是制备微细球形TiO_2的首选工艺。经沉淀结晶过程理论分析得知微混对溶液的过饱和度有非常大的影响,因此在制备微细球形TiO_2时应尽量减小微混的影响;影响形核速率的参数主要包括溶液的过饱和度、水解温度和颗粒表面能;在晶核长大过程中,当长大速率r *大于最大生长速率rm *ax时,扩散是影响生长速率的限制性环节,当r *小于rm *ax时,反应是限制性环节;老化过程是制备粒径分布窄、分散性好的高品质微细球形TiO_2的必要过程。
     ②经实验研究得到微细球形TiO_2制备过程的重要参数和影响因素;动力学研究得到表达TiO_2产率与水解时间之间关系的方程。以分析纯Ti(SO4)2为原料,PVP为表面活性剂,在正丙醇和水体积比为1:1的溶剂体系中,通过传统加热常压水解可成功制备得到粒度在300nm左右、粒径分布窄、分散性好的微细球形TiO_2。结果表明溶剂体系、表面活性剂种类及其浓度对TiO_2的形貌、分散性及粒径分布起着至关重要的作用;水解时间、水解温度、溶液pH值、前驱物浓度对水解程度的影响较大,而对颗粒的形貌影响较小;焙烧温度和焙烧时间是影响TiO_2晶型的主要因素;动力学研究表明前驱物浓度、反应温度和反应介质对反应速率有直接的影响作用,根据实验可推导得到TiO_2产率与反应时间呈确定的指数关系,并可根据实验值确定关系式中各参数的物理意义,此关系式可为今后实验或放大实验研究提供判断水解进行程度及水解速率大小的依据;另外,结合实际水解过程可得到TiO_2颗粒长大模型,在实验基础上由此模型可得到不同生长阶段的扩散系数,从而可判断扩散在不同时间段对颗粒长大的限制作用。
     ③以工业钛液为原料制备得到了微细球形TiO_2。在分析纯Ti(SO_4)_2为原料制备微细球形TiO_2的基础上,以工业钛液为原料成功制备得到了微细球形TiO_2,并得到了最佳实验参数。
     ④微波辅助条件下水解制备微细球形TiO_2。以微波为热源可成功制备得到分散性好、粒径分布窄的微细球形TiO_2。研究表明微波加热方式、前驱物浓度、溶液pH值对颗粒的形貌影响较大,而微波功率对颗粒形貌的影响较小。
Micro titania with small size, narrow size distribution, nice dispersibility, and spherical shape has been broadly used in many fields such as paintings, plastic cements, printings, papers, metallurgies, makeups and so on, for its high refractive index, good whiteness, large surface, good lightproof and weatherproof,
     Titanium salt is easy to hydrolysis and hydrolytic rate is difficult to control. So the technology of the process to prepare high quality titania are only grasped by a few countries. For example, in our country, titania used in chemical fibers and high-type ink is dependent on the import. Recently, many researchers pay much attention to the study of the micro spherical titania. To control hydrolysis rate of titanium salt, most processes to prepare micro spherical titania mainly use titanium alkoxide or esters as precursors, and use the organic solvent as prepared systerm. But these processes have many defects including high cost, complicated process, heavy pollution, agglomerated particles, broad size distribution and so on. The main point of this thesis explores an economical and efficient process to prepare micro spherical titania with narrow size distribution and nice dispersibility based on the theory analysis and discussions. And the results show that direct hydrolysis under normal pressure is an optional method. The key factors and related parameters are obtained by kinetics study based on the experimental results. Another object of the thesis investigates a new process to prepare micro spherical Titania by microwave heating. The primary conclusions are listed as following:
     ①An optimal process is obtained by comparing with several processes. The results of the analysis and the discussion of the precipitation process show that slight turbid has heavy effect on the supersaturation of the solution, so it is necessary to reduce effect of the slight turbid during hydrolysis. And there are three parameters influencing nucleation rate: supersaturation, temperature, and surface free energy. During the process of growing up, diffusion is restrictive control when the growing rate exceeds the highest growing rate. Reversely, reaction is restrictive control. And Ostwald ripping is an important step for the preparation of micro spherical Titania with narrow size distribution and nice dispersibility.
     ②Controllable preparation of the micro spherical Titania use analytic titanium sulfate as precursor by hydrolysis method and kinetics study of the hydrolysis process. Micro spherical Titania with narrow size distribution and nice dispersibility was prepared successfully by hydrolysis method using analysis pure titanium sulfate as precursor in the mixed solvent of the 1-propanol and deionized water. The results show that solvent, surfactant and its concentration have significant effect on the morphology, dispersibility, and size distribution of the prepared Titania. Time, temperature, pH value and concentration of the precursor deeply affect the hydrolysis degree. Crystal transformation is mainly determined by calcination temperature and calcination time. Then, the effects of the precursor concentration, temperature and medium on the reactive rate were also studied. The results show that the relationship between the fraction of the titania and reactive time is exponential form. And we can deduce the hydrolysis degree and hydrolysis rate by the equation. We also can get the restrictive controls based on the mean diameters at different hydrolysis time and growing equation.
     ③Industrial titanium sulfate as precursor is used to Prepare micro spherical Titania. The micro spherical Titania was successfully prepared using industrial titanium sulfate as precursor and the key factors were also obtained.
     ④Preparation of the micro spherical titania is conducted under microwave heating. The Titania with narrow size distribution and nice dispersibility was prepared successfully by microwave heating based on the preparation by traditional heating. The results show that microwave heating method, the precursor and pH values are heavily influenced the morphology of Titania. But microwave power has little effect on the morphology of the particles.
引文
[1]. 2007年全国钛白粉总产量达到100万吨[EB/01].http://www.china.com/doc/4080/242437. html, 2008-3-18.
    [2]. Lu C.S., Chen C.C., Mai F.D.,Li H.K. Identification of the degradation pathways of alkanolamines with TiO_2 photocatalysis [J]. Journal of Hazardous Materials, 2009, 165(1-3): 306-316.
    [3]. Lu J.S., BauermannL.P., Gerstel P., Heinrichs U., Kopold P., Bill J., Aldinger F. Synthesis and characterization of TiO_2 nanopowders from peroxotitanium solutions [J]. Materials Chemistry and Physics, 2009, 115(1):142-146.
    [4].唐振宁.化纤用二氧化钛的制备[J].涂料工业,1999,6,19-22.
    [5]. Matteo D., Carla C., Anna M, et al. A one-step solvothermal route for the synthesis of nanocrystalline anatase TiO_2 doped with lanthanide ions [J]. Journal of Solid State Chemistry, 2006, 179(8):2452-2457.
    [6]. Yin H.B.,Jiang T.S.,Yan J., et al. Size-controlled synthesis of anatase TiO_2 nanoparticles by carboxylic acid group-containing organics [J].Materials Chemistry and Physics, 2005, 92(23): 595-599.
    [7]. Blilik P., Plesch G. Mechanochemical synthesis of nanocrystalline TiO_2 from liquid TiCl4 [J]. Scripta Materialia, 2007, 56(11):979-982.
    [8]. Lee M. S., Hong S. S., Mohseni M. Synthesis of photocatalytic nanosized TiO_2-Ag particles with sol-gel method using reduction agent [J]. Journal of Molecular Catalysis A: Chemical, 2005, 242(1-2):135-140.
    [9]. Gandhe A.R., Naik S.P., Fernandes J.B. Selective synthesis of N-doped mesoporous TiO_2 phases having enhanced photocatalytic activity [J]. Microporous and Mesoporous Materials, 2005, 87(2):103-109.
    [10]. Kao L.H., Hsu T.C., Lu H.Y. Sol-gel synthesis and morphological control of nanocrystalline TiO_2 via urea treatment [J]. Journal of Colloid and Interface Science, 2007,316(1):160-167.
    [11]. Misra T.K, Liu C.Y. Synthesis, isolation, and redispersion of resorcinarene-capped anatase TiO_2 nanoparticles in nonaqueous solvents [J]. Journal of Colloid and Interface Science, 2007, 310(1):178-183.
    [12]. Ischia M.,Campostrini R., Lutterotti L. Synthesis, characterization and photocatalytic activity of TiO_2 powders prepared under various gelling and pressure conditions[J]. Journal of Sol-Gel Science and Technology, 2005, 33(2):201-213.
    [13]. Ran F.Y., Cao W. B, Li Y. H., et al. Preparation of nanosize anatase TiO_2 powders by hydrothermal synthesis [J].Key Engineering Materials, 2007, 336-338III:2017-2020.
    [14]. Sivalingam G., Madras G. Photocatalytic degradation of poly (bisphenol-A-carbonate) in solution over combustion-synthesized TiO_2: Mechanism and kinetics [J]. Applied Catalysis A: General, 2004, 269(1-2):81-90.
    [15]. Yu J. G., Wang G. H., Cheng B., et al. Effects of hydrothermal temperature and time on the photocatalytic activity and microstructures of bimodal mesoporous TiO_2 powders [J].Applied Catalysis B: Environmental, 2007, 69(3-4):171-180.
    [16]. Zhao L., Yu J.G., Cheng B. Preparation and characterization of SiO_2/TiO_2 composite microspheres with microporous SiO_2 core/mesoporous TiO_2 shell [J]. Journal of Solid State Chemistry, 2005, 178(6):1818-1824.
    [17]. Vijayakumar M., Venkateswarlu M., Satyanarayana N. Synthesis of nano crystalline SiO_2 / TiO_2 powders by soft chemistry method [C].2006 NSTI Nanotechnology Conference and Trade Show-NSTI Nanotech 2006 Technical Proceedings,2006,1:487-1489.
    [18]. Oh S.T., Choi J.S., Lee H.S., et al H2O-controlled synthesis of TiO_2 with nanosized. Channel structure through in situ esterification and its application to photocatalytic oxidation [J].Journal of Molecular Catalysis A: Chemical, 2007, 267(1-2):112-119.
    [19]. Vadivel Murugan A., Samued V., Ravi V. Sythesis of nanocrycatalytic anatase TiO_2 by microwave hydrothermal method [J]. Materials Letters, 2006, 60(4):479-480.
    [20]. Oha S.W., Parka S.H., Sun Y.K. Hydrothermal synthesis of nano-sized anatase TiO_2 powders for lithium secondary anode materials [J]. Journal of Powder Source, 2006, 161(2):1314-1318.
    [21]. Lee K., Lee N.H., Shin S.H., et al. Hydrothermal synthesis and photocatalytic characterizations of transition metals doped nano TiO_2 sols [J]. Materials Science and Engineering B: Solid-State Materials for Advanced Technology, 2006, 129(1-3):109-115.
    [22]. Kim D.S., Han S.J., Kwak S.Y Sythesis and photocatalytic activity of mesoporous TiO_2 with the surface area, crystalline size, and pore size [J]. Journal of Colloid and Interface Science, 2007, 316(1):85-91.
    [23]. Ge L., Xu M.X., Sun M. Low-temperature synthesis of photocatalytic TiO_2 thin film from aqueous anatase precursor sols [J]. Journal of Sol-Gel Science and Technology, 2006, 38(1): 47-53.
    [24]. Li Y.J, Demopoulos G.P. Precipitation of nanosized titanium dioxide from aqueous titanium (IV) chloride solutions by neutralization with MgO [J]. Hydrometallurgy, 2008, 90:26-33.
    [25]. Paria K.M. Naik B. Syntnaia of mesoporous TiO_2-xNx sphere by template free homogeneous co-precipitation method and their photo-catalytic under visible light illumination [J]. Journal ofCollid and Interface Science, 2009, 333(1):269-276.
    [26].郭广生,侯莉萍,王志华,等. TiO_2微粒子的制备[J].北京化工大学学报,2001,31(3):27-29.
    [27].王鹏,唐芳琼.均一、单分散二氧化钛系列球形胶体颗粒的可控制制备研究[J].感光科学与光化学,2006,24(6):463.
    [28].赵旭,王子忱,赵敬哲,等球形二氧化钛的制备[J].功能材料, 2000,31(3):303-305.
    [29].钟文建.偏钛酸常温水解沉淀法制备纳米TiO_2粉体的研究[J].中国陶瓷,2007,43(1):27-29.
    [30].郑典模,陈早明,陈喜蓉.硫酸氧钛液相法制备纳米二氧化钛[J].无机盐工业, 2005,37(3):17-19,62,63.
    [31]. Jan ?ubrt, Václav ?tengl, Snejana Bakardijieva. Synthesis of spherical metal oxide particles using homogeneous precipitation of aqueous of sulfates with urea [J].Powder Technology, 2006, 169:33-40.
    [32]. Paula A.A.P. Marques, Tito T., Carlos P.N. Titanium dioxide/cellulose nanocomsites prepared by a controlled hydrolysis method [J]. Composites Science and Technology,2006,66:1038-1044
    [33]. Chen Y.H., Lin A, Gan F.X. Preparation of nano-TiO_2 from TiCl4 by dialysis hydrolysis [J]. Powder Technology, 2006, 167:109-116.
    [34].肖红艳,陈衍夏,施亦东,史元元,白伟.纳米TiO_2溶胶的制备及其对丝绸织物整理研究[J].丝绸,2008,3:22-25.
    [35].沈毅,张智丹,沈上越,等.二氧化钛微米球形颗粒的制备与研究[J].硅酸盐通报, 2005,3:96-99.
    [36].唐芳琼,侯莉萍,郭广生.单分散纳米二氧化钛的研究[J].无机材料学报,2001,16(4):615-619.
    [37].席细平,陈小宾,王伟等.液相法制备纳米二氧化钛粉体的工艺研究[J].河南化工,2006, 23(12):26-28.
    [38]. Mahshid S., Askari M, Sasani G.M. Synthesis of TiO_2 nanoparticles by hydrolysis and peptization of titanium isopropoxide solution [J].Journal of Materials Processing Technology, 2007,189(1-3):296-300.
    [39]. Livage J., Henry M., Sanchez C. Sol-gel chemistry of transition metal oxides Prog [J].Solid State Chem, 1998, 18:259-341.
    [40]. Lee S.W., Kim Y.U., Choi S.S. et al. Preparation of SiO_2、TiO_2 composite fibers by sol-gel reaction and electrospinning[J]. Materials Letters, 2007, 61:889-893.
    [41].陶国忠,古宏晨,陈爱平.Sol-Gel法制备TiO_2粉末的光催化性能研究[J].华东理工大学学报,2000,26(1):62-65.
    [42].张夏红,杨建文,曾兆华,等.溶胶—凝胶法制备二氧化钛纳米粒子及其在光固化体系中的稳定分散[J].高分子学报,2006,6:750-755.
    [43].纳微,柳清菊,朱忠其等.低温制备锐钛矿型TiO_2溶胶的性能研究[J].功能材料,2006,37(10):1667-1669.
    [44]. Li Y.,White.T.J, Lim S.H.Low-temperature synthesis and microstructural control of titania nano-particals[J].Journal of Solid State Chemistry,2004,177(4-5):1372-1381.
    [45]. Venkatachalam N., Palanichamy M., Murugesan V. Sol-gel preparation and characterization of nanosize TiO_2: Its photocatalytic performance [J].Materials Chemistry and Physics, 2007, 104(2-3):454-459.
    [46]. Goti M, Ivanda M, Sekuli A, Musi S, Popovi A.S.Turkovi and K.Furi.Microsture of nanosized TiO_2 obtained by sol-gel synthesis [J]. Materials Letters, 1996, 28(1-3):225-229.
    [47]. Khanna P. K., Singh N., Charan S. Synthesis of nano-particles of anatase-TiO_2 and preparation of its optically transparent film in PVA [J]. Materials Letters,2007 61(25):4725-4730.
    [48].符崖,黄岳山,岑人经等.PEG分子量对二氧化钛纳米晶体的影响[J]中国医学物理杂志,2007,24(1):41-43.
    [49].郭文华,张军剑,李刚.溶胶-凝胶法及其制备纳米TiO_2粉体的原理和研究进展[J].中国陶瓷工业,2006,13(5):26-29.
    [50].马军委,张海波,吴雪文等.溶胶-凝胶法制备纳米TiO_2及其分散性研究[J].广东化工,2006,33(8):58-62.
    [51].张文皓,杨武,郭昊等.利用-法与水热合成法制备纳米及其光催化活性研究[J].化学工程师,2006,12:1-3.
    [52]. Yu K.F, Zhao J.Z, Guo Y.P, et al Sol-gel synthesis and hydrothermal processing of anatase nanocrysyals from titanium n-butoxide[J].Materials Letters,2005,59:2515-2518.
    [53].蒋国伟,周亚松.溶胶凝胶和超临界干燥法制备纳米TiO_2粉体[J].石油大学学报(自然科学版), 2001, 25(6):88-92.
    [54].向礼琴,尹剑波,高文帅等.准单分散球形二氧化钛颗粒的可控制备研究[J].无机材料学报,2007,22(2):253-258.
    [55].黄惠,肖雪春,陈理强等.利用TiOSO4液相反应制备透明锐钛矿相二氧化钛溶胶[J].材料导报, 2006,20:75-77.
    [56]. Manaswita N., Pratyay B., Sunkara V. Manorama.Low-temperature hydrothermal synthesis of phase-pure rutile titania nanocrystals: Time temperature turning of morphology and phtotocatalytic activity [J]. Materials Research Bulletin, 2007, 42(9):1691-1704.
    [57]. Sayilkan Funda, Sema Erdemog`lu, Meltem Asiltu`rk,et al.Photocaltalytic performance of pure Anatase nannocrystallite TiO_2 synthesized under low temperature hydrothermal conditions[J]. Materials Research Bulletin, 2006, 41:2276-2285.
    [58]. Oh S.W., Park S.H.,Sun Y.K. Hydrothermal synthesis of nano-sized anatase TiO_2 powders for Lithium secondary anode materials [J].Journal of Power Sources, 2006,161:1314-1318.
    [59]. Kim J. H., Jung W.Y., Baek S. H., et al. Hydrothermal synthesis of titanium dioxides using basic peptizing agents and their photocatalytic activity [J].Chemical Engineering Science, 2007, 62(18-20):5154-5159.
    [60]. Fang C.S., Chen Y.W. Preparation of titania particles by thermal hydrolysis of TiCl4 in n-propanol solution [J].Materials Chemistry and Physics, 2003, 78:739-745.
    [61]. Yurii V. Kolen’ko, Alexander A. Burukhin, Bulat R. Churagulov. Synthesis of nanocrystalline TiO_2 Powders from aqueous TiOSO4 solutions under hydrothermal conditons [J]. Meterials Letters, 2003, 57:1124-1129.
    [62]. Ryu T. B., Lee M. S., Jeong E. D., et al. Hydrothermal synthesis of titanium dioxides from peroxotitanate solution using different amine group–containing organics and their photocaltalytic activity[J].Catalysis Today, 2007,124(3-4):88-93.
    [63].刘超,赵修建,刘保顺等.表面活性剂辅助水热合成氧化钛纳米针溶胶[J].无机化学学报, 2007,23(2):357-360.
    [64].高龙柱,陈洪龄,汪效,丙三醇对水热制备TiO_2微粒粒径及分布的影响[J].合成技术及应用,2004,19(4):8-10.
    [65].马治国,孟朝晖,李立平.水热制备二氧化钛纳米晶粒[J].精细与专用化学品,2006, 14(14):20-25.
    [66].武瑞涛,魏雨.沸腾回流强迫水解法制备纳米TiO_2微粒[J].无机材料化学,1999,14(3): 461-164.
    [67]. Mohamed M., Bayoumy W.A, Khairy M., Mousa M.A. Synthesis of micro-mesoporous TiO_2 Materials assembled via cationic surfactants: Morphology, thermal stability and surface acidity characteristic [J].Microporous and Mesoporous Materials, 2007,103 (1-3):174-183.
    [68].冉凡勇,曹文斌,李艳红等.水热合成法制备锐钛矿型纳米TiO_2粉体的研究[J].无机材料化学,2006,21(3):553-557.
    [69]. Fang C.S., Chen Y. W. Preparation of tiania particles by thermal hydrolysis of TiCl4 in n-propanol solution [J]. Materials Chemistry and Physics, 2003, (78)3:739-745.
    [70]. Paula A.A.P. Marques, Tito T., Carlos P. N. Titanium dioxide/cellulose nanocomposites Prepared by a controlled hydrolysis method [J].Composites Science and Technology, 2006, 66:1038-1044.
    [71]. Chen Y.H., Lin A., Gan F.X. Preparation of nano-TiO_2 from TiCl4 by dialysis hydrolysis[J]. Powder Technology, 2006, 167:109-116.
    [72]. Mahshid S., Askari M., Sasani Ghamsari M. Synthesis of TiO_2 nanoparticles by hydrolysis and peptization of titanium isopropoxide solution [J]. Journal of Materials Processing Technology, 2007, 189(1-3):296-300.
    [73].纳薇,柳清菊,朱中其等.低温制备钛锐矿型TiO_2溶胶的性能研究[J].功能材料,2006, 37 (10): 1667-1669.
    [74]. Li Y., White T.J., Lim S. H Low-temperature sythesis and microstructural control of titania Nano-particles[J].Journal of Solid State Chemistry,2004,177(4-5):1372-1381.
    [75]. Khana P.K, Singh N., Charan S. Synthesis of nano-particles of anatase-TiO_2 and preparation of its optically transparent film in PVA [J]. Materials Letters, 2007, 61 (25): 4725-4730.
    [76]. Manaswita N., Pratyay B., Sunkara V. Manorama. Low-temperature hydrothermal synthesisof phase-pure utile titania nanocrystals: Time temperature turning of morphology and photocatalytic activity [J]. Materials Research Bulletin, 2007, 42(9): 1691-1704.
    [77].朱子华,超临界水解制备TiO_2微粒过程的试验研究[J].现代涂料与涂装, 2007,10(1):47-50.
    [78].温新兰,陈静,葛永昌.微乳液法制备Fe3+掺杂纳米TiO_2[J].广东化工,2007,34(4):29-31.
    [79].益帼,邓瑞红,聂基兰.微乳液法制备纳米TiO_2粒子[J].有色金属, 2007,59(1):46-48.
    [80].王祖,张凤宝,夏宝林. TiO_2微细粒子的微乳法制备,表征及性能研究[J].武汉理工大学学报,2008,30(10):5-8.
    [81].江咏梅,聂基兰,杨志宏.纳米二氧化钛的微乳液制法[J].江西化工,2003,3:91-93.
    [82].祝振奇,周健,刘桂珍,曾志亮,微波加热制备大尺寸ZnO晶须的研究[J].武汉理工大学学报,2008,30(10):5-8.
    [83].冯海涛,王芬,同小刚.微波液相沉淀法制备二氧化钛薄膜[J].材料导报,2006,20:85-86.
    [84].曹振恒,王亚明,郭会仙,易海波.微波在纳米和亚纳米ZnO材料制备中的应用[J].工业催化,2007,15(8):8-11.
    [85].曾红军,可控微波法制备纳米NiO及其电化学电容行为研究[J].新疆化工,2008,3:13-15.
    [86].吴东辉,章忠秀,施磊,汪信.pH值对微波水热法制备纳米α-Fe2O3的控制作用[J].精细化工,2003,20(4):212-215.
    [87].赵青,杨阳,孙永欣,王绍钢,刘力,常爱民,低温微波水热法制备氧化钇稳定氧化锆[J].微波米电子技术,2007,7/8:76-80.
    [88].邢建宇,白波.二氧化钛的微波水热法制备及其杀菌性能研究[J].山西化工,2006,26(2):7-9.
    [89].申晓毅,崔玉春,孙杨.二氧化硅超微粉微波水热法制备及表征[J].人工晶体学报,2008, 37(4):973-976.
    [90].王细凤,罗昔贤,温嘉琪等.晶种的加入对异丙醇铝水解制备α-Al2O3的影响[J].中国陶瓷,2006,42(2):25-27.
    [91].李太昌.微细氢氧化铝晶种制备技术研究[J].轻金属,2003.6:9-11.
    [92].上官正.高活性氢氧化铝晶种的制备[J].轻金属,1995.8:12-14.
    [93].向日华,王润生.一种基于高斯混合模型的距离图像分割算法[J].软件学报, 2003,(7):1250-1257.
    [94]. Ekambara K., Dhotre M. T., Joshi J. B. CFD simulations of bubble column reactors: 1D, 2D AND 3D approach [J]. Chemical Engineering Science, 2005, 60:6733-6746.
    [95]. Ottino J. M., Ranz W. E. , Macosko C. M. A lamellar model for analysis of liquid-liquid mixing [J]. Chemical Engineering Science, 1979, 34:877-890.
    [96].陈建峰,皱海魁,刘润静,曾晓飞,沈志刚.超重力反应沉淀法合成纳米材料及其应用[J].现代化工, 2001,21(9):9-12.
    [97].李希,陈甘棠.微观混合问题的研究-(IV)不同混合阶段的化学反应的描述[J].化学反应工程与工艺,1993,9(1):9-17.
    [98]. Sugimoto T., Sekiguchi F., Itoh H. Spontaneous nucleation of monodisperse silver halide particles from homogeneous gelatin solution I: Silver chloride [J]. Colloids Surface A, 2000, 164:183-203.
    [99]. Mullin J.W. Crystallization, 3rd de [M]. Oxford University Press, Oxford, 1997.
    [100].张岳,胡克源.钾-锰氧化物催化剂上丙烯和丁酮深度氧化反应动力学.催化学报[J],1986,7(4):324-429.
    [101]. Sugimoto T. Monodispersed Particles[C]. Elesvier, Amsterdam, 2001.
    [102]. Becher R., Doring W. Kinetische Behandlung der Keimbildung in ?ubers?attigten D?ampfern [J]. Annual of Physics Series, 1935, 5(24):719-752.
    [103]. Sugimoto T. Monodispersed Particies, Elesvier, Amsterdam, 2001.
    [104]. Sugimoto T. Underlying mechanisms in size control of uniform nanopartickes [J].Journal of Colloid and Interface Science, 2007, 309:106-118.
    [105].刘翠,李保山,吴艳萍.纳米棒状α-Fe2O3的制备及其光催化性能[J].工业催化, 2007,15(10): 51-53.
    [106].肖劲,万烨,周峰,秦琪,陈燕彬尿素均匀沉淀法制备微细α-Al2O3分体[J].中国有色金属学报, 2007.17(5):783-788.
    [107]. Lee S.W, Kim Y.U, Choi S.S., et al. Preparation of SiO_2, TiO_2 composite fibers by sol-gelreaction and electrospinning [J].Matrials Letterrs, 2007, 61:889-893.
    [108].陶国忠,古宏晨,陈爱平等.Sol-Gel法制备TiO_2粉末的光催化性能研究[J].华东理工大学学报, 2000.26(1):62-65.
    [109].张夏虹,杨建文,曾兆华等.溶胶—凝胶法制备二氧化钛纳米粒子及其在光固化体系中的稳定分散[J].高分子学报, 2006,6:750-755.
    [110]. Sugimoto T. Formation of Monodispersed Nano-and Micro-Particles Controlled in Size.shape and Internal Structure [J]. Chemical Engineering and Technology, 2004, 26(3):313-321.
    [111]. Reiss H.The growth of uniform colloidal dispersions [J]. Journal of Physical Chemistry, 1951.19.482-487.
    [112]. Tapapin D.V., Rogach A.L., Haase M., Weller H. Evolution of an Ensemble of Nanoparticles in a Colloidai Solution: Theoretical Study [J]. Journal of Physical Chemistry B, 2001, 105(49), 12278-12285.
    [113]. Ostwald ripening[EB/01].http://en.wikipedia.org/wiki/Ostwald ripening.2007-11-13.
    [114].崔国文.表面与界面[M].北京:清华大学出版社,1990.
    [115]. Yu J.G.,Yu J.C., Ho W.K., Leung M. K.P., Cheng B., Zhang G.K., Zhao X.J. Effects of alcohol content and calcinations temperature on the textural peoperties of binmodally mesoprous titanium dioxide [J].Applied Catalysis A,General, 2003,255:309-320.
    [116].丘永梁,陈洪龄,王效祖,徐南平.水热法制备纳米TiO_2及其等电点的研究[J].高校化学工程学报,2005,19(1):129-133.
    [117]. Fang C.S., Chen Y.W. Prepration of titanium dioxide particles by thermal hydrolysis of TiCl4 in n-propanol solution[J].Materials Chemistry and Physics, 2003,78:739-745.
    [118].任俊,沈健,卢寿慈.颗粒分散科学与技术[M].北京:化学工业出版社, 2005.
    [119].任俊,沈健,卢寿慈.颗粒分散科学与技术[M].北京:化学工业出版社.2005.
    [120]. Linardos S., Zhang Q., Alcock J.R. An investigation of the parameters effecting the agglomerate size of a PZT ceramic powder prepared with a sol-gel technique [J].Journal of the European Ceramic Society, 2007, 27:231-235.
    [121]. Zheng M.P., Gu M.Y., Jin Y.P., Guo L.J. Preparation structure and properties of TiO_2-PVP hybrid films [J]. Materials Science and Engineering B, 2000, 77:55-59.
    [122]. Zheng M.P., Gu M.Y., Jin Y.P., Wang H.H, Zu P.F. Tao.P..He J.B.Effects of PVP on structure of TiO_2 prepared by the sol-gel process [J]. Materials Science and Engineering B, 2001, 87:197-201.
    [123]. Lee J.W., Hong K.H., Kim W.S., Kim J.S. Effect of HPC concentration and ultrasonic dispersion on the morphology of titania-coated silica particles[J]. Journal of Industry Engineering Chemical, 2005, 11(4):609-614.
    [124]. Zheng M.P., Jin Y.P., Jin G.L., Gu M.Y. Characterrization of TiO_2-PVP nanocomposites prepared by the sol-gel method [J].Journal of Materials Science Letters, 2000.19:433-436.
    [125].江楠.氧化硅基复合微粒的合成[D].2008.
    [126]. Wetchakun N., Phanichphant S. Effect of temperature on the degree of anatase-rutile transformation in titanium dioxide nanoparticles synthesized by the modified sol-gel method [J]. Current Applied Physics, 2008.8:343-346.
    [127]. Yang G.J., Li C.J., Han F., Huang X.C.Effects of annealing treatment on microstructure and photo-catalytic performance of nanostructured TiO_2 coatings flame-sprayed with liquid feedstocks[J]. Journal of Vacuum Science and Technology B, 2004.22(5):2364-2368.
    [128]. Yu J.G., Yu H.G., Cheng B., Trapalis C. Effects of calcinations temperature on the microstructures and photocatalytic activity of titanate nanotubed[J]. Journal of Molecular Catalysis A: Chemical, 2006, 249:135-142.
    [129]. Zheng M.P., Gu M.Y., Jim Y.P., Jim G.L. Preparation, structure and properties of TiO_2-PVP hybrid films [J]. Materials Science and Engineering B, 2000.77:55-59.
    [130]. Yang S.F., Yu X.Q, Liang S.G, et al. Synthesis of Cinnamates by Using TiSiW12040/TiO_2 as Catalyst [J]. Petrochemical Technology, 2003.32(3), 230-233.
    [131]. Potdar H.S., Deshpande S B., Mayadevi S., et al.Chemical coprecipitation of mixed (Ba+Ti) oxalates precursor leading to BaTiO3 powders [J]. Indian Journal of Chemical A, 1999.38(5):468-472.
    [132]. Zhang J.H.,Wang S.Z.,Liu J.B.,Wang Z.L , Ming N.B. Preparation and absorption properties of polystyrene/Ag/TiO_2 multiple coated colloids[J]. Journal of Materials Research, 2005, 20(4):965-970.
    [133]. Yu J.G., Li Z., Bei C . Preparation of monodispersed microporous SiO_2 microspheres with high specific surface area using dodecylamine as a hydrolysis catalys [J]. Journal of Solid State Chemistry, 2006, 179:226-232.
    [134]. Khanan P.K., Singh N., Charan S. Synthesis of nano-particles of anatase-TiO_2 and preparation of its optically transparent film in PVA [J].Materials Letters, 2007, 61(25):4725-4730.
    [135]. Koji M., Michiharu O. Formation Mechanism of Hydrous Zirconia Particles Produced by the Hydrolysis of ZroCl2 Solution III, Kinetics study for the nuckeation and crystal-growth processes of primary particles [J]. Journal of the American Ceramic Society, 2001, 84(10):2303-2312.
    [136].李冬梅,徐光亮,熊坤,丁宇.微波水热法制备超顺磁性Fe3O4纳米粒子[J].化工进展, 2008,27(7):1056-1060.
    [137].李生英,徐飞,王永飞,许世红,何丽君.微波辐射下CeO_2纳米粉末的制备及表征[J].稀土, 2007,28(5):112-114.
    [138]. Zhu J. F., Zhu Y. J. Microwave- assisted one-step synthesis of polyacrylamide-metal (M) Ag, Pt, Cu nanocomposites in ethyleneglycol [J]. Journal of Physics Chemical B, 2006, 110:8539-8597.
    [139]. Patra C. R., Alexandra G., Patra S., Jacob D. S., Gedanken A., and Gofer Y. microwave approach for the sythesis of rhadb dophane-type lanthanide orthophosphate (Ln=La, Ce, Nd, Sm, Eu, Gd and Tb) Nanorods under solvothermal Conditions[J]. New Journal of Chemical, 2005, 29:733-739.
    [140]. Yang H. M., Huang C. H., Tang A. D., Zhang X. C., and Yang W. G. Microwave-assistedsynthesis of cera nanoparticles [J]. Materials Research Bulletin, 2005, 40:1690-1695.
    [141]. Qian H. F. Qiu X., Li L., Ren J. C. Microwave-assisted aqueous synthesis: A Rapid approach to prepare highly Luminerscent znse(S) alloyed quantum dots [J]. Jourmal of Physics Chemical B, 2006, 110:9034-9040.
    [142].袁鹏,王勇,李保平,徐红艳,王介强.微波均相沉淀法制备Nd:YAG纳米粉体及其表征[J].中国粉体技术,2007,2:8-11.
    [143].焦兆友.纳米氧化物的制备及其性能表征[D].2008.
    [144].微波及其特点[EB/01]. http://www.slrss.cn/rsgisforum/bbs/viewthread.php?tid=76, 2007-8-13.
    [145].王绍林.微波加热技术的应用[M].北京:机械工业出版社, 2003.
    [146].陈津,林万明等.非焦煤冶金技术[M].北京:化学工业出版社,2007.
    [147]. Sutton W. H. Microwave Processing of ceramic msterial [J]. Am. Ceram. Soc. Bull, 1989, 68(2):376-386.
    [148].张伯伦,贺拥军.微波加热在化学反应中的应用进展[J].现货化工,2001, (4): 8-12.
    [149].李绪益.电磁场与微波技术[M].广州:华南理工大学出版社, 2000.
    [150].孙目珍.电介质物理基础[M].广州:华南理工大学出版社, 2000.
    [151].张瑜,郝文辉,高金辉.微波技术及应用[M].陕西:西安电子科技大学出版社,2006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700