用户名: 密码: 验证码:
基于Rake结构的高性能GNSS接收机设计
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着全球导航卫星系统(GNSS, Global Navigation Satellite System)的发展和接收机性能的不断提高,卫星导航系统越来越广泛地应用于各个领域。我国也在积极发展自己的北斗卫星导航系统,但是,由于缺乏接收机技术的积累,高性能接收机核心技术已经越来越成为我国导航产业链的瓶颈。因此,提高导航接收机性能的研究,已经成为当前重要而且紧迫的任务。本文在GNSS接收机方面进行了深入的研究,提出了一种名为MRake (Modified Rake)的抗多径的新结构,并深入研究该结构对接收机各主要环节性能的影响,在提高接收机抗多径性能,捕获速度,跟踪灵敏度以及定位解算精度等方面取得了一定的成果,为我国研究高性能接收机技术提供理论和实践参考。本文的研究工作主要包括以下几个方面:
     首先,针对现有抗多径技术性能和资源消耗之间的矛盾,利用MRake结构来减少GPS接收机中的多径误差。它能够对接收信号中的直达和多径成分分别进行跟踪,并用直达成分的传播延时来计算用户位置。MRake结构不仅具有良好的抗多径性能,而且无需大量的硬件资源或复杂的运算。
     其次,根据MRake结构能够对直达和多径信号分别跟踪的结构设计特点,它在快速有效捕获信号方面也能够发挥重要作用。因此,采用伪码并行载波串行的时域搜索方法,从而充分地利用了MRake结构的硬件资源,提高捕获速度;在此基础上,进一步采用扩展的多相关器方法,在不增加硬件资源的前提下,进一步提高捕获速度;将捕获到的卫星信号看作直达信号,再利用MRake结构有效地捕获和分离出多径信号。
     然后,为了满足人们对室内等复杂环境中导航定位的需求,深入研究了提高接收机跟踪灵敏度的技术。在对常用技术进行定量分析,并总结其不足的基础上,提出了一种改进的经典Costas (MCC, Modified Classic Costas)鉴相器算法,它对经典Costas (CC, Classic Costas)鉴相器进行改进,在不增加运算量的情况下,大幅地提高接收机的跟踪灵敏度。
     最后,针对定位解算算法中最常用的最小二乘法和卡尔曼滤波方法的不足,提出了两种定位解算的新算法。其中,改进的卡尔曼滤波(MKF, Modified Kalman Filtering)算法在提高定位解算精度的同时,避免了对噪声协方差阵的复杂运算;粒子滤波(PF, Particle Filtering)算法进一步提高了定位解算精度,并克服了传统卡尔曼滤波定位算法需要预知载体运动模型和噪声特性的缺点。
     在对上述内容进行理论研究和方案设计的基础上,利用Spirent公司的模拟器产生GPS信号对其进行了实验验证,并取得了预期的效果,研究成果对设计高性能的导航接收机具有重要的实用价值和参考意义。
The GNSS (Global Navigation Satellite System) system is more and more widely used in various fields with the development of the system and continuous improvement of the receiver's performance. China is also actively developing its own Beidou satellite navigation system. However, due to the lack of receiver technology accumulation, the core technology of high performance receiver has increasingly become the bottleneck of the navigation industry chain in China. Therefore, improving the performance of navigation receiver has become an important and urgent task. This thesis researches in-depth on GNSS receiver. It proposes a new anti-multipath architecture named MRake (Modified Rake), and researches in-depth on the impact of MRake architecture on performance of the receiver's main aspects. It has made certain achievements in improving the anti-multipath performance, acquisition speed, tracking sensitivity and position calculation precision. The achievements provide a theoretical and practical guidance for high performance receiver research in China. The main contributions of this thesis are summarized as follows:
     First, to solve the conflict between the performance and resource consumption of existing anti-multipath techniques, MRake architecture is used to reduce the multipath error in GPS receiver. It tracks direct-path and multipath components of the received signal separately, and uses the time-delay of direct-path component to calculate the user's position. The proposed MRake structure has good anti-multipath performance without consumption of many hardware resources or complex calculation.
     Secondly, since MRake architecture can track the direct and multipath signals separately, it also can play an important role in capturing signals quickly and efficiently. Using the parallel pseudo-code searching and serial carrier searching method in time domain can make full use of hareware resources in MRake structure to improve the acquisition speed. On this basis, use extended multiple correlator (XMC) method to further improve the acquisition speed without increasing the hardware resources. Treat the acquired satellite signal as direct-path signal, and then capture and separate the multipath signals by MRake structure.
     Thirdly, in order to meet the demand of navigation in complex environments such as indoor environment, the technology to improve the tracking sensitivity of the receiver is studied in depth. Based on the quantitative analysis of the common techniques and summarization of their problems, an MCC (Modified the Classic of Costas) phase detector algorithm is proposed. It modifies the CC (Classic Costas) phase detector, and can significantly improve the tracking sensitivity without increaseing the calculation.
     Finally, to solve the problems of two most commonly used position calculation algorithms, least square method and Kalman filtering method, two new algorithms are proposed. One is MKF (Modified Kalman Filtering) that can improve the positioning accuracy and avoid the complexity calculation of the noise covariance matrix. Another one is PF (Particle Filtering) that can further improve the positioning accuracy, and overcome the drawbacks of traditional Kalman filter that requires prior knowledge of receiver's dynamic model and noise properties.
     Based on the above theoretical study and program design, experiments with GPS signals generated by Spirent simulator have achieved the anticipated results. The research has important practical value and referential significance on the high performance navigation receiver design.
引文
[I]Wellenhof B H, Lichtenegger H, Wasle E. GNSS-Global Navigation Satellite Systems:GPS, GLONASS, Galileo & more, New York:Springer-Verlag,2008:365-430.
    [2]http://www.beidou.gov.cn.
    [3]谢钢.GPS原理与接收机设计.北京:电子工业出版社,2009.
    [4]王李军.GPS接收机抗干扰若干关键技术研究:(博士论文).南京:南京理工大学,2006.
    [5]袁建平,贾化民.GPS在陆海空导航中的应用.中国全球定位系统技术应用协会首届年会,1996.
    [6]朱振发.GPS在海湾战争中的应用.导航与电子,1993,(01):7-11.
    [7]Kaplan E D. Understanding GPS:Principles and Applications, Second Edition, Norwood, MA: Artech House,2006.
    [8]Federal Communication Commission. Enhanced 911-Wireless Services,2005.
    [9]金滇黔.基于GPS双端同步采样的输电线路故障定位的研究:(硕士论文).南宁:广西大学,2004.
    [10]Dennis C E, Carson T. Pacify the Power:GPS Harness for Large-Area Electrical Grid. GPS World, April 1,2005.
    [11]Jhong S L, Leonard E M. CDMA Systems Engineering Handbook. Norwood, MA:Artech House,1998.
    [12]Tero O, Ramjee P. Wideband CDMA For Third Generation Mobile Communications: Universal Personal Communications. Norwood, MA:Artech House,1998.
    [13]Volker J. GPS on the Web:GPS Volcano Deformation Monitoring. School of Surveying and Spatial Information Systems, The University of New South Wales Sydney NSW 2052, Australia.
    [14]Watson C S, Coleman R. The Batman Bridge:Structural Monitoring using GPS. Advances in GPS Deformation Monitoring, Perth, Western Australia,1998.
    [15]United States Department of Defense. Global Positioning System Standard Positioning Service Performance Standard,2001.
    [16]United States Department of Defense.2001 Federal Radio navigation Plan,2001.
    [17]Christian T. Standard Positioning Service-Handheld GPS Receiver Accuracy. GPS World, February 1,2003.
    [18]梁坤,施浒立.高灵敏度GPS捕获技术的分析与仿真.全球定位系统,2007,32(6):26-32.
    [19]姜毅GNSS接收机高性能跟踪与捕获环路算法研究:(博士论文).大连:大连海事大学,2010.
    [20]寇艳红,沈吉,张其善.GPS接收机专用芯片组技术发展.全球定位系统.2005(02):15-19.
    [21]黄智伟.GPS接收机电路设计.北京:国防工业出版社,2005.
    [22]http://www.gps.org.cn.
    [23]新华网.美GPS芯片占中国95%市场北斗面临应开瓶颈http://www.xinhuanet.com/.
    [24]Fred P B. A GPS Code Tracking Receiver Design for Multipath Mitigation Using Maximum Likelihood Estimation,1st Edition, Storming Media, Washington, DC,1997.
    [25]Mardina A, Hal J S, David M A W. Effects of ionospheric horizontal gradients on differential GPS. Acta Geophysica,2007,55 (04):509-523.
    [26]孙淑光,李琳琳.GPS接收机多径误差及窄相关性能分析.电子测量技术,2003(03)49-50.
    [27]谢世杰,种绍龙,袁铭.论GPS测量中的多径误差,测绘通报,2003(5):1-5.
    [28]王尔中,张淑芳,张芝贤.GPS接收机抗多径技术研究现状与趋势,2011,51(01)114-119.
    [29]Gonzalo S G. Antenna arrays for multipath and interference mitigation in gnss receivers, Ph.D. thesis, Universitat Politcnica de Catalunya (UPC),2000.
    [30]Felix A, Oriol E R, Josef A N. Estimation of synchronization parameters using sage in a gnss-receiver, in:Proceedings of the 18th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS 2005),2005:2124-2131.
    [31]Carles F P. Advanced signal processing techniques for gnss receivers, Ph.D. thesis, Universitat Politcnica de Catalunya (UPC),2006.
    [32]狄曼珉,张尔扬,赵东阳.GPS接收抗多径效应技术综述.航天电子对抗,2005,21(5)17-19.
    [33]Amendola L B, Massa G D. Design a high-precision antenna for GPS. Microwaves & RF,2003, 42 (01):91-93.
    [34]Ray J K, Cannon M E, Fenton P C. Mitigation of static carrier-phase multipath effects using multiple closely spaced antennas. NAVIGATION,1999,46 (03):193-202.
    [35]Jayanta K R, Elizabeth C, Patrick C. Fenton Mitigation of static carrier-phase multipath effects using multiple closely spaced antennas.
    [36]李德屹,田斌,田红心.一种新的GPS多径抑制方法.无线电工程,2008,38(08):25-26.
    [37]Richard D J Van Nee. The multipath estimating delay lock loop, in:Spread Spectrum Techniques and Applications,1992. ISSTA 92. IEEE Second International Symposium on,1992:39-42.
    [38]Richard D J Van Nee, Siereveld J, Fenton P, Townsend B. The multipath estimating delay lock loop:approaching theoretical accuracy limits, in:Position Location and Navigation Symposium, IEEE,1994:246-251.
    [39]Richard D J Van Nee. Multipath and multi-transmitter interference in spread spectrum communication and navigation systems, Ph.D. thesis, Delft University,1995.
    [40]Richard D J Van Nee. Method of Estimating a Line of Sight Signal Propagation Time Using a Reduced-Multipath Correlation Function. United States,5615232. Mar 25,1997.
    [41]Bryan R T, Richard D J Van Nee, Patrick C F, Keith J V. Dierendonck. Performance Evaluation of the Multipath Estimating Delay Lock Loop. ION National Technical Meeting, California,1995: 1-7.
    [42]Bryan R T, Patrick C F, Keith J V. L1 carrier phase multipath error reduction using medll technology, in:Proceedings of the 8th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GPS 1995),1995:1539-1544.
    [43]Mark C L, Stewart L D. GPS multipath mitigation during code tracking. Proceedings of the American Control Conference,1997:1429-1433.
    [44]Lawrence R. Weill. Achieving Theoretical Accuracy Limits for Pseudoranging in the Presence of Multipath. ION GPS 8th International Technical Meeting of the Satellite Division, Palm Springs, 1995:1521-1530.
    [45]Lawrence R. Weill, Benjamin Fisher. Method for Mitigating Multipath Effects in Radio Systems. United States, US6370207. Apr 9,2002.
    [46]Lawrence R. Weill. Multipath Mitigation using Modernized GPS Signals:How Good Can it Get? ION GPS 15th International Technical Meeting of the Satellite Division, Portland,2002: 493-505.
    [47]Patrick C. Fenton, Jason Jones. Theory and Performance of NovAtel Inc.'s Vision Correlator. ION GNSS 18th International Technical Meeting of the Satellite Division, Long Beach,2005: 2178-2186.
    [48]Fabio D, Marco P, Paolo M. Turbo dll:an innovative architecture for multipath mitigation in gnss receivers, in:Proceedings of the 17th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS 2004),2004:1-7.
    [49]Fabio D, Marco P, Paolo M. Performance assessment of the turbodll for satellite navigation receivers, Satellite Communications and Navigation Systems 2,2008:273-282.
    [50]Chen X, Dovis F, Pini M, Mulassano P. Turbo architecture for multipath mitigation in global navigation satellite system receivers, IET Radar, Sonar and Navigation 5,2011:517-527.
    [51]Van Dierendonck A J, Fenton P, Ford T. Theory and performance of narrow correlator spacing in a gps receiver. Journal of the Institute of Navigation 39,1992:265-283.
    [52]张欣.扩频通信数字基带信号处理算法及其VLSI实现.北京:科学出版社.2004.
    [53]Jun Mo, Shaowei Han. Narrow Correlator Technique for Multipath Mitigation. United States, US2008/0151971 Al, Jun 26,2008.
    [54]Bryan T, Patrick F, A practical approach to the reduction of pseudorange multipath errors in all GPS receiver, in:Proceedings of the 7th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GPS 1994),1994:143-148.
    [55]Jason Jones, Pat Fenton, Brian Smith. Theory and Performance of the Pulse Aperture Correlator. NovAtel Inc,2004.
    [56]Jason Jones, Pat Fenton, Brian Smith. Theory and Performance of the Pulse Aperture Correlator. NovAtel Inc,2004.
    [57]Garin, Lionel, van Diggelen, Frank, Rousseau, Jean-Michel. Strobe & Edge Correlator Multipath Mitigation for Code. Proceedings of the 9th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GPS 1996), Kansas City, MO,1996: 657-664.
    [58]Victor A. Veitsel, Alexey V. Zhdanov, Mark I. Zhodzishsky. The Mitigation of Multipath Errors by Strobe Correlators in GPS/GLONASS Receiver. GPS Solutions.1998,2 (02):38-45.
    [59]Alexey V. Zhdanov, Victor A. Veitsel, Mark I. Zhodzishsky, Javad Ashjaee. Multipath Error Reduction in Signal Processing. ION GPS 12th International Technical Meeting of the Satellite Division, Nashville,1999:1217-1223.
    [60]Lionel Garin, Jean-Michel Rousseau.1999, Enhanced Strobe Correlator Multipath Rejection for Code and Carrier. ION GPS 10th International Technical Meeting of the Satellite Division, Kansas City,1997:559-568.
    [61]纪元法,施浒立,孙希延.一种Strobe相关器及其多径抑制性能研究.宇航学报.2007,28(5):1094-1099.
    [62]孙晓文.基于FPGA的GPS信号捕获与跟踪系统设计研究:(硕士论文).大连:大连海事大学,2007.
    [63]赵艳杰,王大鸣.大频移低信噪比下长PN码快速捕获及其DSP实现.计算机应用.2007,27(4):1017-1022.
    [64]Engel F, Heiser G, Mumford P, Parkinson K, Rizos C. (2004) An Open GNSS Receiver Platform Architecture. Sydney, Australia:The 2004 International Symposium on GNSS/GPS,2004.
    [65]罗兴宇,张其善,常青.高动态GPS信号C/A码捕获方案及实现.北京航空航天大学学报,2002:358-361.
    [66]Seo H, Park C, Lee S. A new fast acquisition algorithm for GPS receivers. Proceedings of the 2000 International Symposium on GPS/GNSS, Seoul, Korea, December 2000.
    [67]代燕,李洪祚,王孟芝.GPS接收信号捕获方法的研究.长春理工大学学报,2003,26(03):98-102.
    [68]赵庆喜,胡华超,王福志,李国种.GPS接收机关键模块数学仿真.装备指挥技术学院学报,2007,18(02):94-98.
    [69]王朝辉.基于ARM芯片的GPS接收机设计:(硕士论文).上海:上海交通大学,2008.
    [70]张文明,周宇,姜文利.GPS信号捕获性能的分析.系统工程与电子技术,2002,24(10)73-75.
    [71]V. Eerola, "Rapid parallel GPS signal acquisition," ION GPS, Salt Lake City, UT, September, 2000.
    [72]Lyusin S, Khazanov I, Likhovid S. Fast acquisition by matched filter technique for GPS/GLONASS receivers. ION GPS, Nashville, TN,1998.
    [73]Van Nee R, Coenen A. New fast GPS code-acquisition technique using FFT. Electronics Letters, 1991,27 (02):158-160.
    [74]李继忠,李巍.GPS信号快速捕获方案研究.航空电子技术,2006:1-5.
    [75]Janusz Starzyk, Z. Zhu. Averaging Correlation for C/A Code Acquisition and Tracking in Frequency Domain. IEEE 44th Midwest Symposium on Circuits and Systems, Dayton,2001: 905-909.
    [76]Abdulqadir Alaqeeli, Janusz Starzyk, Frank van Graas. Real Time Acquisition and Tracking for GPS Receiver. International Symposium on Circuits and Systems, Bangkok,2003:500-503.
    [77]Jiang Yi, Zhang Shufang, Hu Qing, Sun Xiaowen. A New FFT-based Acquisition Algorithm for GPS Signals. International Workshop on Geoscience and Remote Sensing, Shanghai,2008:16-19.
    [78]Norman F. Krasner, Snaptrack Incorporated. GPS Receiver and Method for Processing GPS Signals. United States, US6725159 B2, April 20,2004.
    [79]龚国辉,李思昆.FFT与循环卷积相结合的GPS信号C/A码相位测量算法.通信学报.2005,26(7):76-81.
    [80]陈熙源,汤新华,祝雪芬.GPS软件接收机捕获算法的FPGA仿真.东南大学学报(自然科学版).2009,39(02):26-30.
    [81]Srdjan Z. Budisin. Fast PN sequence correlation by using FWT. Electrotechnical Conference Proc, Lisbon,1989:513-515.
    [82]Abdulqadir A. Alaqeeli. Global Positioning System Signal Acquisition and Tracking Using Field Programmable Gate Arrays:(doctoral dissertation). Ohio:Ohio University,2002.
    [83]蔡昌听,皮亦鸣.高灵敏度GPS技术的研究进展.全球定位系统,2006(02):1-4.
    [84]http://en.wikipedia.org/wiki/Enhanced_9-1-1.
    [85]http://en.wikipedia.org/wiki/E112#E112.
    [86]梁坤.高灵敏度GPS接收技术中几个关键问题的研究:(博士论文).北京:中国科学院,2007.
    [87]Nainesh A, Julien B, Paul B, Piyush B, Scott B, et al. Algorithms for GPS Operation Indoors and Downtown. GPS Solutions,2002,6 (03):149-160.
    [88]Mark L. Psiaki. Block Acquisition of Weak GPS Signals in a Software Receiver. ION GPS 14th International Technical Meeting of the Satellite Division, Salt Lake City,2001:2838-2850.
    [89]李玉红,寇艳红,张其善.微弱GPS信号捕获算法研究.遥测遥控.2005,26(4):61-65.
    [90]Nesreen I. Ziedan, James L. Garrison. Unaided Acquisition of Weak GPS Signals Using Circular Correlation or Double-Block Zero Padding. Position Location and Navigation Symposium, California,2004:461-470.
    [91]马永奎,张一,张中兆,马广富.改进的高动态高灵敏度GPS信号捕获算法.系统工程与电子技术.2009,31(2):265-269.
    [92]Daniel H, Naresh R, Donald M, Paul F, Nga Lee, Jerome T. A Fast Low-Energy Acquisition Technology For GPS Receivers. Proceedings of the 55th Annual Meeting of The Institute of Navigation, Cambridge, MA, June 1999:433-441.
    [93]Frank van D. Global Locate Indoor GPS Chipset & Services. Proceedings of the 14th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GPS 2001), Salt Lake City, UT, September 2001:1515-1521.
    [94]Charles A, Frank van D. Indoor GPS:The No-Chip Challenge. GPS World,2001.
    [95]Kaplan E D. Understanding GPS Principles and Applications. Norwood:Artech House,1996: 119-157.
    [96]Philip W W. Performance Comparisons Between FLL, PLL and a Novel FLL-Assisted-PLL Carrier Tracking Loop Under RF Interference Conditions. Proceedings of the 11 th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GPS 1998) Nashville, TN:ION,1998:783-795.
    [97]姜毅,张淑芳,胡青,孙晓文,张晶泊.一种低复杂度GPS载波跟踪环路设计.电子学报,2010,38(12):2823-2826.
    [98]Raquet J. GPS Receiver Design, ENGO 669.10 Lecture Notes, Department of Geomatics Engineering, University of Calgary,2004.
    [99]Haddrell T, Pratt A R. Understanding The Indoor GPS Signal. Proceedings of the 14th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GPS 2001), Salt Lake City, UT, September 2001:1487-1499.
    [100]Wang C, Jia Z, Wang H. Continuous integration based satellite navigational signal acquisition. US Patent 7180446,2007.
    [101]Rinder P. Design of a Single Frequency GPS Software Receiver:Master Thesis, Denmark: Aalborg University,2004.
    [102]Wei Yu. Selected GPS Receiver Enhancements for Weak Signal Acquisition and Tracking. UCGE Reports Number 20249, Department of Geomatics Engineering, The University of Calgary, 2007.
    [103]李庆扬,王能超,易大义.数值分析.北京:清华大学出版社,2001.
    [104]Strang G. Linear Algebra and its Applications [M]. Massachusetts:Wellesley Cambridge Press, 2003.206-218.
    [105]Wellenhof B H, Lichtenegger H, Wasle E. GNSS-Global Navigation Satellite Systems:GPS, GLONASS, Galileo & more, New York:Springer-Verlag,2008:365-430.
    [106]Painter J H, Kerstetter D, Jowers S. Reconciling steady-state Kalman and alpha-beta filter design. IEEE Transactions on Aerospace and Electronic Systems,1990,26 (06):986-991.
    [107]Gray J E, Foster G J. Filter coefficient selection using design criteria. Proceedings of the Twenty-Eighth Southeastern Symposium on System Theory,1996:275-279.
    [108]Farrell J, Barth M. The Global Positioning System and Inertial Navigation, McGraw-Hill, 1999.
    [109]Wilkin D J, Harrison I, Woolfson M S. Target tracking algorithms for phased array radar. Radar and Signal Processing, IEE Proceedings F,1991,138 (03):255-262.
    [110]Yoshio K, Masayoshi I, Takamitsu O, Seiji M. Steady State Errors of an α-β-γ Filter for Radar Tracking. Transactions of the Institute of Electronics, Information and Communication Engineers, 1999,82-A (12):1767-1779.
    [111]Kalman R E. A New Approach to Linear Filtering and Prediction Problems.Transactions of the ASME-Journal of Basic Engineering,1960,82 (Series D):35-45.
    [112]赵树杰,赵建勋.信号检测与估计理论.北京:清华大学出版社,2005.
    [113]Greg Welch, Gary Bishop. An Introduction to the Kalman Filter. Department of Computer Science, University of North Carolina at Chapel Hill,2006.
    [114]Mohinder S Grewal, Lawrence R Weill, Angus P Andrews. Global Positioning Systems, Inertial Navigation, and Integration,2nd Edition. Hoboken, New Jersey:Edition.John Wiley & Sons, Inc.
    [115]杨元喜,张双成,高为广.GPS导航解算中几种非线性Kalman滤波的理论分析与比较. 测绘工程,2005,14(03):4-7.
    [116]滕云龙,陈小平,唐应辉.提高GPS定位精度的改进卡尔曼滤波算法研究.现代电子技术,2008,266(3):4-6.
    [117]Canelon J I, Provence R S, Mehta N, Shieh L S. An alternative Kalman innovation filter approach for receiver position estimation based on GPS measurements. International Journal of Systems Science,2007,38 (12):977-990.
    [118]Jwo D J, Lai C N. Unscented Kalman filter with nonlinear dynamic process modeling for GPS navigation. GPS Solution,2008,12 (04):249-260.
    [119]Price R, Green PE.A Communication Technique for Multipath Channels. Proceedings of the IRE,1958,46 (03):555-570.
    [120]陈晓英CDMA系统Rake接收技术研究:(硕士论文).大连:大连海事大学,2007.
    [121]吴志军,士剑IS-95 CDMA系统Rake接收机仿真.中国民航学院学报,2003,21(03):18-22.
    [122]Kavehrad M, McLane P J. Performance of low complexity channel coding and diversity for spread spectrum in indoor, wireless communication. AT&T Technical Journal,1985.
    [123]Alouini M S, Sang Wu Kim, Goldsmith A. Rake reception with maximal-ratio and equal-gain combining for DS-CDMA systems in Nakagami fading. Universal Personal Communications Record, 1997:708-712.
    [124]Zhang J, Kennedy R A, Abhayapala T D. Cramer-Rao lower bounds for the synchronization of UWB signals. EURASIP Journal on Applied Signal Processing,2005 (03):426-438.
    [125]Gregory E Bottomley, Tony Ottosson, Yi-Pin Eric Wang. A Generalized RAKE Receiver for Interference Suppression. IEEE Jouranl on Selected Areas in Communications,2000,18 (8): 1536-1545.
    [126]郑大炜,钟子发CDMA前向信道G-RAKE接收机的仿真研究.电子对抗,2006(03):13-17.
    [127]http://www.ericsson.com/ericsson/corpinfo/publications/review/2006_02/02.shtml.
    [128]Khalaj B H, Paulraj A, Kailath T.2D Rake receivers for CDMA cellular systems. Global Telecommunications Conference,1994 (01):400-404.
    [129]Yung-Fang Chen, Michael D Zoltowski. Blind RLS based space-time adaptive 2-D Rake receivers for DS-CDMA communication systems. IEEE Transactions on Signal Processing,2000,48 (07):2145-2150.
    [130]Kaizhi Huang, Jing Wang, Youzheng Wang. Performance analysis of MRC 2D-Rake receivers in correlated Nakagami-m fading. Vehicular Technology Conference,2003 (04):2579-2583.
    [131]刘正军,蔡国权,罗小武DS-CDMA系统中—种盲2D Rake接收机的研究,电子学报,1999.27(Z1):110-112.
    [132]唐友喜,潘文生,邵士海,李少谦.DS-CDMA的一种时频二维联合解扩方法,电子学报,2006,24(01):2-4.
    [133]Zoltowski M D, Ramos J. Blind Adaptive Beamforming for CDMA Based PCS/Cellular. Conference Record of the 29th Asilomar IEEE Conference on Signals Systems and Computers, Nov 1995:278-282.
    [134]Ramos J, MZoltowski M D. Reduced complexity blind 2D Rake receiver for CDMA.8th IEEE Signal Processing Workshop on Statistical Signal and Array Processing,1996:502-505.
    [135]Marco Baissas, Akbar M Sayeed. Channel estimation errors versus Doppler diversity in fast fading channels. the Thirty-Fourth Asilomar Conference,2000 (02):970-974.
    [136]毕见鑫,田红心,易克初.关于时间/尺度联合分集技术的研究.第九届全国信号处理学术年会(CCSP-99)论文集,1999.
    [137]冯爱刚,殷勤业,孟银阔.时间选择性衰落信道DS-CDMA系统的联合时空频3D-Rake,通信学报,2004,25(6):19-26.
    [138]Klein A G, Brown D R, Goeckel D L, Johnson C R. Rake reception for UWB communication systems with intersymbol interference. Signal Processing Advances in Wireless Communications, 2003:244-248.
    [139]Cassioli D, Win M Z, Vatalaro F, Molisch A F. Performance of low-complexity Rake reception in a realistic UWB channel, Communications,2002 (02):763-767.
    [140]Huaning Niu, James A Ritcey, Hui Liu. Performance of UWB Rake receivers with imperfect tap weights. ICASSP,2003:125-128.
    [141]Bischoff R, Namokel M, Schulz W, Heinrichs G. Using Diversity of Satellite Channels for Navigation Systems. Vehicular Technology Conference,2001 (04):3011-3015.
    [142]Bischoff R, Hab-Umbach R, Schulz W, Heinrichs G. Employment of a multipath receiver structure in a combined GALILEO_UMTS receiver. Vehicular Technology Conference,2002 (04): 1844-1848.
    [143]Heinrichs G, Using of rake receiver architecture for combining GNSS and CDMA cellular wireless location. Spread Spectrum Techniques and Applications,2002 IEEE Seventh International Symposium.2002 (03):787-791.
    [144]Heinrichs G, Mulassano P, Dovis F. A hybrid positioning algorithm for cellular radio networks by using a common Rake receiver architecture. Personal, Indoor and Mobile Radio Communications, 2004 (04):2347-2351.
    [145]Lionel G, Frank V D, Jean-Michel R. Strobe and edge correlator multipath mitigation for code. Proceedings of the 9th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GPS 1996),1996:657-664.
    [146]Braasch M. Performance comparison of multipath mitigating receiver architectures. Aerospace Conference,2001, IEEE Proceedings,2001 (03):1309-1315.
    [147]Seyeong Choi, Khalid A Qaraqe. Finger Management Schemes for Rake Receivers with a Minimum Call Drop Criterion. IEEE Transaction on Communications,2009,57 (02):348-352.
    [148]Sunwoo KIM, Byeong-Chan JO, Sanguk LEE. DoA Estimation of Line of Sight Signal in Multipath Channel for GNSS Receiver. IEICE Transactions on Communications,2009, E92-B (11): 3397-3400.
    [149]孙晓文,张淑芳,胡青,姜毅,张晶泊.一种基于改进的Rake模型的GNSS接收机抗多径新技术.电子学报.2011,39(10):2422-2426.
    [150]Jiang Yi, Zhang Shufang, Sun Xiaowen, Zhang Jingbo, Hu Qing. A New Rake-based Multipath Estimation Algorithm in GNSS Receivers. The 3rd International Congress on Image and Signal Processing, Yantai,2010:4313-4317.
    [151]Soubielle J, Fijalkow I, Duvaut P, Bibaut A. GPS positioning in a multipath environment. IEEE Transactions on Signal Processing,2002:141-150.
    [152]Minami M, Morikawa H, Aoyama T. An adaptive multipath mitigation technique for gps signal reception. Vehicular Technology Conference Proceedings, Tokyo,2000 (02):1625-1629.
    [153]Jiang Yi, Zhang Shufang, Zhang Jingbo, Hu Qing, Sun Xiaowen. Multipath Effects on the Performance of DLL in a GNSS Receiver. Chinese Journal of Electronics.2010,19 (03):543-547.
    [154]http://www.spirent.com/Solutions-Directory/GSS8000#tab4.
    [155]Sahmoudi M, Amin M G. Fast Iterative Maximum-Likelihood Algorithm (FIMLA) for Multipath Mitigation in the Next Generation of GNSS Receivers]. IEEE Transactions on Wireless Communications,2008,11 (7):4362-4374.
    [156]Sun Xiaowen, Zhang Shufang, Zhang Jingbo, Jiang Yi, Hu Qing. Fast Acquisition of GPS Signal Using Extended Multiple Correlator based on FPGA. IEEE International Conference on Computer Application and System Modeling, Shanxi,2010:208-211.
    [157]孙晓文,张淑芳,姜毅,胡青.一种基于Rake结构的GNSS多径信号捕获山法.仪器仪表学报.2010,3](12):2854-2860.
    [158]张晶泊,张淑芳,胡青,王金鹏,孙晓文,姜毅GNSS数字接收机中载波锁相环的工作带宽.吉林大学学报(工学版).2011,41(6):1793-1797.
    [159]蔡昌听,皮亦鸣.高灵敏度GPS技术的研究进展.全球定位系,2006(02):1-4.
    [160]Zhang Jingbo,Zhang Shufang,Hu Qing,Jiang Yi,Sun Xiaowen. Design of GNSS carrier loop base on adaptive gain control.Proceedings of 2011 Cross Strait Quad-Regional Radio Science and Wireless Technology Conference (CSQRWC2011), Harbin, China. July 27-30,2011:1013-1016.
    [161]姜毅,张淑芳,胡青,孙晓文,张晶泊.一种低复杂度GPS载波跟踪环路设计.电子学报.2010,38(12):2822-2826.
    [162]张晶泊,张淑芳,胡青,姜毅,孙晓文GNSS载波环中环路增益的自适应调节研究.仪器仪表学报.2012,33(02):293-299.
    [163]Zhang Jingbo,Zhang Shufang,Hu Qing,Jiang Yi,Sun Xiaowen. A novel GNSS carrier tracking loop design based on fuzzy logical control.2011 3rd International Conference on Mechanical and Electronics Engineering (ICMEE 2011), Hefei, China. September 23-25,2011:3451-3454.
    [164]姜毅,张淑芳,胡青,孙晓文.改进的基于四象限反正切函数的鉴别器算法.吉林大学学报(工学版).2011,41(3):849-854.
    [165]姜毅,张淑芳,张晶泊,孙晓文,胡青.基于FPGA的GPS接收机跟踪环路设计与实现.大连海事大学学报.2009,35(3):16-20.
    [166]Jerome L, Cyril B, Andre F P. Resource and Performance Comparisons for Different Acquisition Methods that can be Applied to a VHDL-Based GPS Receiver in Standalone and Assisted Cases. Position Location and Navigation Symposium (PLANS),2010 IEEE/ION, Indian Wells, CA, US A,2010:745-751.
    [167]Lashley M. Kalman Filter Based Tracking Algorithms for Software GPS Receivers:(M.S. thesis), Auburn, Alabama:Auburn University,2006.
    [168]Pau Closas, Carles Fernandez-Prades, Juan A Fernandez-Rubio. A Bayesian Approach to Multipath Mitigation in GNSS Receivers. IEEE Journal of Selected Topics in Signal Processing, 2009,4 (3):695-706.
    [169]Arulampalam S, Maskell S, Gordon N, Clapp T. A tutorial on particle filters for on-line non-linear/non-gaussian bayesian tracking. IEEE Transaction on Signal Processing,2002,50 (02) 174-188.
    [170]Gustafsson F, Gunnarsson F, Bergman N, Forssell U, Jansson J, Karlsson R, Nordlund P J. Particle Filters for Positioning, Navigation, and Tracking. IEEE Transaction on Signal Processing, 2002,50 (02):425-437.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700