用户名: 密码: 验证码:
氢化纳米晶硅薄膜的制备及生长机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
人类社会的发展离不开能源,在日趋现代化的今天,人类对能源越来越大的需求与常规化石能源的日渐枯竭成为人类社会可持续发展过程中必须要解决的问题。在对各种新能源的开发利用过程中,太阳能以其清洁及可再生性被认为是最有希望的新能源。目前,基于硅片的太阳能电池由于成本太高,很难与常规能源相竞争,要想用太阳能电池替代传统化石能源,就必须降低太阳能电池的生产成本,其主要途径之一是制造薄膜电池。氢化纳米晶硅薄膜(hydrogenated nanocrystalline silicon films,nc-Si:H)由于量子限制效应引起的晶体硅能带结构发生改变,使其具有较强的室温光致发光(photoluminescence)和电致发光(electroluminescence)特性成为薄膜太阳能电池发展的热点。其在太阳能电池中最初应用于pin结构中的掺杂层。由于非晶相的存在又使得这种材料具有较好的光敏性,因而在提高光照稳定性的情况下,还能获得较好的光伏特性。目前已有包括本征i层在内,完全使用nc-Si:H薄膜制备的太阳能电池。同时,由于nc-Si:H本征层的带隙(1.89eV)比一般非晶硅本征层(1.72eV)宽,使其成为叠层电池的重要组成部分。
     然而,作为一种两相结构,人们对nc-Si:H薄膜尤其是掺杂nc-Si:H薄膜的制备和成膜机理的研究还不充分,例如杂质在nc-Si:H薄膜中的分布、成键态及其对薄膜电学、光学性能影响的研究尚不完善。同时,现阶段的研究还主要集中在对沉积参数与薄膜结构性能的关系上,很少有将沉积参数、等离子体反应生成的前驱基团和薄膜结构性能联系到一起的系统研究。本文采用电子回旋共振等离子体化学气相沉积(ECR-PECVD)设备,通过在沉积腔室中通入PH3和B2H6分别制备了n型和p型nc-Si:H薄膜。在实验方面,应用TEM, XRD, Raman, XPS, FTIR等手段详细研究了气体流量、沉积温度等对薄膜结构的影响,通过Hall和透射光谱测试研究了不同实验参数下薄膜的电学及光学特性。结合对沉积环境的等离子体诊断,详细讨论了本征及掺杂nc-Si:H薄膜的生长机理及掺杂特性。在丰富了nc-Si:H及其掺杂薄膜制备技术的同时,为其沉积理论和掺杂机理的完善提供了实验基础。论文主要结论如下:
     1.本征纳米晶硅薄膜的制备及其结构性能研究
     通过ECR-PECVD设备可在较低的衬底温度下(250℃)直接在玻璃衬底上沉积得到nc-Si:H薄膜。研究了衬底温度、沉积时间、沉积气压、放电及反应气体流量对薄膜生长过程中结构及性能的影响,分析发现低工作气压(1.0Pa)和较短的沉积时间有利于直接沉积得到多晶面取向的nc-Si:H薄膜。在不同上游放电气体比(Ar/H2)对所沉积薄膜影响的研究过程中发现:在Ar/H2≤10/20时,薄膜生长速度及晶化率变化不大,继续提高腔室中Ar的比例,薄膜生长速度和晶化率将剧烈下降。以腔室中各气体的等离子体反应方程为依据,结合本文的实验现象和对沉积腔室等离子体环境的诊断,详细讨论了ECR环境下nc-Si:H薄膜的成膜机理及放电气体Ar/H2作用于所沉积nc-Si:H薄膜的影响机制,为后面掺杂nc-Si:H的制备提供了基础。
     2.磷掺杂纳米晶硅薄膜的制备及其结构性能研究
     在前面本征nc-Si:H薄膜制备的基础上,通过在反应腔室中通入PH3制备了磷掺杂n型nc-Si:H薄膜。实验结果表明:在低衬底温度(250℃)时,随着磷烷流量的提高,薄膜晶化率会发生下降,同时薄膜的电学性能下降,这种影响会随着衬底温度的提高而改善。提高衬底温度(350℃)后,薄膜的载流子浓度和电导率随着PH3流量的提高而提高,在PH3流量为1sccm时逐渐饱和,薄膜的电学性能不再随PH3流量的提高而上升。在不改变其他实验参数的情况下,通过在ECR上游放电腔室中通入适当比例的Ar气,可以在不提高PH3流量的情况下,进一步提高薄膜中载流子浓度。同时,适当比例Ar的通入可以在不降低薄膜晶化率的情况下使薄膜中氢的分布更加均匀,这对提高薄膜在使用过程中的稳定性有重要意义。然而,与本征硅薄膜生长情况相似,上游放电腔室中过高Ar的通入量会使薄膜的晶化率下降,不利于纳米晶相的保持。根据PH3和Ar的等离子体反应特性,结合对沉积腔室中电子温度变化的诊断,深入讨论了磷烷掺杂及Ar/H2对薄膜性能影响的作用机理。
     3.硼掺杂纳米晶硅薄膜的制备及其结构性能研究
     以B2H6为掺杂气源,在低衬底温度(250℃)下制备了晶化率较好(近60%)的p型nc-Si:H薄膜,薄膜的载流子浓度和电阻率分别可达到1.1×1019cm-3和9Ω·cm。薄膜在拥有较优电学性能的同时,其Egoptm在1.84~1.93eV附近,符合薄膜太阳能电池窗口材料的性能要求。研究过程中发现:与PH3掺杂不同,少量B2H6的通入不会抑制薄膜的晶化率,甚至有一定程度的提高。当B2H6通入量较高时,薄膜晶化率随B2H6流量的提高而下降。在上游放电腔室中通入一定比例的Ar气可以进一步提高p型nc-Si:H薄膜中硼的掺杂量,但此时薄膜的载流子浓度并没有提高,表明这部分杂质主要以非有效掺杂的形式存在。由于硼原子对硅薄膜生长有催化作用,在通入Ar的实验过程中所产生的薄膜沉积速度提高从侧面证明了Ar的通入可提高B2H6的解离率。之后,结合本文对沉积腔室等离子体环境的诊断和B2H6的等离子体反应特性,讨论了B2H6的掺杂机理。
In recent years, with the concept of sustainable development and environment protection deeply rooting among the people and gradual exhaustion of ordinary petrifaction energy source, tapping new energy source becomes more and more importent. In that field, PV solar energy is considered to be one of the most promising options. But in view of the limited reduction space upon cost of solar cells of silicon wafer, it is hard to compete with conventional energy. The cost of silicon wafer account for over95%of overall costs of solar cells raw material and energy consumption. Therefore, the main way to reduce the cost of solar cells is to manufacture thin films solar cells. Hydrogenated nanocrocrystalline silicon (nc-Si:H) has been confirmed as a promising PV absorber material, owing to its low cost, high conversion efficiency, good stability and good performance of photoluminescence and electroluminescence at room temperature.
     Impurities play a central role in semiconductor technology. In the case of Si nanocrystal-based solar cells, both phosphorus-doped n-type nc-Si:H thin films and boron-doped p-type nc-Si:H thin films are essential component. Since nc-Si:H thin films are mixed-phase material, where small and isolated Si nanocrytallites disperively distribute in an amorphous matrix, doping of Si nanocrystals is quite complicated and not fully understood yet. In this paper, Intrinsic, p-type and n-type nc-Si:H thin films were prepared by electron cyclotron resonance plasma-enhanced chemical vapar depositon (ECR-PECVD). Techniques such as TEM, XRD, Raman, XPS and FTIR were used to analyze the structure of the films. Hall system was carried out on the doped films to determine the electrical properties. The optical quality was measured by transmission spectrum. OES and Langmuir probe were used to investigate the plasma surrounding of the ECR-PECVD system. Then we made a deep research about the mechanism of nc-Si:H doping based on the experimental results. These studies provide abundant experimental and theoretical foundations to the further application of nc-Si:H. The results of this paper are showed below:
     1. Intrinsic nc-Si:H thin films
     In this work we analyze the effect of substrate temperature, depostition time, working pressure and gas-flow rate on the structure of as-deposited films. Intrinsic nc-Si:H thin films were successfully prepared at low substrate temperature (250℃) by ECR-PECVD. Some useful rules and knowledge about the preparation of nc-Si:H thin films by ECR-PECVD have been grasped for next doping experiment, e.g. crystallinity of the films increased with the increase of substrate temperature. When the deposition time extend, the crystallinity of as-deposited films increased, at the meantime the grain orientation would changed to (220) preferential.
     2. n-type nc-Si:H thin films
     The crystallinity of the as-grown phosphorus-doped n-type nc-Si:H thin films had a strong fall with the increase of PH3flow when the substrate temperature was250℃. And this effect reduced when the substrate tempereature rose to350℃. The influence of Ar/H2ratio on the characteristics of n-type nc-Si:H thin films prepared by ECR-PECVD was investigated. It was suggested that introducing Ar into the H2plasma strengthened the dissociation of PH3, and thus enhanced the doping efficiency. The content of H bonded as Si-H2and (Si-H2)n modes was getting smaller with the Ar/H2ratio increasing, which meant that both the asymmetry and stability of the films were improved. Thus it was a feasible method for improving the properties of phosphorus-doped nc-Si:H thin films that a moderate amount of Ar was introducted into the H2plasma.
     3. p-type nc-Si:H thin films
     B doped p-type nc-Si:H thin films could be prepared at low substrate temperature (250℃) by ECR-PECVD. The films showed excellent electrical properties and good optical properties, according with applicaton performance requirements of the window layer of solar cells. The influence of Ar/H2ratio on B-doped characteristics of nc-Si:H thin films prepared by ECR-PECVD has been also investigated. Diluting process gas H2with Ar did enhance the doping efficiency of B2H6. But unlike the n-type situation, Ar diluting did not increase the density of carrier, which means the increased amount of B in the films must be inactivated (B30).
     Then the plasma surrounding has been diagnosised by OES and Langmuir probe testing. The microcosmic mechanism of the influence of Ar/H2on the characteristics of P and B doped nc-Si:H films have been discussed deeply.
引文
[1]张宇翔.太阳能电池用多晶硅薄膜的制备研究:(博十学位论文).郑州大学,2005.
    [2]Waldau A J. PVNET European Roadmap for PV R & D. Italy:European Communities,2004.
    [3]贾文瑞,徐青,王燕灵.21世纪中国能源、环境与石油工业发展.北京:石油工业出版社,2002.
    [4]林安中,王斯成.国内外太阳能电池和光伏发电的进展与前景.太阳能学报特刊.1999.68.
    [5]赵玉文.我国光伏产业发展概况及思考.第十届中国太阳能光伏会议论文集.常州:2008.
    [6]吕金铭,吴建荣.世界光伏产业崛起对我国的启迪.太阳能.2003.
    [7]Makoto KONAGAI. Challenging Targets in the PV Roadmap Until 2030,第八届全国光伏会议,深圳,2004.
    [8]刘益君.国内外光伏产业政策比较研究[J].生产力研究,2010,12:221-223.
    [9]Chapin D M, Fuller C S, Pearson G L. A New Silicon P-N Junction Photocell for Converting Solar Radiation into Electrical Power [J]. Journal of Applied Physics, 1954,25(5):676-677.
    [10]Zhao J H, Wang A H, Green M A, et al.19.8% efficient "honeycomb" textured multicrystalline and 24.4% monocrystalline silicon solar cells [J]. Applied Physics Letters,1998,73(14):1991-1993.
    [11]Schultz O, Glunz S W, Willeke G P. Multicryctalline silicon solar cells exceeding 20% efficiency [J]. Progress in Photovoltaics,2004,12(7):553-558.
    [12]Green M A, Emery K, King D L, et al. Short communication:Solar cell efficiency tables (version 25). Progress in Photovoltaics,2005,13(1):49-54.
    [13]Guha S, Yang J. Progress in amorphous and nanocrystalline silicon solar cells [J]. Journal of Non-Crystalline Solids,2006,352(9-20):1917-1921.
    [14]Yang J, Banerjee A, Guha S. Amorphous silicon based photovoltaics-from earth to the "final frontier" [J]. Solar Energy Materials and Solar Cells,2003,78(1-4):597-612.
    [15]Kocka J, Mates T, Stuchlikova H. Characterization of grain growth, nature and role of grain boundaries in microcrystalline silicon-review of typical features[J]. Thin Solid Films,2006,501(1-2):107-112.
    [16]Carlson D E. Semiconductor device having a body of amorphous silicon:US, [P].1977.
    [17]Kroll U, Meier J, Keppner H, et al. Origins of atmospheric contamination in amorphous silicon prepared by very high frequency (70MHz) glow discharge [J]. Journal of Vacuum Science and Technology A,1995,13(6):2742-2746.
    [18]Watanabe T, Azuma K, Nakatani M, et al. Chemical vapor deposition of a-Si:H films utilising a microwave exited Ar plasma stream[J]. Japanese Journal of Applied Physics, 1986,25(12):1805-1810.
    [19]Saito K, Sano M, Ogawa K, et al. High efficiency a-Si:H alloy cell deposited at high deposition rate [J]. Journal of Non-Crystalline Solids,1993,164-166:689-692.
    [20]Wronski C R, Pearce J M, Koval R J, et al. Light induced defect creation kinetics in thin film polycrystalline silicon materials and their solar cells [J]. Materials Research Society Symposium Proceedings.2002,715:A13.14.
    [21]Hong C S, Hwang H L. Evidence of light-induced bond breaking in hydrogenated amorphous silicon[J]. Applied Physics Letters,1986,49:645-647.
    [22]Fujiwara H, Kondo M. Impact of epitaxial growth at the heterointerface of a-Si:H/c-Si solar cells[J]. Applied Physics Letters,2007,90(1):013503-013505.
    [23]Fujiwara H, Kondo H. Effects of a-Si:H layer thicknesses on the performance of a-Si:H/c-Si heterojunction solar cells[J]. Journal of Applied Physics,2007,101(5): 054516-054516-9.
    [24]Wang T H, Iwaniczko E, Page M R. Effect of emitter deposition temperature on surface passivation in hot-wire chemical vapor deposited silicon heterojunction solar cells [J]. Thin Solid Films,2006,501(1-2):284-287.
    [25]Spitzer M, Schewchun J, Vera E S, et al. A high efficiency thin film silicon solar cell and module [C]. Proceedings of the 14th IEEE Photovoltaic Specialists Conference, San Diego,1980:375.
    [26]Reif R. Plasma-Enhanced Chemical Vapor Deposition of Silicon Epitaxial Layers[J]. Journal of the Electrochemical Society,1984,131(10):2430-2435.
    [27]Wu A M, Deng W T, Qin F W, et al. Fabrication and its characteristics of low-temperature polycrystalline silicon thin films [J]. Science in China Series E:Technological Sciences,2009,52(1):260-263.
    [28]Fujiwara H, Kondo M, Mastuda A. Interface-layer formation in microcrystalline Si:H growth on ZnO substrates studied by real-time spectroscopic ellipsometry and infrared spectroscopy[J]. Journal of Appllied Physics,2003,93:2400-2409.
    [29]Morikawa S, Kawama Y, Matsuno Y. Development of high-efficiency thin-film Si solar cells using zone-melting recrystallization[J]. Solar Energy Materials and Solar Cells, 2001,65(1-4):261-268.
    [30]Matsuyama T, Terada N, Baba T, et al. High-quality polycrystalline silicon thin film prepared by a solid phase crystallization method[J]. Journal of Non-Crystalline Solids,1996,198-200(Part 2):940-944.
    [31]Matsuyama T, Wakisaka K. Preparation of high quality n-type poly-Si films by the solid phase crystallization (SPC) method [J]. Japanese Journal of Applied Physics,1990, 29:2327-2331.
    [32]Fattakhov Y V, Galyautdinov M F, L'vova T N. Investigation of structural-phase transitions dynamics on the surface of implanted silicon at rapid thermal processing [J]. Nuclear Instruments and Methods in Physics Research B.2007,257(1-2):222-226.
    [33]Nishida S, Nakagawa K, Iwane M. Si-film growth using liquid phase epitaxy method and its application to thin-film crystalline Si solar cell[J]. Solar Energy Materials and Solar Cells,2001,65(1-4):525-532.
    [34]Hong 1 H, Hsu T C, Yen S C, et al. In situ spectromicroscopic study of nickel induced lateral crystallization of amorphous silicon thin film using SPESM [J]. Surface Science,2007,601 (2):301-307.
    [35]Kim J, Piwowar A M, Nowak R et al. Cobalt-induced polycrystalline silicon film growth [J]. Applied Surface Science,2007,253(6):3053-3056.
    [36]Maydell K v, Brehme S, Nickel N H et al. Electronic transport in P-doped laser-crystallized polycrystalline silicon [J]. Thin Solid Films,2005,487(1-2): 93-96.
    [37]Werner J, Bergmann R. Perspectives of crystalline silicon thin film solar cells[C]. Technical Digest of 12th International Photovoltaic Science and Engineering Conference, Sapporo,1999:923-925.
    [38]汗吕州,杨仕娥,卢景霄.硅基薄膜太阳电池窗口材料的研究进展[J].材料导报.2007,21(01):14-17.
    [39]Shah A, Vallat-Sauvain E, Torres P. Intrinsic microcrystalline silicon (μc-Si:H) deposited by VHF-GD(very high frequency-glow discharge):a new material for photovoltaics and optoelectronics [J]. MaterialsScience and Engineering B.2000, 69-70:219-226.
    [40]Ruchschloss M, Landkammer B, Veprek S. Light emitting nanocrystalline silicon prepared by dry processing:The effect of crystallite size [J]. Applied Physics Letters,1993,63: 1474-1476.
    [41]Liu X, Wu X, Bao X, He Y. Photoluminescence from nanocrystallites smbedded in hydrogenated amorphous silicon films prepared by plasma enhanced chemical vapor depositon [J]. Applied Physics Letters,1994,64:220-222.
    [42]Sukti Hazra, Swati Ray. Nanocrystalline silicon as intrinsic layer in thin film solar cells [J]. Solid State Communications,1999,109:125-128.
    [43]郭志球,沈辉,刘正义.太阳电池研究进展.材料导报.2006,20:41-43.
    [44]Regan B O, Gratzel M. A low-cost, high-efficiency solar cell based on dye-sentitized colloidal TiO2 [J]. Nature,1991,353:737-740.
    [45]Taguchi M, Terakawa A, Maruyama E, et al. Obtaining a higher Voc in HIT cells [J]. Progress in Photovoltaics:Research and Applications,2005,13(6):481-488.
    [46]Tanaka Makoto, Okamoto Shingo, Tsuge Sadaji, et al. Development of HIT solar cells with more than 21%conversion efficiency and commercialization of highest performance HIT modules[C].3rd World Conference on Photovoltaic Energy Conversion. Osaka. Japan: 2003.955-958.
    [47]Takahiro Mishima, Mikio Taguchi, Hitoshi Sakata, et al. Development status of high-efficiency HIT solar cells[J]. Solar Energy Materials and Solar Cells,2011,95: 18-21.
    [48]Hahn G, Geiger P. Record efficiencies for EFG and string ribbon solar cells [J]. Progress in Photovoltaics:Research and Applications,2003,11(5):341-346.
    [49]Yamamoto K, Yoshimi M, Tawada Y, et al. Thin film poly-Si solar cells on glass substrates fabricated at low temperature [J]. Applied Physics A,1999,69 (2):179-185.
    [50]Taube W R, Kumar A, Saravanan R, et al. Efficiency enhancement of silicon solar cells with silicon nanocrystals embedded in PECVD silicon nitride matrix [J]. Solar Energy Materials and Solar Cells,2012,101:32-35
    [51]Wurfl I P, Ma L, Lin D, et al. Silicon nanocrystals in an oxide matrix for thin film solar cells with 492mV open circuit voltage [J]. Solar Energy Materials and Solar Cells, 2012,100:65-68.
    [52]Dussan A, QuirozH P, Martinez J G. Nano-columnar grain growth structure of boron-compensated silicon thin films by transmission electron microscopy[J]. Solar Energy Materials and Solar Cells,2012,100:53-561.
    [53]刘恩科,朱秉升,罗晋生.半导体物理学.北京:国防工业出版社.2002,p61
    [54]戴道生.非晶态物理.北京:电子工业出版社.1989,p155
    [55]Spear W E, Comber L. Electronic properties of substi-tutionally doped amorphous Si and Ge [J]. Philosophical Magazine Letters,1976,33:935-949.
    [56]Street R A. Doping and the Fermi Energy in Amorphous Silicon[J]. Physical Review Letters,1982,49(16):1187-1190.
    [57]Robertson J. Doping mechanism in a-Si:H[J]. Physical Review B,1985,31 (6):3817-3821.
    [58]Jackson W B. Microscopic mechanism for dopant activation in hydrogenated amorphous silicon[J]. Physical Review B,1990,41 (17):12323-12326.
    [59]Winer K, Street R A, Johnson N M, et al. Impurity incorporation and doping efficiency in a-Si:H [J].Physical Review B,1990,42(5):3120-3128.
    [60]Voz C, Peiro D, Bertomeu J, et al. Optimization of doped microcrystalline silicon films deposited at very low temperatures by hot-wire CVD[J]. Materials Science and Engineering B,2000,69-70:278-283
    [61]Lui M, Z.O. Wang Z O, Xi Z H, et al. Fabrication and study of phosphorus doped hydrogenated nano-crystalline silicon film[J]. Acta Physical Sinica,2000,49: 983-988.
    [62]Yoon S F, Ji R, Ahn J. Preparation of n-type SiC:H using ECR-CVD:some effects of microcrystallite silicon formation induced by phosphorus doping and microwave power [J]. Materials Chemistry and Physics,1997,49:234-242.
    [63]Yue K. Doping gas effects on plasma enhanced chemical capor deposition on heavily phosphorus-doped n'silicon film [J]. Appl ied Physics Letters,1997,71 (19):2821-2823.
    [64]Tsukidate Y, Suemitsu M. Growth kinetics and doping mechanism in phosphorus-doped Si gas-source molecular beam epitaxy [J]. Applied Surface Science 2000,175-176:43-48.
    [65]Chen L P, Huang G W, Chang C Y. Phosphorus doping of Si and Si1-xGex grown by ultrahigh vacuum chemical vapor deposition using Si2H6 and GeH4 [J]. Applied Physics Letters, 1996,68(11):1498-1500.
    [66]Wang Y J, Chen X X, Hamers R J. Atomic-resolution study of overlayer formation and interfacial mixing in the interaction of phosphorus with Si(001) [J]. Physical Review B,1994,50(7):4534-4547.
    [67]RichterH, Ley L. Optical properties and transport in microcrystalline si licon prepared at temperature below 400℃[J]. Journal of Appl ied Physics,1981,52(12):7281-7286.
    [68]Yu X M, Wang J L, Jiang X L, et al. Structure characteristics of phosphorus-doped hydrogenated nano-crystalline silicon films[J]. Journal of Beijing University of Aeronautics and Astronautics,2002,28(5):547-549.
    [69]Essick J M, Pool F S, Shing Y H, et al. Characterization of Electron Cyclotron Resonance Plasma-Deposited Hydrogenated Amorphous Silicon and Related Alloy Films. Materials Research Society Proceedings,1991,219:679-684.
    [70]Fukata N, Sasaki S, Murakami K, et al. Hydrogen molecules and hydrogen-related defects in crystalline silicon[J]. Physical Review B,1997,56 (11):6642-6647.
    [71]Shah A V, Meier J, Vallat-Sauvain E et al. Material and solar cell research in microcrystalline silicon [J]. Solar Energy Materials and Solar Cells,2003,78: 469-491.
    [72]Kim S K, Lee J C, Park S J, et al. Effect of hydrogen dilution on intrinsic a-Si:H layer between emitter and Si wafer in silicon heterojunction solar cell. Solar Energy Materials and Solar Cells,2008,92:298-301
    [73]Matsuda A. Growth mechani sm of microcrystalline silicon obtained from reactive plasmas [J]. Thin Solid Films.1999,337:1-6.
    [74]Tsai C C, Anderson G B, Thompson R, et al. Control of silicon network structure in plasma deposition [J]. Journal Non-Crystalline Solids,1989,114:151-153.
    [75]Nakamura K, Yoshida K, Takeoka S, et al. Roles of Atomic Hydrogen in Chemical Annealing [J].Japanese Journal of Applied Physics,1995,34:442-449.
    [76]Das U K, Chaudhuri P. Optical emission spectroscopic study of a radio-frequency plasma of Ar+SiH4[J]. Chemical Physics Letters.1998,298:211-216.
    [77]Matsuda A. Microcrystalline silicon growth and device application [J]. Journal of Non-Crystalline Solids,2004,338-340:1-12.
    [78]Mallavarpu R, Asmussen J, Hawley M C. Behavior of a Microwave Cavity Discharge over a Wide Range of Pressures and Flow Rates [J]. IEEE Transactions on Plasma Science, 1978,6:341-354.
    [79]Whitehair S, Asmussen J, Nakanishi S. Microwave electrothermal thruster performance in helium gas [J]. Journal of Propulsion and Power,1987,3:136-144.
    [80]Dashimene M, Asmussen J. The performance of a microwave ion source immersed in a multicusp static magnetic field [J]. Journal of Vacuum Science and Technology B, 1986,4:126-130.
    [81]Hopwood J, Dahimene M, Reinhard D K, et al. Plasma etching with a microwave cavity plasma disk source[J]. Journal of Vacuum Science and Technology B,1988,6:268-271.
    [82]Asmussen J, Dashimene M. The experimental test of a microwave ion beam source in oxygen [J]-Journal of Vacuum Science and Technology B,1987,5:328-331.
    [83]Sugauo T. Applications of Plasma Process to VLSI Technology (Wiley, New York,1985)
    [84]Pomot C, Mahi B, Petit B, et al. Anisotropic etching of silicon using an SF6/Ar microwave multipolar plasma[J]. Journal of Vacuum Science and Technology B,1986,4:1-5.
    [85]Burke R R. Microwave Multipolar Plasma for Etching and Depositon [J]. Solid State Technol,1988,64:67-71.
    [86]Xu Y, Gu B, Qin F W. Electron cyclotron resonance plasma enhanced metalorganic chemical vapor deposition system with monitoring in situ for epitaxial growth of group-Ⅲ nitrides [J]. Vacuum Science and Technology,2004,22:302-308.
    [87]Asmussen J. Electron cyclotron resonance microwave discharge for etching and thin-film deposition [J]. Journal of Vacuum Science and Technology A,1989,7(3):883-888.
    [88]Buckle K A, Postor K, Constantine C. Parametric Evaluation of Electron Cyclotron Resonance Deposited SiO2 Using a Multicusp Plasma Applicator [J]. Journal of Vacuum Science and Technology B,1992,10(3):1133-1138.
    [89]徐茵,顾彪,丛吉远.用于半导体加工的腔耦合-磁多级型ECR源的研究[J],核聚变与等离子体物理,1996,16:50-55
    [90]秦福文RHEED原位监测的PEMOCVD方法及GaN基薄膜低温生长:(博士学位论文).大连:大连理工大学,1994.
    [91]吴刚.材料结构与表征[M].北京:化学工业出版社,2001.
    [92]张锐.现代材料分析方法[M].北京:化学工业出版社,2007.
    [93]曹立礼.材料表面科学[M].北京:清华大学出版社,2007.
    [94]于威,张立,王保住等.氢化纳米硅薄膜中氢的键合特征及其能带结构分析[J].2006物理学报55 1936.
    [95]陈城钊,邱胜桦,刘翠青等.纳米晶硅薄膜中氢含量及键合模式的红外分析[J].2009物理学报582565.
    [96]蒋翔六,何宇亮,朱洪亮.在微晶硅薄膜中替代式硼杂质的非受主态行为[J].1993半导体学报14,664-669
    [97]于永谦,陈长勇,陈维德等.多晶硅薄膜低温生长中的表面反应控制[J].2001物理学报5024]8
    [98]麦振洪.薄膜结构X射线表征.北京:科学出版社,2007.
    [99]Schroder D K. Semiconductor Material and Device Characterization[M]. Wiley,1998.
    [100]Das D, Jana M. Hydrogen plasma induced microcrystallization in layer-by-layer growth scheme[J]. Solar Energy Materials and Solar Cells.2004,81 (2):169-181.
    [101]Moon B Y, Younb Y H, Won S H, et al. Polycrystalline silicon film deposited by ICP-CVD [J]. Solar Energy Materials and Solar Cells.2001,69(2):139-145.
    [102]He Y L, Liu M, Wang Z C. Study of nano-crystalline silicon films. Science China A.1992(9):995-1021.
    [103]聂利飞.无扩散阻挡层Cu(C)和Cu(Ti)薄膜的制备及表征:(硕十学位论文).大连:大连理工大学,2010.
    [104]Van de Pauw L J. A method of measuring specific resistivity and Hall effect of discs of arbitrary shape [J]. Philips Research Report.1958,13(1):]-9.
    [105]Yu Z R, Ines P, Carreno M N P. Wide optical band gap window layers for solar cells [J]. Solar Energy Materials Solar Cells,2001,66,155-162.
    [106]Demichelis F, Priri C F, Tresso E. Influence of doping on the structural and optoelectronic properties of amorphous and microcrystalline silicon carbide[J]. Journal of Applied Physics,1992,72,1327-1333.
    [107]Bakry A M, EI-Naggar A H. Doping Effects on the Optical Properties of Nanosize Crystalline Silicon Films[J]. Thin Solid Films,2000,360:293-297.
    [108]Ley L. Topics in applied physics [M]. Berlin, Heidelberg, New York and Tokyo: Springer-Verlag Press,1984.
    [109]郑少白,胡建芳,郭淑静.等离子体诊断.北京:北京工业出版社,1994.
    [110]项志遴,俞吕旋.高温等离子体诊断技术.上海:上海科学技术出版社,1982.
    [111]Griem H R. Plasma Spectroscopy. New York:Academic Press,1964.
    [112]Zhang J L, Deng X L, Wang P S, et al. Emission spectrum diagnostics of argon DC discharge [J]. Vacuum,2000,59:80-87.
    [113]Garcia M C, Rodero A, Sola A, et al. Spectroscopic study of a stationary surface-wave sustained argon plasma solumn at atmospheric pressure [J]. Spectrochimca Acta Part B:Atomic Spectroscopy,2000,55:1733-1745.
    [114]Zhao W H, Tian K, Tang H Z, et al. Experimental studies on the unstradiness of atmospheric pressure plasma jet [J]. Journal of Physics D:Applied Physics,2002, 35(21):2815-2822.
    [115]Jeffrey A K, Steven W H, Roberto C M. Multispectral imaging of continuum emission for determination of temperature and density profiles inside implosion plasmas [J]. Journal of Quantitative Spectroscopy and Radiative Transfer,2004,88:433-445.
    [116]Hartog E A D, Persing H, Woods R C. Laser-induced fluorescence measurements of transverse ion temperature in an electron cyclotron resonance plasma [J]. Applied Physics Letters,1990,57(7):661-663.
    [117]Trassy C, Tazeem A. Simulation of atomic and ionic absorption and emission spectra of thermal plasma diagnostics:application to a volatilization study in a plasma jet [J]. Spectrochimca Acta Part B:Atomic Spectroscopy,1999,54:581-602.
    [118]Kawamura T, Mima K, Koike F. Analysis of X-ray spectra of laser produced Ar plasmas-effects of spectator electrons[J]. Fusion Engineering and Design,1999,44: 195-198.
    [119]Rpbert S. Direct sample insertion for inductively coupled plasma sepectrometry [J]. Forster J. Spectrochimca Acta Part B:Atomic Spectroscopy,1999,54:443-453.
    [120]Ivkovic M, Jovicevic S, Konjevic N. Low electron density diagnostics:development of optical emission spectroscopic techniques and some applications to microwave induced plasmas [J]. Spectrochimca Acta Part B:Atomic Spectroscopy,2004,59(5): 591-605.
    [121]Ran J X, Dong L F, Mao Z G, et al. Diagnosis of the electron temperature in dielectric barrier discharge by optical emission spectroscopy. Proceedings of SPIE,2005,5638: 561-566.
    [122]Abdellatif G, Imam H. A study of the laser plasma parameters at different laser wavelengths[J]. Spectrochimca Acta Part B:Atomic Spectroscopy,2002,57(7): 1155-1165.
    [123]Sandra E, Rodriguez C. Rapid analysis of controlled substances using desorption electrospray ionization mass spectrometry[J]. Rapid Communications in Mass Spectrom, 2005,20:53-60.
    [124]Larijani M M, Le Normand F, Cregut 0. An optical emission spectroscopy study of the plasma generated in the DC HF CVD nucleation of diamond [J]. Applied Surface Science, 2007,253(8):4051-4059.
    [125]Hankins O E, Bourham M A, Earnhart J, et al. Visible light emission measurements from a dense electirothermal launcher plasma [J]. IEEE Transactions on Magnetics, 1993,29(1):1158-1161.
    [126]Sueda T, Katsuki S, Akiyama H. Early phenomena of capillary discharges in different ambient pressures [J]. IEEE Transactions on Magnetics,1997,33(1):334-339.
    [127]Kohel J M, Su L K, Clemens N T, et al. Emission spectroscopic measurements and analysis of a pulsed plasma jet[J]. IEEE Transactions on Magnetics,1999,35(1):201-206.
    [128]Zhou X T, Li Y, Wang J D, et al. The temperature measurement of the electrothermal-chemical launcher plasma by atomic emission spectroscopy [J]. IEEE Transactions on Plasma Science,2001,29(2):360-364.
    [129]Marjoribanks R S, Richardson M C, Jaanimagi P A, et al. Electron-temperature measurement in laser-produced plasmas by the ratio of isoelectronic line intensities. Physical Review A,1992,46(4):1747-1750.
    [130]Marjoribanks R S, Budnik F, Kulcs G, et al. Isoelectronic line intensity ratios for plasma electron temperature measurement (invited) [J]. Review Scientific Instruments, 1995,66(1):683-688.
    [131]Shepard T D, Back C A, Kalantar D H, et al. Te measurements in open- and closed-geometry long-scale-length laser plasmas via isoelectronic x-ray spectral line ratios[J]. Review Scientific Instruments,1995,66(1):749-751.
    [132]Ohno N, Razzak M A, Ukai H, et al. Validity of Electron Temperature Measurement by Using Boltzmann Plot Method in Radio Frequency Inductive Discharge in the Atmospheric Pressure Range[J]. Plasma and Fusion Research,2006,1 (28):1-9.
    [133]Maouhoub E, Coitout H, Parizet M J. Excitation temperature measurements in an argon-CO2 thermal plasma. IEEE Transactions on Plasma Science,1999,27 (5):1469-1471.
    [134]CRC Handbook of Chemistry and Physis,71th Ed., Boca Raton:CRC Press,1996.
    [135]吴蓉,李燕,朱顺官等.等离子体电子温度的发射光谱法诊断[J].光谱学与光谱分析.2008.28:731-735.
    [136]Gordillo V F J, Camero M, Gomez A C. Spectroscopic measurements of the electron temperature in low pressure radio frequency Ar/H2/C2H2 and Ar/H2/CH4 plasmas used for the synthesis of nanoearbon structures[J]. Plasma Sources Sci Technol.2006,15(1): 42-51.
    [137]Niu T Y, Cao J X, Liu L, et al. A comparison among optical emission spectroscopic methods of determining electron temperature in low pressure argon plasmas[J]. Chinese Physics,2007,16 (9):2757-2763.
    [138]温培刚,颜悦,望咏林等.直流磁控溅射辉光等离子体的Langmuir静电探针诊断[J].真科学与技术学报,28(2008)79-82.
    [139]Green M A, Emery K, King D L, et al. Solar cell efficiency tables (version 23). Progress in Photovoltaics:Reseatch and Applications,2004,12:55.
    [140]彭英才,何宇亮.纳米硅薄膜研究的最新进展[J],稀有金属,1999,23:42-54.
    [141]Cheng I C, Sigurd W. High hole and electron field effect mobility in Nanocrystalline silicon deposited at 150 ℃[J]. Thin Solid Films,2003,427:56-59.
    [142]Hayashi S, Nagareda T, Kanzawa Y. Photoluminescence of Si-Rich SiO2 Films:Si Clusters as Luminescent Centers [J]. Japanese Journal of Applied Physics,1993,32:3840-3845.
    [143]牧村哲也,国井康彦,村上浩一.表面(日),1996,28:467.
    [144]Morisaki H, Ping F W, One Het al. Above-band-gap photoluminescence from Si fine particles with oxide shell [J]. Journal of Applied Physics,1991,70:1869-1870.
    [145]何宇亮,殷晨钟,程光煦等.纳米硅薄膜结构分析[J].半导体学报,1992,13:683.
    [146]陈国,郭晓旭,朱美芳等.热丝法制备纳米晶硅薄膜及机制分析[J].物理学报,1997,46:2015.
    [144]韩伟强,韩高荣,丁子上.纳米硅薄膜制备技术进展[J].材料科学与工程,1994,12:43.
    [148]邓婉婷,吴爱民,张广英等.多晶硅薄膜等离子体增强化学气相沉积低温制备工艺[J].原子能科学技术,2007,41:436-440.
    [149]Wu A M, Deng W T, Qin F W, et al. Fabrication and its characteristics of low-temperature polycrystalline silicon thin films [J]. Science in China, Series E Technological Sciences,2009,52:260-263.
    [150]Yue H Y, Wu A M, Zhang X Y et al. New two-step growth of microcrystalline silicon thin films without incubation layer [J]. Journal of Crystal Growth,2011,322 (1):1-5.
    [151]Kocka J, Fejfar A, Mates T. The physics and technological aspects of the transition from amorphous to microcrystalline and polycrystalline silicon[J]. Physics Status Solidi C,2004,1:1097-1114.
    [152]Ferlauto A S, Koval R J, Wronski C R, et al. Extended phase diagrams for guiding plasma-enhanced chemical vapor deposition of silicon thin films for photovoltaics applications[J]. Appllied Physics Letters,2002,80:2666-2668.
    [153]王阳元,T.I.卡明斯,赵宝瑛.多晶硅薄膜及其在集成电路中的应用.北京:科学出版社,2001.
    [154]Das U, Morrison S, Centurioni E, et al. Thin film silicon materials and solar cells grown by pulsed PECVD technique [J]. Circuits, Devices and Systems,2003,150 (4): 282-286.
    [155]Amanatides E, Stamou S, Mataras D. Gas phase and surface kinetics in plasma enhanced chemical vapor deposition of microcrystalline silicon:The combined of rf power and hydrogen dilution. Journal of Applied Physics,2001,90(11):5786-5798.
    [156]Dasgupta A, Blaha M, Giuliani J L, et al. Electron-impact excitation from the ground and the metastable levels of Arl. Physical Review A.1999,61:012703-1.
    [157]程华PECVD(?)(?)烷分解发制备硅层基本规律的研究:(博士学位论文).沈阳:中国科学院沈阳金属研究所,2009.
    [158]Milton Ohring. Materials Science of Thin Films.2nd edition.北京:世界图书出版公司.2006.
    [159]田民波.薄膜技术与薄膜材料.北京:清华大学出版社.2006,200.
    [160]Sriraman S, Valipa M S, Aydil E S, et al. Hydrogen-induced crystallization of amorphous silicon thin films. Ⅰ.Simulation and analysis of film postgrowth treatment with H2 plasmas[J]. Journal of applied Physics,2006,100(5):053514-053511.
    [161]Valipa M S, Sriraman S, Aydil E S, et al. Hydrogen-induced crystallization of amorphous Si thin films. Ⅱ. Mechanisms and energetics of hydrogen insertion into Si-Si bonds[J]. Journal of Applied physics,2006,100(5):053515-053513.
    [162]岳红云.柔性衬底薄膜光伏电池相关材料制备及性能:(博士学位论文).大连:大连理工大学,2011.
    [163]Song C, Xu J, Chen G, et al. High-conductive nanocrystall ine si licon with phosphorous and boron doping [J]. Applied Surface Science,2010,257:1337-1341.
    [164]Kumar P, Schroeder B. Electrical properties/Doping efficiency of doped microcrystalline silicon layers prepared by hot-wire chemical vapor deposition[J]. Thin Solid Films,2008,516:580-583.
    [165]Fukata K. Impurity doping in silicon nanowires[J]. Advanced Materials,2009,21:1-4.
    [166]Parashar A, Kumar S, Gope J, et al. Influence of argon dilution on growth and properties of hydrogenated nanocrystalline silicon fi lms[J]. Solar Energy Materials Solar Cells, 2010,94:892-899.
    [167]陈治明.非晶半导体材料与器件,北京:科学出版社,1991.
    [168]Mark J, Kushner. A model for the discharge kinetics and plasma chemistry during plasma enhanced chemical vapor deposition of amorphous silicon[J]. Journal of Applied Physics.1987,63:2532-2551
    [169]Richter H, Ley L. Optical properties and transport in microcrystalline silicon prepared at temperatures below 400℃[J]. Journal of Applied Physics.1981,52: 7281-7286
    [170]Hong C S, Hwang H L. Evidence of light-induced bond breaking in hydrogenated amorphous silicon[J]. Applied Physics Letters,1986,49:645-647.
    [171]Das S R, Webb J B, Castro S C, et al. Photoelectron spectra of amorphous SixHy alloy films:The effect of microstructure on the Si-2p level shift[J], Journal of Applied Physics.1986,60:2530-2535.
    [172]Gan Z T, Su K H, Wang Y B. Several excited states and thermochemical properties of PHn(n=1-3) a high level ab initio study[J], Chemical Physics.1998,228:31-38.
    [173]Balasubramanian K, Chung Y S, Glaunsinger W S. Geometries and bond energies of PHn and PHn(n=1-3) [J]. Journal of Chemical Physics,1993,98:8859-8869.
    [174]Lias S G, Bartmess J E, Liebman J F, et al. Gas-phase ion and neutral thermochemistry [J]. Journal of Physical Chemistry. Ref. Data 17,1988,65:1-861.
    [175]Berkowitz J, Curtiss L A, Gibson S T, et al. Photoionization mass spectrometric study and ab initio calculations of ionization and bonding in P-H compounds, heats of formation, bond energies, and the 3B1-1A1 separation in Ph2+[J]. Journal of Chemical Physics,1986,84:375-384.
    [176]张晓丹,赵颖,孙福和等.n型窗口层材料及其在高速沉积微晶硅太阳电池中的应用研究.物理学报.2009.58:5041-5045.
    [177]李喆,张溪文,韩高荣.掺硼纳米非晶硅的太阳能电池窗口层应用研究[J].真空科学与技术.2009,29:119-124.
    [178]Hamasaki T, Ueda M, Osaka Y, et al. Preferential segregation of dopants in μc-Si:H [J]. Journal of Non-Crystalline Solids,1983,59/60:811-814.
    [179]Basner R, Schmidt M, Becker K. Absolute total and partial cross sections for the electron impact ionization of diborane (B2H6) [J]. Journal of Chemical Physics, 2003,118:2153-2158.
    [180]Ruscic B, Mayhew C A, Berkowitz J. Photoionization studies of (BH3)n (n=1,2) [J]. Journal of Chemical Physics,1988,88:5580-5593.
    [181]Ma J, Richley J C, Davies D R W, et al. Spectroscopic and modeling investigation of the gas-phase chemistry and composition in microwave plasma activated B2H6/Ar/H2 mixtures [J]. Journal of Physical Chemistry. A,2010,114:2447-2463.
    [182]Rayar M, Veis P, Foissac C, et al. Gas temperature determination using BH (0-0) A 1Π→X 1∑+emission spectrum in a B2H6 containing plasma for doped diamond deposition[J]. Journal of Physical D:Applied Physics.2006,39:2151.
    [183]Bauer S H. Oxidation of B, BH, BH2 and BmHn species:thermochemistry and kinetics [J]. Chemical Reviews.1996,96:1907-1916.
    [184]Yasuo W, Shigeru N. Grain growth mechanism of heavily phosphorous in planted polycrystalline silicon[J]. Journal of Electrochemical Society.1978,125:1500-1504.
    [185]Hamers R J, Wang Y J, Shan J. Atomic-level Spatial Distribution of Dopants on Silicon Surfaces:Toward a Microscopic Understanding of Surface Chemical Reactivity [J]. Applied Surface Science.1996,107:25-34.
    [186]Wei W S, Wang T M, Zhang C X, et al. Preferred Growth of Nanocrystalline Silicon in Boron-doped nc-Si:H Films[J]. Vacuum,2004,74:69-75.
    [187]Winer K, Street R A, Johnson N M, et al. Impurity incorporation and doping efficiency in a-Si:H [J]. Physical Review.1990,B42:3120.
    [188]Chen I, Janson F. Nature of nonsubsitutional dopant states and the carrier-density statistics in hydrogenated amorphous silicon[J].Physical Review B. 1984,29: 3759-3761.
    [189]Fedders R A, Drabold D A. Simulations of boron doping in a-Si:H[J]. Journal of Non-crystalline Solids. 1998,227:376-379.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700