用户名: 密码: 验证码:
慢病毒介导的TNF-α SiRNA在C型Niemann-Pick病小鼠神经变性中的作用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
神经系统的慢性炎症在神经变性疾病中起很关键的作用,与轴索变性和神经元脱失密切相关,包括阿尔茨海默病(AD),帕金森病(PD),肌萎缩侧索硬化(ALS)和C型Niemann-Pick病(NPC)等神经变性疾病。越来越多的证据表明,小胶质细胞激活并释放过量的TNF-α参与并加速了神经元变性的级联反应,导致神经元功能失调,突触调节异常以及淀粉样蛋白介导的记忆障碍。有多项研究证实,应用TNF-α抑制剂以及TNF-α-SiRNA降低其水平可以改善临床AD病人的认知功能以及改善AD模型小鼠的神经病理损害。但是TNF-α是否为神经变性疾病发病机理中的关键环节尚不清楚。Npc-l基因自然突变的npc小鼠模拟了人类NPC的病理生理变化,非常适合用来研究NPC以及其他的神经变性疾病。我们前期研究发现npc小鼠脑部胶质细胞活化并分泌大量的TNF-α,但是TNF-α在npc小鼠病理变化以及病情进展过程中的作用尚不明确。因此,我们应用这种动物模型和TNF-α-SiRNA来观察TNF-α对npc小鼠病理学以及行为学的影响,进而探讨TNF-α在神经变性过程中扮演的角色。本实验中,我们首先构建了携带TNF-α-SiRNA的慢病毒载体,感染体外培养细胞,通过RT-PCR以及ELISA检测了其对TNF-αmRNA的沉默作用:同时对4周龄的npc小鼠进行该慢病毒侧脑室注射,通过Real-time-PCR以及免疫组化检测其沉默效率,并运用免疫组化、western-blot、体重测定、衣架悬挂实验及足印实验来评价npc小鼠病理及行为学变化。结果发现,携带TNF-αSiRNA的慢病毒在体外培养细胞能有效下调TNF-αmRNA的表达,减少TNF-α分泌:慢病毒npc小鼠侧脑室注射后,可在其脑部长期稳定的表达并有效下调TNF-αmRNA;慢病毒注射后npc小鼠的神经病理以及行为学均有不同程度的改善。为研究和治疗神经变性疾病以及TNF-α相关疾病提供了有力的工具和治疗新策略。
Chronic inflammatory processes are considered to play an important role in theprogression of neurodegenerative diseases, such as Alzheimer's disease (AD), Parkinsondisease (PD), Amyotrophic lateral sclerosis (ALS) and Niemann-Pick disease type C (NPC),etc. It is thought that microglia activation and the TNF-αit relased participate andaccelerated the neuronal dysfunction, regulates synaptic mechanisms, and mediatesamyloidinduced disruption of molecular mechanisms involved in memory. Many studiesshowed that downregulation of TNF-αby its blockers and TNF-α-SiRNA resulted inpredominant improvement of the symptom of AD patients, ALS patients and theneuropathology of AD mouse model. It is not know whether TNF-αis essential key for theneurodegeneration. The naturally occurring npc-1 mutant mouse mimics human NPC, indiaplaying activation of mocroglia and over excess TNF-αbut its role in the neuropathologyand the processing of NPC is not clearly. We use this mouse model and lentiviral-deliveredTNF-α-SiRNA to determine whether TNF-αis necessary for NPC neuropathology. In thisstudy, we constructed Lentivector-mediated-TNF-α-SiRNA, and the tite was 2×10~8ifu/L.Interference efficiency of the lentivirus expressing TNF-α-SiRNA, was determined byRT-PCR and Elisa in BV-2 cells and astrocytes. At the same time, the constructedLenti-TNF-α-SiRNA was intracerebroventricularly infused into 4-week old npc mice for a4-week period. By using immunohistochemistry and real-time PCR, the down-regulation ofthe target genes was detected. We observed the neuropathology and the behavior of npc niceby immunohistology, western-blot, body weight, hanger test and foot print. As a result, theLenti-TNF-α-SiRNA downregulated the expression of murine TNF-αgene efficiently invitro and in vivo. Lentivirus could be expressed stably for long-term in the npc mice brainand reduced the hyperphosphorylation of cytoskeleton and improved the behavior of npcmice, which provided a potential tool for studying and treating neurodegenerative diseasesand TNF-α-related diseases.
引文
1.Brandt R. Cytoskeletal mechanisms of neuronal degeneration. Cell Tissue Res. 2001 Aug;305(2):255-65.
    2.K.A. Jellinger. Cell death mechanism in neurodegeneration. J. Cell. Mol. Med. Vol 5, No 1,2001, PP. 1-17.
    3.Vincent I, Jicha G, Rosado M, et al: Aberrant expression of mitotic cdc2/cyclin Blkinase in degenerating neurons of Alzheimer's disease brain. J Neurosci. 1997 May 15; 17(10): 3588-98
    4.Vanier MT, Suzuki K. Recent advances in elucidating. Niemann-Pick C disease. Brain Pathol. 1998,8:163-174.
    5.Elleder M, Jirasek A, Smid F, et al. Niemann-Pick disease type C. Study on the nature of the cerebral storage process. Acta Neuropathol. 1985,66:325-336.
    6.Bu B, Klunemann H, Suzuki K, et al. Niemann-Pick disease type C yields possible clue for why cerebellar neurons do not form neurofibrillary tangles. Neurobiol Dis, 2002,11:285-297.
    7.German DC, Quintero EM, Liang CL, et al. Selective neurodegeneration, without neurofibrillary tangles, in a mouse model of Niemann-Pick C disease. J Comp Neurol. 2001,433:415-425.
    8.Akiyama H, Barger S, Barnum S, et al. Inflammation and Alzheimer's disease. Neurobiol Aging. 2000 May-Jun;21(3):383-421.
    9.Koenigsknecht-Talboo J, Landreth GE. Microglial phagocytosis induced by fibrillar beta-amyloid and IgGs are differentially regulated by proinflammatory cytokines. J Neurosci. 2005 Sep 7;25(36):8240-9.
    10.Alvarez A, Cacabelos R, Sanpedro C, Serum TNF-alpha levels are increased and correlate negatively with free IGF-I in Alzheimer disease. Neurobiol Aging. 2007 Apr;28(4):533-536.
    11.Ma SL, Tang NL, Lam LC, et al. Association between tumor necrosis factor-alpha promoter polymorphism and Alzheimer's disease. Neurology. 2004, 62(2):307-309.
    12.Paganelli R, Di Iorio A, Patricelli L, et al. Proinflammatory cytokines in sera of elderly patients with dementia: levels in vascular injury are higher than those of mild-moderate Alzheimer's disease patients. Exp Gerontol. 2002, 37(2-3):257-63.
    13. Tan ZS, Beiser AS, Vasan RS, et al. Inflammatory markers and the risk of Alzheimer disease: the Framingham Study. Neurology. 2007 May 29;68(22):1902-8.
    14. Tobinick E. Perispinal etanercept for treatment of Alzheimer's disease. Curr Alzheimer Res, 2007; 4(5):550-552.
    15.张宇红,卜碧涛,方思羽,等.C型Niemann-Pick病小鼠P27表达异常与神经元变性和星形胶质细胞增生.卒中与神经疾病,2004;11(3):131-135.
    16. Wu YP, Mizukami H, Matsuda J, et al. Apoptosis accompanied by up-regulation of TNF-alpha death pathway genes in the brain of Niemann-Pick type C disease, Mol Genet Metab, 2005;84(1):9-17.
    17. P. Bezzi, M. Domercq, L. Brambilla, et al. CXCR4-activated astrocyte glutamate release via TNF-alpha: amplification by microglia triggers neurotoxicity. Nat Neurosci, 2001;4(7):702-710.
    18. Fiona E. McAlpine, Jae-Kyung Lee, Ashley S. Harms, et al. Inhibition of soluble TNF signaling in a mouse model of Aizheimer's disease prevents pre-plaque amyloid-associated neuropathology. Neurobiology of Disease, 2009, 34:163-177.
    19. Rimkunas VM. Graham MJ, Crooke RM, et al. TNF-{alpha} plays a role in hepatocyte apoptosis in Niemann-Pick type C liver disease. J Lipid Res. 2009, 50(2):327-333.
    20. Zhang M, Jin L. Chakrabarty P, Bitao B, Vincent I. Cyclin-dependent kinase inhibitors attenuate protein hyperphosphorylation, cytoskeletal lesion formation, and motor defects in Niemann-Pick type C Mice. American Journal of Pathology, 2004, 165(3):843-853.
    21.王雪贞,张旻,卜碧涛.Flavopiridol对C型Niemann2Pick病小鼠的神经保护作用.神经损伤与功能重建,2007,2(2):90-93.
    22. Elbashir SM, Harborth J, Lendeckel W, et al. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature, 2001, 411(6836):494-8.
    23. Zhang Y, Boado RJ, Pardridge WM. In vivo knockdown of gene expression in brain cancer with intravenous RNAi in adult rats. J Gene Med, 2003, 5(12):1039-45.
    24. Crystal RG. Transfer of genes to humans: early lessons and obstacles to success. Science, 1995, 270(5235):404-10.
    25. Bovia F, Salmon P, Matthes T, et al. Efficient transduction of primary human B lymphocytes and nondividing myeloma B cells with HlV-1-derived lentiviral vectors. Blood,2003; 101 (5): 1727-1733.
    26. Rubinson DA, Dillon CP, Kwiatkowski AV, et al. A lentivirus-based system to functionally silence genes in primary mammalian cells, stem cells and transgenic mice by RNA interference. Nature genet, 2003;33(3),401-406.
    27. Ralph GS, Radcliffe PA, Day DM, et al. Silencing mutant SOD1 using RNAi protects against neurodegeneration and extends survival in an ALS model. Nat Med, 2005, 1 1(4):429-33.
    1.张宇红,卜碧涛,方思羽,等.C型Niemann-Pick病小鼠P27表达异常与神经元变性和星形胶质细胞增生.卒中与神经疾病,2004,11(3):131-135.
    2. Wu YP, Mizukami H, Matsuda J, et al. Apoptosis accompanied by up-regulation of TNF-alpha death pathway genes in the brain of Niemann-Pick type C disease, Mol Genet Metab, 2005, 84(1):9-17.
    3. P. Bezzi, M. Domercq, L. Brambilla, et al. CXCR4-activated astrocyte glutamate release via TNF-alpha: amplification by microglia triggers neurotoxicity. Nat Neurosci, 2001, 4(7):702-710.
    4. Butovsky O, Koronyo-Hamaoui M, Kunis G, et al. Glatiramer acetate fights against Alzheimer's disease by inducing dendritic-like microglia expressing insulin-like growth factor 1. Proc Natl Acad Sci USA, 2006, 103(31): 11784-11789.
    5. Nelson TJ, Alkon DL. Oxidation of cholesterol by amyloid precursor protein and beta-amyloid peptide. J Biol Chem, 2005, 280(8): 7377-7387.
    6. Takeuchi H, Jin S, Wang J, et al. Tumor necrosis factor-alpha induces neurotoxicity via glutamate release from hemichannels of activated microglia in an autocrine manner. J Biol Chem 2006, 281(30):21362-21368.
    7. Culbert AA, Skaper SD, Howlett DR, et al. MAPK-activated protein kinase 2 deficiency in microglia inhibits pro-inflammatory mediator release and resultant neurotoxicity. Relevance to neuroinflammation in a transgenie mouse model of Alzheimer disease. J Biol Chem, 2006, 281 (33):23658-23667.
    8. Li R. Yang L, Lindholm K, et al. Tumor necrosis factor death receptor signaling cascade is required for amyloid-beta protein-induced neuron death. J Neurosci, 2004, 24(7):1760-1771.
    9. Alvarez A, Cacabelos R, Sanpedro C, et al. Serum TNF-a levels are increased and correlate negatively with free IGF-I in Alzheimer disease. Neurobiol Aging, 2007, 28(4):533-536.
    10. Tobinick E. Perispinal etanercept for treatment of Alzheimer's disease. Curr Alzheimer Res, 2007, 4(5):550-552.
    11. Fiona E. McAlpine, Jae-Kyung Lee, Ashley S. Harms, et al. Inhibition of soluble TNF signaling in a mouse model of Alzheimer's disease prevents pre-plaque amyloid-associated neuropathology. Neurobiology of Disease, 2009, 34 :163-177.
    12. Clayton J. RNA interference: the silent treatment. Nature, 2004, 431(7008):599-605.
    13. Zhang XN, Xiong W, Wang JD, et al. siRNA-mediated'inhibition of HBV replication and expression. World J Gastroenterol, 2004, 10(20):2967-71.
    14. Barton GM, Medzhitov R. Retroviral delivery of small interfering RNA into primary cells. Proc Natl Acad Sci USA, 2002, 99(23): 14943-5.
    15. Rubinson DA, Dillon CP, Kwiatkowski AV, et al. A lentivirus-based system to functionally silence genes in primary mammalian cells,stem cells and transgenic mice by RNA interference. Nat Genet, 2003, 33(3):401 -6.
    16. Pfeifer A, Ikawa M, Dayn Y, et al. Transgenesis by lentiviral vectors: lack of gene silencing in mammalian embryonic stem cells and preimplantation embryos. Proc Natl Acad Sci U S A, 2002, 99(4):2140-5.
    17. Sanders DA. No false start for novel pseudotyped vectors. Curr Opin Biotechnol, 2002, 13(5):437-42.
    18. Dull T, Zufferey R, Kelly M, et al. A third-generation lentivirus vector with a conditional packaging system. J Virol, 1998, 72(11):8463-71.
    19. Sinn PL, Sauter SL. McCray PB Jr. Gene Therapy Progress and Prospects: Development of improved lentiviral and retroviral vectors - design, biosafety, and production. Gene Ther,2005, 12(14): 1089-98.
    20. Yee JK, Miyanohara A, LaPorte P, et al. A general method for the generation of -titer, pantropic retroviral vectors:Highly efficient infection of primary hepatocytes. Proc Natl Acad Sci USA, 1994, 91(20):9564-8.
    21. Bovia F, Salmon P, Matthes T, et al. Efficient transduction of primary human B lymphocytes and nondividing myeloma B cells with HIV-1-derived lentiviral vectors. Blood, 2003, 101(5):1727-1733.
    22. Hammond SM, Bernstein E, Beach D, et al. An RNA-directed nuclease mediates post-transcriptional gene silencing in Drosophila cells. Nature, 2000, 404(6775): 293-296.
    23. Rubinson DA, Dillon CP, Kwiatkowski AV, et al. A lentivirus-based system to functionally silence genes in primary mammalian cells, stem cells and transgenic mice by RNA interference. Nature genet, 2003, 33(3),401-406.
    24. S(?)rensen DR, Leirdal M, Sioud M. Gene silencing by systemic delivery of synthetic siRNAs in adult mice. J Mol Biol. 2003, 327(4):761-766.
    25. Stewart SA, Dykxhoorn DM, Palliser D. Lentivirus-delivered stable gene silencing by RNAi in primary cells. RNA, 2003, 9(4):493-501.
    26. Dallas A, Vlassov AV. RNAi: a novel antisense technology and its therapeutic potential. Med Sci Monit. 2006, 12(4):RA67-74.
    27. Yang Z, Cloud A, Hughes D et al. Stable inhibition of human thymidylate synthase expression following retroviral introduction of an siRNA gene. Cancer Gene Ther, 2006,
    1.Brandt R: Cytoskeletal mechanisms of neuronal degeneration. Cell Tissue Res. 2001. 305(2): 255-65.
    2.Butovsky O, Koronyo-Hamaoui M, Kunis G, et al. Glatiramer acetate fights against Alzheimer's disease by inducing dendritic-like microglia expressing insulin-like growth factor 1. Proc Natl Acad Sci USA, 2006, 103(31): 11784-11789.
    3.Nelson TJ, Alkon DL. Oxidation of cholesterol by amyloid precursor protein and beta-amyloid peptide. J Biol Chem, 2005, 280(8): 7377-7387.
    4.Takeuchi H, Jin S, Wang J, et al. Tumor necrosis factor-alpha induces neurotoxicity via glutamate release from hemichannels of activated microglia in an autocrine manner. J Biol Chem 2006, 281(30):21362-21368.
    5.Culbert AA, Skaper SD, Howlett DR, et al. MAPK-activated protein kinase 2 deficiency in microglia inhibits pro-inflammatory mediator release and resultant neurotoxicity. Relevance to neuroinflammation in a transgenic mouse model of Alzheimer disease. J Biol Chem, 2006,281(33):23658-23667.
    6.Alvarez A, Cacabelos R, Sanpedro C, et al. Serum TNF-a levels are increased and correlate negatively with free IGF-I in Alzheimer disease. Neurobiol Aging, 2007, 28(4):533-536.
    7.Tobinick E. Perispinal etanercept for treatment of Alzheimer's disease. Curr Alzheimer Res. 2007,4(5):550-552.
    8.Fiona E. McAlpine, Jae-Kyung Lee, Ashley S. Harms, et al. Inhibition of soluble TNF signaling in a mouse model of Alzheimer's disease prevents pre-plaque amyloid-associated neuropathology. Neurobiology of Disease, 2009, 34:163-177.
    9.Vincent I, Jicha G, Rosado M, et al: Aberrant expression of mitotic cdc2/cyclin Blkinase in degenerating neurons of Alzheimer's disease brain. J Neurosci. 1997, 17(10): 3588-98
    10.Vincent I, Zheng JH, Dickson DW, et al: Mitotic phosphoepitopes precede paired helical filaments in Alzheimer's disease. Neurobiol Aging, 1998, 19(4): 287-96
    11.Ong WY, Kumar U, Liang CL, et al: Nerodegeneration in Niemann-Pick type C disease mice. Exp Brain Res, 2001, 141(2): 218-31
    12. Liu Y, Wu YP, Wada R, et al. Alleviation of neuronal ganglioside storage does not improve the clinical course of the Niemann-Pick C disease mouse. Hum Mol Genet, 2000, 9:1087-92
    13. German DC, Quintero EM, Liang C, et al. Degeneration of neurons and glia in the Niemann-Pick C mouse is unrelated to the low-density lipoprotein receptor. Neuroscience, 2001, 105:999-1005
    14.张宇红.卜碧涛,方思羽,等.C型Niemann-Pick病小鼠P27表达异常与神经元变性和星形胶质细胞增生.卒中与神经疾病.2004,11(3):131-135..
    15. Lai ZN, Brady RO. Gene Transfer Into the Central Nervous System In Vivo Using a Recombinanat Lentivirus Vector, Journal of Neuroscience Research, 2002, 67:363-371.
    16. Luis Pereira de Almeida, Christopher A. Ross, Diana Zala, et al. Lentivirai-Mediated Delivery of Mutant Huntingtin in the Striatum of Rats Induces a Selective Neuropathology Modulated by Polyglutamine Repeat Size, Huntingtin Expression Levels, and Protein Length. The Journal of Neuroscience, 2002, 22(9):3473-3483.
    17. Bovia F. Salmon P, Matthes T, et al. Efficient transduction of primary human B lymphocytes and nondividing myeloma B cells with HIV-1-derived lentiviral vectors. Blood, 2003, 101 (5):1727-1733.
    18. Rubinson DA, Dillon CP, Kwiatkowski AV, et al. A lentivirus-based system to functionally silence genes in primary mammalian cells, stem cells and transgenic mice by RNA interference. Nature genet, 2003, 33(3),401-406.
    19. Ralph GS. Radcliffe PA, Day DM, et al. Silencing mutant SOD1 using RNAi protects against neurodegeneration and extends survival in an ALS model. Nat Med, 2005, 11(4):429-33.
    20.王雪贞,曾莉,降风等.小鼠TNF-α基因RNAi慢病毒载体的构建及体外研究卒中与神经疾病杂志,2009,2:4-7.
    21. Sφrensen DR, Leirdal M, Sioud M. Gene silencing by systemic delivery of synthetic siRNAs in adult mice. J Mol Biol, 2003, 327(4):761-766.
    22. Kordower JH. In vivo gene dilivery of glial cell line-derived neurotrophic factor for Parkinson's disease[J]. Ann Neurol, 2003, 53:120-132.
    23. Mogi M, Harada M, Riederer P, Narabayashi H, Fujita K, Nagatsu T. Tumor necrosis factor-alpha (TNF-alpha) increases both in the brain and in the cerebrospinal fluid from parkinsonian patients. Neurosci Lett, 1994, 165: 208-10.
    24. Mogi M. Harada M. Kondo J, et al. Interleukin-1 beta. interleukin-6, epidermal growth factor and transforming growth factor-alpha are elevated in the brain from parkinsonian patients. Neurosci Lett, 1994, 180: 147-50.
    25. McCoy MK, Martinez TN, Ruhn KA, et al. Blocking soluble tumor necrosis factor signaling with dominant-negative tumor necrosis factor inhibitor attenuates loss of dopaminergic neurons in models of Parkinson's disease. J Neurosci, 2006, 26: 9365-75.
    26. McCoy MK, Ruhn KA, Martinez TN, McAlpine FE, Blesch A, Tansey MG. Intranigral lentiviral delivery of dominant-negative TNF attenuates neurodegeneration and behavioral defi cits in hemiparkinsonian rats. Mol Ther, 2008, 16: 1572-79.
    27. Sathasivam S, Shaw PJ. Apoptosis in amyotrophic lateral sclerosis: what is the evidence? Lancet Neurol, 2005, 4:500-9.
    28. Puttapanhi K, Elliott JL. Non-neuronal induction of immunoproteasome subunits in an ALS model: possible mediation by cytokines. Exp Neurol, 2005, 196:441-51.
    29. West M. Mhatre M, Ceballos A, et al. The arachidonic acid 5-lipoxygenase inhibitor nordihydroguaiaretic acid inhibits tumor necrosis factor alpha activation of microglia and extends survival of G93A-SOD1 transgenic mice. J Neurochem, 2004, 91:133-43.
    30. Zhang M. Jin L, Chakrabarty P, Bitao B, Vincent I. Cyclin-dependent kinase inhibitors attenuate protein hyperphosphorylation, cytoskeletal lesion formation, and motor defects in Niemann-Pick type C Mice. American Journal of Pathology, 2004, 165(3):843-853.
    31.王雪贞.张曼,卜碧涛.Flavopiridol对C型Niemann2Pick病小鼠的神经保护作用.神经损伤与功能重建,2007,2(2):90-93.
    32. Erickson RP, Garver WS, Camargo F, Hossain GS, Heidenreich RA: Pharmacological and genetic modifications of somatic cholesterol do not substantially alter the course of CNS disease in Niemann-Pick C mice. J Inherit Metab Dis,2000, 23:54-62
    33. Camargo F, Erickson RP, Garver WS, Hossain GS, Carbone PN, Heidenreich RA, Blanchard J: Cyclodextrins in the treatment of a mouse model of Niemann-Pick C disease. Life Sci, 2001, 70:131-142.
    1.Hui-Ming Gao and Jau-Shyong Hong. Why neurodegenerative diseases are progressive: uncontrolled inflammation drives disease prgression. Opinion, 2009, 29(8):357-365.
    2.Bassukas, I. D., Hyphantis, T., Gamvroulia, C, Gaitanis, G., & Mavreas. V. Infliximab for patients with plaque psoriasis and severe psychiatric comorbidity. J Eur.Acad.Dermatol.Venereol., 2008, 22, 257-258.
    3.Manji, H. K., Quiroz, J. A., Payne, J. L., Singh, J., Lopes, B. P., Viegas, J. S. et al. The underlying neurobiology of bipolar disorder. World Psychiatry, 2003, 2: 136-146.
    4.Vezzani, A., Ravizza, T., Balosso, S., & Aronica, E. Glia as a source of cytokines: implications for neuronal excitability and survival. Epilepsia, 2008,4 (2), 24-32.
    5.Licinio, J., Kling, M. A., & Hauser, P. Cytokines and brain function: relevance to interferon-alphainduced mood and cognitive changes. Semin.Oncol., 1998, 25: 30-38.
    6.Reichenberg, A., Yirmiya, R.. Schuld, A., Kraus, T., Haack, M., Morag, A. et al. Cytokineassociated emotional and cognitive disturbances in humans. Arch.Gen.Psychiatry, (2001), 58: 445-452.
    7.Kreutzberg, G.W. Microglia: a sensor for pathological events in the CNS. Trends Neurosci, 1996,19:312-318.
    8.Hanisch, U.K. and Kettenmann. H. Microglia: active sensor and versatile effector cells in the normal and pathologic brain. Nat. Neurosci, 2007,10:1387-1394.
    9.Davalos, D. et al. ATP mediates rapid microglial response to local brain injury in vivo. Nat. Neurosci, 2005, 8: 752-758.
    10.Gao, H.M. et al. Novel anti-inflammatory therapy for Parkinson's disease. Trends Pharmacol. Sci, 2003, 24:395-401.
    11.Block, M.L. et al. Microglia-mediated neurotoxicity: uncovering the molecular mechanisms. Nat. Rev. Neurosci. 2007, 8:57-69.
    12.Aktas, O. et al. Neuronal damage in autoimmune neuroinflammation mediated by the death ligand TRAIL. Neuron, 2005, 46: 421-432.
    13.Liu, B. and Hong, J.S. Role of microglia in inflammationmediated neurodegenerative diseases: mechanisms and strategies for therapeutic intervention. J. Pharmacol. Exp. Ther. 2003,304:1-7.
    14.Purisai, M.G. et al. Microglial activation as a priming event leading to paraquat-induced dopaminergic cell degeneration. Neurobiol. Dis. 2007, 25:392-400.
    15.Zhang, W. et al. Aggregated alpha-synuclein activates microglia: a process leading to disease progression in Parkinson's disease. FASEB J, 2005,19: 533-542.
    16.Floden, A.M. et al. Beta-amyloid-stimulated microglia induce neuron death via synergistic stimulation of tumor necrosis factor alpha and NMDA receptors. J. Neurosci, 2005, 25:2566-2575.
    17.Neuroinflammation Working Group, Inflammation and Alzheimer's disease. Neurobiol. Aging, 2000,21:383-421.
    18.Fischer. O., Die presbyophrene Demenz, deren anatomische Grundlage und klinische Abgrenzung. Z. Ges. Neurol. Psychiat. 1910, 3:371-471.
    19.Eikelenboom, P., Veerhuis, R., Scheper, W., Rozemuller, A.J.M., van Gool, W.A., Hoozemans, J.J.M., The significance of neuroinflammation in understanding Alzheimer's disease. J. Neural. Transm. 2006, 113:1685-1695.
    20.McGeer, E.G., McGeer, P.L., Inflammatory processes in Alzheimer's disease. Progr. Neuro-Psychopharmacol. Biol. Psychiatry, 2003, 27:741-749.
    21.Wyss-Coray, T., Inflammation in Alzheimer's disease: driving force, bystander or beneficial response? Nat. Med. 2006, 12:1005-1015.
    22.Heneka. M.T., O'Banion, M.K., Inflammatory processes in Alzheimer's disease. J. Neuroimmunol. 2007, 184: 69-91.
    23.Rojo. L.E., Fernandez, J.A., Maccioni, A.A., Jimenez. J.M., Maccioni, R.B.. Neuroinflammation: implications for the pathogenesis and molecular diagnosis of Alzheimer's disease. Arch. Med. Res. 2008, 39:1-16.
    24.Giullo M. Inflammatory mechanisms in neurodegeneration and Alzheimer's disease: the role of the complement system. Neurobiol Agind, 1996, 5:707-716.
    25.Huang C, Chen HP. Cytikine of Alzheimer's fordign medical sciences. Section Neurology & Neurosurgeru, 1998, 1(19):1-6.
    26.Hoozemans, J.J., Veerhuis, R., Rozemuller, J.M., Eikelenboom. P., Neuroinflammation and regeneration in the early stages of Alzheimer's disease pathology. Int. J. Dev. Neurosci. 2006, 24:157-165.
    27.Wirths, O., et al., Inflammatory changes are tightly associated with neurodegeneration in the brain and spinal cord of the APP/PS1KI mouse model of Alzheimer's disease. Neurobiol Aging (2008), doi:10.1016/j.neurobiolaging.2008.06.011.
    28.McGeer, P.L. et al. Reactive microglia in patients with senile dementia of the Alzheimer type are positive for the histocompatibility glycoprotein HLA-DR. Neurosci. Lett. 1987,79:195-200.
    29.Heneka. M.T. and O'Banion, M.K. Inflammatory processes in Alzheimer's disease. J. Neuroimmunol. 2007, 184:69-91.
    30.Perlmutter, L.S. et al. Morphologic association between microglia and senile plaque amyloid in Alzheimer's disease. Neurosci. Lett. 1990, 119: 32-36.
    31.D'Andrea, M.R. et al. The microglial phagocytic role with specific plaque types in the Alzheimer disease brain. Neurobiol. Aging, 2004. 25: 675-683.
    32.Frautschy, S.A. et al. Microglial response to amyloid plaques in APPsw transgenic mice. Am.J. Pathol. 1998,152:307-317.
    33.Del Bo R, Angeretti N, Lucca E, De Simoni MG, Forloni G. Reciprocal control of inflammatory cytokines, IL-1 and IL-6, and betaamyloid production in cultures. Neurosci Lett, 1995, 188:70-74
    34.Blasko I, Veerhuis R, Stampfer-Kountchev M. Saurwein-Teissl M, Eikelenboom P, Grubeck-Loebenstein B. Costimulatory effects of interferon-gamma and interleukin-lbeta or tumor necrosis factor alpha on the synthesis of Abetal-40 and Abetal-42 by human astrocytes. Neurobiol Dis. 2000. 7:682-689.
    35.Cacabelos R, Barquero M, Garcia P, Alvarez XA. Varela de Seijas E. Cerebrospinal fluid interleukin-1 beta (IL-1 beta) in Alzheimer's disease and neurological disorders. Methods Find Exp Clin Pharmacol ,1999, 13:455-458.
    36.Blum-Degen D, Muller T, Kuhn W, Gerlach M, Przuntek H, Riederer P. Interleukin-1 beta and interleukin-6 are elevated in the cerebrospinal fluid of Alzheimer's and de novo Parkinson's disease patients. Neurosci Lett, 1995, 29(202): 17-20.
    37.Mehlhorn G, Hollborn M, Schliebs R. Induction of cytokines in glial cells surrounding cortical beta-amyloid plaques in transgenic Tg2576 mice with Alzheimer pathology. Int J Dev Neurosci 2000, 18: 423-431.
    38.Luterman JD, Horoutunian V, Yemul S, Ho L, Purohit D, Aisen PS, et al. Cytokine gene expression as a function of the clinical progression of Alzheimer's disease dementia. Arch Neurol 2000, 57: 1153-1160.
    39.Li R, Yang L, Lindholm K. Konishi Y, Yue X, Hampel H, et al. Tumor necrosis factor death receptor signaling cascade is required for amyloid-beta protein-induced neuron death. J Neurosci 2004, 18(24): 1760-1771.
    40.Alvarez A, Cacabelos R, Sanpedro C, Garcia-Fantini M, Aleixandre M. Serum TNF-a levels are increased and correlate negatively with free IGF-I in Alzheimer disease. Neurobiol Aging 2007, 28:533-536.
    41.Alvarez XA, Franco A, Fernandez-Novoa L, Cacabelos R. Blood levels of histamine, IL-1 beta, and TNF-alpha in patients with mild to moderate Alzheimer disease. Mol Chem Neuropathol 1996, 29: 237e252.
    42.Tobinick E. Perispinal etanercept for treatment of Alzheimer's disease. Curr Alzheimer Res, 2007, 4(5):550-552.
    43.Fiona E. McAlpine, Jae-Kyung Lee, Ashley S. Harms, et al. Inhibition of soluble INF signaling in a mouse model of Alzheimer's disease prevents pre-plaque amyloid-associated neuropathology. Neurobiology of Disease, 2009, 34 :163-177.
    44.Haass, C, Selkoe, D.J., Soluble protein oligomers in neurodegeneration: lessons from the Alzheimer's amyloid b-peptide. Nat. Rev. Mol. Cell Biol. 2007, 8:101-112.
    45.Walsh, D.M., Selkoe, D.J.. Ab oligomers - a decade of discovery. J. Neurochem. 2007, 101:1172-1184.
    46.Hsiao, K., Chapman, P., Nilsen, S., Eckman, C, Harigaya, Y., Younkin, S., Yang. F., Cole, G., Correlative memory deficits, Abeta elevation, and amyloid plaques in transgenic mice. Science, 1996, 274:99-102.
    47.Lim, G.P., Yang, F., Chu, T.. Chen, P., Beech, W., Teter, B., Tran, T., Ubeda, O., Ashe, K.H., Frautschy, S.A., Cole, G.M., Ibuprofen suppresses plaque pathology and inflammation in a mouse model for Alzheimer's disease. J. Neurosci. 2000, 20:5709-5714.
    48.Townsend, K.P., Pratico, D., Novel therapeutic opportunities for Alzheimer's disease: focus on nonsteroidal anti-inflammatory drugs. FASEB J. 2005, 19:1592-1601.
    49.Hoozemans, J.J., Veerhuis. R., Rozemuller, A.J., Eikelenboom, P.. Non-steroida anti-inflammatory drugs and cyclooxygenase in Alzheimer's disease. Curr. Drug Targets. 2003,4:461-468.
    50.ladecola, C, Rescuing troubled vessels in Alzheimer disease. Nat. Med. 2005, 11: 923-924.
    51.Hirsch EC, Graybiel AM, Agid Y. Melanized dopaminergic neurons are diff erentially susceptible to degeneration in Parkinson's disease. Nature 1988, 334: 345-48.
    52.McGeer PL. McGeer EG. Infl animation and the degenerative diseases of aging. Ann N Y Acad Sci 2004. 1035: 104-16.
    53.McGeer PL, Itagaki S. Boyes BE, McGeer EG. Reactive microglia are positive for HLA-DR in the substantia nigra of Parkinson's and Alzheimer's disease brains. Neurology 1988,38:1285-91.
    54.Mirza B. Hadberg H, Thomsen P, Moos T. The absence of reactive astrocytosis is indicative of a unique infl ammatory process in Parkinson's disease. Neuroscience 2000. 95: 425-32.
    55.Bertrand E, Lechowicz W, Szpak GM, Lewandowska E, Czlonkowska A. Dymecki J. Quantitative study of pathological forms of astroglia in Wilson's disease. Folia Neuropathol 1997. 35: 227-32.
    56.Hashizume Y. Distribution of major histocompatibility complex class Ⅱ-positive microglia and cytokine profi le of Parkinson's disease brains. Acta Neuropathol 2003. 106:518-26.
    57.Damier P. Hirsch EC. Zhang P, Agid Y, Javoy-Agid F. Glutathione peroxidase, glial cells and Parkinson's disease. Neuroscience 1993. 52: 1-6.
    58.Lin LF, Doherty DH, Lile JD, Bektesh S, Collins F. GDNF: a glial cell line-derived neurotrophic factor for midbrain dopaminergic neurons. Science 1993. 260: 1130-32.
    59.Faucheux BA. Bonnet AM, Agid Y. Hirsch EC. Blood vessels change in the mesencephalon of patients with Parkinson's disease. Lancet 1999,353: 981-82.
    60.Mogi M, Harada M, Riederer P, Narabayashi H, Fujita K, Nagatsu T. Tumor necrosis factor-alpha (TNF-alpha) increases both in the brain and in the cerebrospinal fl uid from parkinsonian patients. Neurosci Lett 1994, 165: 208-10.
    61. Mogi M, Harada M, Kondo J. et al. Interleukin-1 beta, interleukin-6, epidermal growth factor and transforming growth factor-alpha are elevated in the brain from parkinsonian patients. Neurosci Lett 1994, 180: 147-50.
    62. Vincent I, Jicha G, Rosado M, et al: Aberrant expression of mitotic cdc2/cyclin Blkinase in degenerating neurons of Alzheimer's disease brain. J Neurosci. 1997, 17(10): 3588-98
    63. Wu YP, Mizukami H, Matsuda J, et al. Apoptosis accompanied by up-regulation of TNF-alpha death pathway genes in the brain of Niemann-Pick type C disease, Mol Genet Metab, 2005;84(1):9-17.
    64. L. Meda, M.A. Cassatella, G.I. Szendrei, L. Otvos Jr., P. Baron, M. Villalba, D. Ferrari, F. Rossi, Activation of microglial cells by betaamyloid protein and interferon-gamma, Nature 1995, 374:647-650.
    65. C.S. Raine, Multiple sclerosis: TNF revisited, with promise, Nat. Med. 1995, 1:211-214.
    66. S.W. Perry, J.A. Hamilton, L.W. Tjoelker, G. Dbaibo, K.A. Dzenko, L.G. Epstein, Y. Hannun, J.S. Whittaker, S. Dewhurst, H.A. Gelbard, Platelet-activating factor receptor activation. An initiator step in HIV-1 neuropathogenesis, J. Biol. Chem. 1998, 273:17660-17664.
    67.张宇红,卜碧涛,方思羽,等.C型Niemann-Pick病小鼠P 27表达异常与神经元变性和星形胶质细胞增生.卒中与神经疾病,2004:11(3):131-135.
    68. A.M. Clement, M.D. Nguyen, E.A. Roberts, et al., Wild-type nonneuronal cells extend survival of SOD1 mutant motor neurons in ALS mice, Science,2003, 302(5642):113-117.
    69. D.R. Beers, J.S. Henkel, Q. Xiao, et al., Wild-type microglia extend survival in PU.1 knockout mice with familial amyotrophic lateral sclerosis, Proc. Natl. Acad. Sci. U. S. A. 2006,103 (43):16021-16026.
    70. D.N. Angelov, S. Waibel, O. Guntinas-Lichius, et al., Therapeutic vaccine for acute and chronic motor neuron diseases: implications for amyotrophic lateral sclerosis, Proc. Natl. Acad. Sci. U. S. A. 2003, 100 (8):4790-4795.
    71. M. Schwartz, J. Kipnis, Protective autoimmunity and neuroprotection in inflammatory and noninflammatory neurodegenerative diseases, J. Neurol. Sci. 2005, 233(1-2):163-166.
    72.O. Butovsky, M. Koronyo-Hamaoui, G. Kunis, E. Ophir, G. Landa, H. Cohen, M. Schwartz, Glatiramer acetate fights against Alzheimer's disease by inducing dendritic-like microglia expressing insulin-like growth factor 1, Proc. Natl. Acad. Sci. U. S. A. 2006, 103 (31) :11784-11789.
    73.O. Butovsky, S. Bukshpan, G. Kunis, S. Jung, M. Schwartz, Microglia can be induced by IFN-gamma or 1L-4 to express neural or dendritic-like markers, Mol. Cell. Neurosci, 2007, 35 (3):490-500.
    74.A. Klegeris, P.L. McGeer, Non-steroidal anti-inflammatory drugs (NSAlDs) and other anti-inflammatory agents in the treatment of neurodegenerative disease, Curr. Alzheimer Res, 2005, 2 (3):355-365.
    75.L. Acarin, B. Gonzalez, B. Castellano, Decrease of proinflammatory molecules correlates with neuroprotective effect of the fluorinated salicylate triflusal after postnatal excitotoxic damage, Stroke, 2002, 33 (10):2499-2505.
    76.M. Lalancette-Hebert, G. Gowing. A. Simard, Y.C. Weng, J. Kriz, Selective ablation of proliferating microglial cells exacerbates ischemic injury in the brain, J. Neurosci, 2007, 27(10):2596-2605.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700