用户名: 密码: 验证码:
东北黑土区沟蚀机理及防治模式的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
东北黑土区是我国的重要的粮食生产基地,也是我国水土流失严重的地区之一。本研究旨在通过对黑土区侵蚀沟的分布和形态特性分析,找出东北黑土区的侵蚀沟近年来迅速发育的原因,从而为东北黑土区的水土流失防治工作提供指导和参考。研究通过对黑土区5个位于不同气候带的研究流域的77条侵蚀沟进行测量统计,以及三岔河流域1986年的地形图和2007年卫片资料对比分析,对侵蚀沟的发育速度进行比较,发现侵蚀沟在基本相同的坡度下和坡面比较平整的情况下侵蚀沟发育速度却有着很大的不同,经过研究发现:
     1.侵蚀沟主要发生在坡耕地上:过对黑土区5个处于不同地貌、土壤类型和水土流失类型区的小流域的侵蚀沟进行研究后发现:5个流域共有切沟77条,发生在坡耕地上的为66条,占85.71%;发生在荒地上的是5条,发生在作业路边的切沟为3条,发生在疏林地中的侵蚀沟为2条,发生在耕地的切沟1条。
     2.坡耕地上侵蚀沟的形态特征揭示了坡耕地侵蚀沟动力很大程度上来自沟道两侧坡面:侵蚀沟的形态特征看,坡耕地切沟的宽长比和宽深比最大,说明沟道侧面的坡面来水较大,使沟道相对变宽。
     3.垄沟具有汇流作用:垄沟横截面为三角形,垄沟像一个沟渠,将降水汇集拢到垄沟中。在降水过程中,降水主要经过蒸发、农作物或植物截持、入渗等损失,多余的降水会在坡耕地的垄沟内出现径流。径流经垄沟聚拢后,其垄沟内的径流深为平地径流深的数倍。
     4.沟渠效应是造成切沟发育的主要原因:由于在实践中的大规模改垄,使得坡面汇流条件改变,一条条的垄沟就如同一条条细小的渠道,使得坡面径流横向汇集,并在垄沟的低洼处或薄弱处发生断垄溢流,汇成集中股流,造成冲沟,我们将这个现象定义为“沟渠效应”。由于“沟渠效应”的存在,造成坡耕地侵蚀沟发育迅速。
     5.汇流作用对沟蚀的形成起着巨大作用:根据研究三岔河流域的汇流情况,在降水产生的超渗径流情况下,水平改垄汇流造成的集中股流是顺坡垄的80~1700倍。集中股流造成坡面强烈冲刷,引发沟蚀。
     6.改垄越早,侵蚀沟发育速度越快:过对5条研究流域进行研究,最早改水平垄的坡耕地上的侵蚀沟发育速度最快,无论长度和侵蚀量的发展均处在发育速率的第一台阶。
     7.黑土区季节性高强度降水促进了沟渠效应:东北黑土区研究流域平均每年有垄沟不能容蓄的高强度降水概率是14%,大约7年左右有一次垄沟不能容蓄的高强度降水,在这种情况下,垄沟的容积将无法蓄积超渗径流,不可避免出现漫垄。
     8.黑土区的垄长大多超过临界垄长:在沟底存在均匀比降的情况下,一定长度垄沟内的超渗径流汇集量能够在低洼处或薄弱处溢垄,这时的垄沟长度为临界垄长。经计算,在三岔河流域出现一小时降水强度达到32mm/h的强度下,垄沟的临界长度为138.91m。东北黑土区的坡耕地垄长多超过500m,超过了垄沟的临界长度,易引发沟蚀。
     9.对侵蚀沟应采取组合技术进行分级治理:在广泛调查研究的基础上,给出了治理浅沟、小型沟、中型沟和大型切沟的治理模式,总结出了6个针对不同级别、不同类型侵蚀沟的防治与利用的组合技术,并论述了这些治理切沟模式的效果。
The black soil region of northeast China is an important food production area, as well as a serious soil erosion area in China. This research aimed to discover the reason of gully developing fast in resent 20 years than ever before, through investigate gullies’distributing and analyze its modality. Provide with reference for soil and water conservation in the black soil region in northeast China. Through research on 77 gulies in 5 watersheds that located in different climate region, and contrast Sanchahe watershed’s map (1986) with the watershes’s satellitic photo (2007), we found that the gully developing rate was very difference even the slope land conformed both in gradient and surface roughness. The research result show as follows:
     1. Gullies mainly take place on sloping farmland: through investigate 5 watersheds which located in different landforms, agrotypes and soil erosion zones, we foud that there are total 77 gulies in the 5 watersheds, 66 of the gullies take place in sloping farmland, account for 85.71%; 5 of the gullies take place in wasteland;. 3 of the gullie take place by roads; 2 of the gullies take place in open forest land; 1 of the gullies takes place in farmland.
     2. Gullies’modality in sloping farmland shows that the motivity of drive gully developing is largely from gully’s two sides: the modality shows that the gullies in sloping farmland, its WLR and WDR are big than others. That indicate run off from sloping farmland and inflood gully through its two sides are quite abundance. Consequentially, the gullies in sloping farmland are broadening.
     3. Furrow s between ridges in a field perform an important function of accordant junction: Furrow s’cross section is triangle, precipitation were gathered in Furrow s. Precipitation can produce runoff in Furrow s after subtract loss from evaporation, interception by crop or plant, infiltration. After runoff gathered by Furrow s, the runoff depth can be many times higher than it in flat ground.
     4. Effect of aqueduct is the main reson for gully developing quickly: because farmer changed sloping ridge into contour ridging, it makes accordant junction condition changed in sloping farmland. Each of furrows like a small ditchs or small aqueduct canals that caused runoff flow along furrow orientation and break out in low-lying and weak site of ridge. Runoff overfall can gather into stream flow and scour out gullies. We define this process as Effect of aqueduct. Because the reson of Effect of aqueduct, the gullies in sloping farmland were developing quickly.
     5. Effect of accordant junction play a significant role for give birth to gully and its developing: the result of research in Sanchahe watershed show that runoff occur in contour ridged furrow in a field of sloping farmland, the quantity of runoff gathered into stream flow can be 80~1700 times than the quantity caused in a single sloping furrow. Gathered stream flow can washed out sloping farmland and cause gully erosion.
     6. Changing sloping ridge into contour ridge early, the gully developing be at a high pitch: the resoult of research on 5 watersheds show that the gully developing quickly in the sloping farmland where changed the sloping ridge into contour ridge early, no matter in length and erosion quantity both at first level.
     7. High strength precipitation in summer promoted the effect of aqueduct: the average annully high strength precipitation probability which produced runoff run over the capacity of furrow in research watersheds is 14%. That means thare are high strength precipitation should occur in 7 years that the furrow unable to contain. In this case, overflow furrow is inevitably for the precipitation quantity exceeds the capacity of furrow.
     8. Most the ridge lengths in the black soil region are exceed the critical length of ridge: in the condition that furrow’s gradient is uniformily, runoff produced in a definite lenth of furrow can cause ridges break up in lower and weak site; the definite lenth is the critical length of ridge. According to the resoult of research in Sanchahe watershed, if the precipitation intensity reaches 32mm/h, the critical length of ridge should be 138.91m. The ridges lenth in the black soil region usually more than 500m, which exceed the critical length of ridge under the characteristic precipitation in the region. So that easy to cause gully erosion.
     9. Control gully erosion should take multiform combined-measures and used them according to gully size magnitude: through comprehensive investigation, 6 modes which used for control different kind of gullies and control gullies at different size magnitude were given in this paper. Such as control ephemeral gully, small size gully, middle size gully and big size gully. Then we discussed those modes’effect both in conservation and economic benefit.
引文
1.沈波,孟令钦,陈浩生等.东北黑土区水土流失综合防治规划,长春:松辽水利委员会,2005: 13~15.
    2.阎百兴,沈波,刘宝元等.黑土区水土流失与生态安全综合科学考察报告,2007: 1~12.
    3.范昊明,蔡强国,王红闪.中国东北黑土区土壤侵蚀环境.水土保持学报,2004,18(02):61~63.
    4.李全,杨岳奉,孟令钦等.松花江流域防洪规划,2004:5~6.
    5.张学俭,沈波.东北黑土地水土流失修复.北京:中国水利水电出版社,2007:9~10
    6.闫业超,张树文,岳书平.基于Corona和Spot影像的近40年黑土典型区侵蚀沟动态变化.资源科学,2006,28(06):23~25.
    7. Hans-Rudolf Bork. 20世纪的土壤侵蚀-以南非,美国,中国和欧洲为例.见:李勇.沟蚀与全球变化.成都:四川科学技术出版社,2004,4~5.
    8.朱显谟.黄土区土壤侵蚀的分类.土壤学报1956,4(2):99~115.
    9.罗来兴,划分晋西、陕北、陇东黄土区域沟间与沟谷的地貌类型.地理学报1956,
    22(3):201~221.
    10.刘元保,朱显谟,等.黄土高原坡面沟蚀的类型及其发生发展规律.中国科学院西北水土保持研究所集刊,1988,第7集:9~18.
    11.刘元保,黄土高原集流槽的发育与控制.西北水保所集刊.西安:陕西科学技术出版社,1990:34~36.
    12.张科利,唐克丽.人类耕垦对现代侵蚀加速作用的评价.水土保持通报,1990,10(5):1~
    4.
    13.张科利,唐克丽,王斌科.黄土高原坡面浅沟侵蚀特征值的研究.水土保持学报, 1991,5(2):8~13.
    14.唐克丽.土壤保持与土壤保持词条.土壤侵蚀与水土保持农业大百科全书(土壤卷).北京:农业出版社,1998.
    15.姜永清,王占礼,胡光荣等.瓦背状浅沟分布特征分析.水土保持研究,1999,6(2): 181~184.
    16.武敏,郑粉莉,黄斌.黄土坡面汇流汇沙对浅沟侵蚀影响的试验研究.水土保持研究,2004,11(4):74~76.
    17.武敏,郑粉莉.浅沟侵蚀过程及预报模型研究进展.水土保持研究, 2004,11(4):113~116.
    18.李斌兵,郑粉莉,张鹏.黄土高原丘陵沟壑区小流域浅沟和切沟侵蚀区的界定.水土保持通报, 2008,28(5):16~20.
    19.范昊明,蔡强国,王红闪.中国东北黑土区土壤侵蚀环境.水土保持学报,2004,02:66~70.
    20.刘绪军,景国臣,齐恒玉.克拜黑土区沟壑冻融侵蚀主要形态特征初探.水土保持科技情报,1999,01:28~30.
    21.闫业超,张树文,岳书平.克拜东部黑土区侵蚀沟遥感分类与空间格局分析.地理科学, 2007,27(2):193~198.
    22.闫业超,张树文,李晓燕等.黑龙江克拜黑土区50多年来侵蚀沟时空变化.地理学报,2005,60(06):1015~1020.
    23.胡刚,伍永秋,刘宝元等.东北漫川漫岗黑土区浅沟和切沟发生的地貌临界模型探讨.地理科学,2006,26(4):449~454.
    24.胡刚,伍永秋,刘宝元等.东北漫岗黑土区切沟侵蚀发育特征.地理学报,2007,62(11):1165~1173.
    25.张永光,伍永秋,刘洪鹄等.东北漫岗黑土区地形因子对浅沟侵蚀的影响分析.水土保持学报,2007,21(1):35~38.
    26.尹佳宜,伍永秋,汪言在.采用不同方法测量切沟的误差分析水土保持研究,2007,14(4):242~247.
    27.伍永秋,张永光,郑秋红等.东北漫岗黑土区切沟侵蚀速率监测.水土保持学报,2006,20(6):54~57.
    28.刘宝元,阎百兴,沈波等.东北黑土区农地水土流失现状与综合治理对策.中国水土保持科学,2008,6 (1):1~8.
    29.刘兴土.东北湿地.北京:科学出版社,2005:160~168.
    30.李世泉,王岩松,王宝桐等.东北黑土区水土流失综合防治试点工程—水土保持监测报告.长春:松辽水利委员会,2006:41.
    31.张润儒,杨立波,徐成斌等.黑龙江省宾县二龙山项目区可行性研究报告.黑龙江省宾县:宾县水利工程勘测设计规划室,2007,8~9.
    32.张旭峰,王丽,王建忠等.吉林省榆树市刘家镇合心村南大沟水土流失综合治理工程初步设计报告.吉林省长春:长春市水利勘测设计研究院,2004,7:5~6.
    33.李玉斌,刘妍,包秀莲等.柳河流域辽宁省彰武县哈尔套项目区可行性研究报告.辽宁彰武县:彰武县水利科技推广中心站,2006,12:8~10.
    34.崔艳波,邱莲,刘玉娥等.兴安盟不同类型区水土保持综合治理规划.内蒙古兴安盟:兴安盟水利局,1999,06:1~12.
    35.郑学鸣.兴安盟农业资源与区划简编.内蒙古兴安盟:兴安盟农业资源区划管理办公室编,1999,298~299.
    36.朱显谟.黄土区土壤侵蚀的分类.土壤学报,1956,4(2):99~115.
    37.陈永宗.黄河中游黄土丘陵区的沟谷类型.地理科学,1984,4(4):321~327.
    38.魏天兴,余新晓,朱金兆.山西西南部黄土区林地枯落物截持降水的研究.北京林业大学学报,1998,06:5~10.
    39.郭明春,于澎涛,王彦辉等.林冠截持降雨模型的初步研究.应用生态学报,2005,05:55~59.
    40.郝芝建,范兴科,吴普特等.喷灌条件下夏玉米冠层对水量截留试验研究.灌溉排水学报,2008,27(1):25~27.
    41.水土保持综合治理技术规范—小型蓄排工程.GB/T16453.4—1996.水土保持生态建设法规与标准汇编.焦居仁.北京:中国标准出版社,1990:106~107.
    42.胡刚,伍永秋,刘保元等.东北漫川漫岗黑土区浅沟和切沟发生的地貌临界模型探讨,地理科学,2006,26 (4):449.
    43.范建荣,潘庆宾.东北典型黑土区水土流失危害及防治措施.水土保持科技情报,2002,05:36~38.
    44.王玉玺,解运杰,王萍.东北黑土区水土流失成因分析.水保科技情报,2002,(3):28~32.
    45.杨常青,张宝林,倪池.丹东市水土保持生态建设模式初步探讨.水利发展研究,2002,2(8):24~26.
    46.冯克,李凤荣,辛春.阜新县小流域沟壑侵蚀与治理.中国水土保持,2001,12:41~42.
    47.胡国俊,敫立军,郑福金.浅析侵蚀沟造林技术.国土与自然资源研究,2003,01:82~83.
    48.刘富.沟道生物综合治理技术研究.中国水土保持,2003,08:30~31.
    49.张源润,蔡进军.半干旱退化山区侵蚀沟及坡面植被多样性研究.中国水土保持,2004, 03:78~80.
    50.东北黑土区水土流失综合防治试点工程总结.中华人民共和国水利部,2007,33.
    51.东北黑土区水土流失综合防治试点工程总结.中华人民共和国水利部,2007,58~59.
    52.东北黑土区水土流失综合防治试点工程总结.中华人民共和国水利部,2007,123~124.
    53.刘凤飞.东北黑土区水土流失综合防治一期工程项目乌裕尔河流域黑龙江省拜泉县群胜沟项目区可行性研究报告.黑龙江省水土保持科学研究所/黑龙江省拜泉县水务局,2006:18.
    54.郭廷辅,段巧甫.水土保持径流调控理论与实践.中国水利水电出版社,2004:230~231.
    55.崔明.东北典型黑土区土壤侵蚀与产沙规律研究.[博士论文].北京:中科院地理科学与资源研究所,2003.
    56.王飞,李锐,杨勤科,张晓萍.水土流失研究中尺度效应及其机理分析.水土保持学报,2003,17(02):P35~38.
    57.刘新华,张晓萍,杨勤科,李锐.不同尺度下影响水土流失地形因子指标的分析与选取.西北农林科技大学学报(自然科学版),2004,32(06):5~6.
    58.郭廷辅,段巧甫.水土保持径流调控理论与实践.中国水利水电出版社,2004:21~22.
    59.郑粉莉,杨勤科,王占礼.水蚀预报模型研究.水土保持研究,2004,11(4):14~15.
    60.张光辉.土壤水蚀预报模型研究进展.地理研究,2001,20(3):278~279.
    61.刘绪军,景国臣,齐恒玉.克拜黑土区沟壑冻融侵蚀主要形态特征初探.见:杨海军,沈波.东北黑土区研究与治理.长春:吉林科学技术出版社,2005,7~9.
    62.沈昌蒲,龚振平,温锦涛.横坡垄与顺坡垄的水土流失对比研究.水土保持通报,2005,25(4):49~50.
    63.韩富伟,张柏,宋开山等.黑龙江省低山丘陵区水土保持措施减蚀效应研究.东北农业大学学报,2008,39(2):182~183.
    64. Wu Yongqiu, Zheng Qiuhong, Zhang Yongguang, etc. Development of gullies and sediment production in the black soil region of northeastern China, Geomorphology 2008, 101(4):683-691.
    65. Daba S, Rieger W, Strauss P. Assessment of gully erosion in eastern Ethiopia using photogrammetric techniques.Catena 2003,50(4):273~291.
    66. Horton, R.E. Erosional development of streams and their drainagebasins; hydrophysical approach to quantitative morphology. Geological Society of America 1945,56 : 275~370.
    67. Schumm, S.A. Evolution of drainage systems and slopes in badlands at Perth2Amboy. New Jersey Bulletin Geological Society America 1956, 67: 597~646.
    68. Schumm, S.A. Hadley, R.F. Arroyos and the semiarid cycle of erosion. Geological Society of America 1957 , 255 : 164~174.
    69. Poesen, J., Nachtergaele, J., Verstraeten, G. Valentin, C., Gully erosion and environmental change: importance and research needs. Catena 2003,50: 91~133.
    70. Oostwoud Wijdenes, D.J., Bryan, R. Gully-head erosion processes on a semi-arid valley floor in Kenya: a case study into temporal variation and sediment budgeting. Earth Surface Processes and Landforms 2001, 26: 911~933.
    71. Vandekerckhove, L., Poesen, J., Govers, G. Medium-term gully headcut retreat rates in Southeast Spain determined from aerial photographs and ground measurements. Catena 2003, 50:329~352.
    72. Poesen, J., Vandaele, K., van Wesemael, B. Contribution of gully erosion to sediment production on cultivated lands and rangelands. AHS Publ 1996, 236: 251~266.
    73. Wallbrink, P.J., Murray, A.S., Olley, J.M., Olive, L.J.Determining sources and transit times of suspended sediment in the Murrumbidgee River, New SouthWales, Australia, using fallout 137Cs and 210Pb. Water Resources Research 1998, 34: 879~887.
    74. Eric Roose, Rachid Chebbani, Lakhdar Bourougaa. Gully erosion in Algeria. Typology, controlling factors and rehabilitation. Secheresse 2000, 11(4): 317~326.
    75. Daisuke Higaki, Kishor Kumar Karki, Chandra Sekhar Gautam. Soil erosion control measures on degraded sloping lands: A case study in Midlands of Nepal. Aquatic Ecosystem Health & Management 2005, 8(3): 243~249.
    76. Marzolff. I, Ries, JB. . Gully erosion monitoring in semi-arid landscapes. Zeitschrift fur Geomorphologie 2007, 51(4): 405~425.
    77. Sharpley A, Smith SJ, Zollweg JA, Coleman GA. Gully treatment and water quality in the Southern Plains.. Journal of Soil and Water Conservation 1996,51(6): 498~503.
    78. Rana RS. . Evaluation of engineering and vegetative measures for gully control in Kandi region of Himachal Pradesh. Indian Journal of Soil Conservation 1998, 26(3): 219~225.
    79. Taffa Tulu. . Optimum check dam spacing for gully stabilization. International journal of tropical agriculture 1999, 17 (1): 69~75.
    80. Marks D Dozier J. Automated Basion delineation from digital elevation data. Geoprocesing 1994, 2:299~311.
    81. J.A. Martinez-Casasnovas, M.C. Ramos, J. . Poesen. Assessment of sidewall erosion in largegullies using multi-temporal DEMs and logistic regression analysis. Geomorphology 2004, 58 (1/4): 305~321.
    82. Meyer A. Prediction of existing gully erosion in vineyard parcels of the NE Spain: a logistic modelling approach. Soil & Tillage Research 1999, 50(3~4): 319~331.
    83. Capra. A, Mazzara. LM, Scicolone.B. Application of the EGEM model to predict ephemeral gully erosion in Sicily, Italy. Catena 2005, 59(2): 133~146.
    84. M.J. Kirkby; L.J. Bull. Some factors controlling gully growth in fine-grained sediments: a model applied in southeast Spain. Catena 2000, 40(2): 127~146.
    85. Brice,J.C.Erosion and deposition in the loess mantled Great Plains, Medicine Creek Drainage Basin, Nebraska. U.S. Geological Survey Professional Paper, 1966, 352:255~339.
    86. Patton,P.C.Gully erosion in the semi-arid West.M.Sc.Thesis.Fort Collins. Colorado State University, 1973:129.
    87. Patton, P. C., Schumm, S. A., Gully erosion , Northwestern Colorado: a threshold phenomenon.Geology 1975, 3:83~90.
    88. Vandaele K., Poesen J., Govers G., van Wesemael, B. Geomorphic threshold conditions for ephemeral gully incision. Geomorphology 1996, 16 (2): 161~173.
    89. Nachtergaele J., Poesen J., Steegen A., Takken I., Beuselinck L., Vandekerckove L., Govers G. . The value of a physically based model versus an empirical approach in the prediction of ephemeral gully erosion for loess-derived soils. Geomorphology 2001, 40: 237~252.
    90. Vandekerckhove L, Poesen J, Govers G. . Medium-term gully headuct retreat rates in Southeast Spain determined from aerial photographs and ground measurement. Catena 2003, 50: 329~352.
    91. Vandekerckhove L., Poesen J., Oostwoud Wijdenes D., Gyssels G. Short-term bank gully retreat rates in Mediterranean Environments. Catena 2001, 44: 133~161.
    92. Hudson N.Soil conservation.Iowa State University Press.1995, 165.
    93. Poesen, J.Gully topography and gully control measures in the European loess belt. In Wicherek,S. (ed.),Farmland erosion in temperate plains environment and hills. Elsevier, Amsterdam.1993:211~39.
    94. Foster G R.Understanding ephemeral gully erosion.In:Committee on Conservation Needs and Opportunities. Soil Conservation (Ed. ). Assessing the National Resources Inventory.Board on Agriculture.National Research Council.W ashington.DC:National Academy Press, 1986.90~125.
    95. George,R.FOSTER1,Modeling ephemeral gully erosion for conservation planning.international journal of sediment research 2005,20(3):157~175.
    96. Goodell B C. A reappraisal of precipitation interception by plants and attendant water loss. Soil.Water. Conservation 1963, 18:231~234.
    97. Nicolson J A, Thorud D B, Sucoff E I. The interception-transpiration relationship of Whit spruce and White pine. Soil. Water. Conservation 1968, 23: 181~184.
    98. Fritschen L J, Paul D. Dew: an addition to the hydrologic balance of Douglas fir. Water Resources Research 1973, 9(4):891~894.
    99. Poesen J, Nachtergaele J, Verstraeten G. Gully erosion and environmental change: importance and research. Catena 2003,50:91~133.
    100.Poesen, J., Nachtergaele, J., Verstraeten, G., Valentin, C., 2003. Gully erosion and environmental change: importance and research needs. Catena 50, 91~133.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700