用户名: 密码: 验证码:
循环流化床内稠密气固两相流动的DEM-LES模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
气固两相流动是工业生产和口常生活中常见的流动形式。本文以稠密气固两相流动为研究对象,采用欧拉-拉格朗日框架对气固流动进行描述、以离散元耦合大涡模拟方法(DEM-LES)为主要研究手段,在对数值方法进行验证、对相关参数进行敏感性分析的基础上,针对概念上极为相似的两种气固流态化装置——内循环床(ICFB)和循环流化床(CFB)内若干问题进行了较为系统的研究。研究内容主要包含四个部分。
     第一部分是气固物性、操作和设计参数对内循环床运行表现的影响。全面地研究了相关气固物性(颗粒的碰撞恢复系数、摩擦系数、杨氏模量、粒径、密度及流体的压力等)、操作条件(各腔室流化风速)和设计参数(隔板倾角、热交换腔侧墙倾角、隔板底部通道高度等)对表征装置运行表现的颗粒循环通量和气流短路通量的影响。指出系统的最小流化风速是确定各腔室中颗粒流化状态和预测装置运行表现最为重要的参数,并为装置的运行参数选择、结构的优化设计和相关过程的强化提供了一些重要信息。
     第二部分是内循环床颗粒混合机理及其影响因素分析。分析了内循环床内颗粒混合发展过程,阐述了混合发展的各个阶段及不同混合机理在时问和空间上的作用范围。此外,对相关设计、运行及颗粒物性参数对装置内颗粒混合过程的影响进行了量化分析。并在相同流化风量下对比了内循环床和对应的均匀配风鼓泡床内颗粒混合过程发展,发现内循环床在颗粒混合方而有一定优势。
     第三部分是内循环床腔室内置埋管的研究:对加入埋管后装置内颗粒流动、混合过程进行了定量分析。并对比了颗粒循环时间、颗粒在各腔室内的停留时间随布置埋管的数量和位置不同而产生的变化。此外,还对各腔室中埋管磨损的圆周分布规律进行了分析,为工程实践提供了一些参考。
     第四部分是三维循环流化床气固流动细节及提升管截面形状对装置内气固流动影响的研究。尝试用数值模拟方法揭示循环流化床内气固流动细了,对时均固含率、时均气固速度及其通量、时均压力、颗粒速度脉动强度等重要物理量在装置内的分布按照从整体到局部的规律系统地进行阐述,并重点对方形和圆形截面提升管的循环流化床内气固流动特征的异同点进行对比。此外,还计算了提升管中颗粒扩散运动及相关受力、转动信息,并分析了不同操作风速下颗粒的扩散、受力及转动等产生的变化,讨论了这些信息作为装置内流型转变判据的可能性。
Gas-solid two-phase flow is commonly encountered in both industrial manufacture and daily life. This thesis mainly focuses on the dense gas-solid two-phase flow, describing the flow dynamics based on the Eulerian-Lagrange framework and using discrete element method coupled large eddy simulation (DEM-LES) as investigation tool. Based on the proper procedure of numerical validation and parameter sensitivity analysis, the DEM-LES is used to study some basic issues in the conceptually-similar gas-solid fluidization system—internally circulating fluidized bed (ICFB) and circulating fluidized bed (CFB). This thesis is mainly constituted by the following four parts.
     The first part is the influence of gas-solid properties on the operation of ICFB. Systematic study on the relevant gas-solid properties (particle restitution coefficient, friction coefficient, Young modulus, diameter, density and gas pressure), operational condition (aeration to the chambers) and design parameters (gap height beneth the baffle, incline angle of the baffle and HEC side wall, and so on) are conducted to investigate the solid circulating flux (SCF) and gas bypassing flux (GBF), which are the typical representative of operation state of the facility. The results obtained indicate that the minimum fluidization velocity (Umf) is a key parameter to predict the fluidization state of each chamber and the performance of the bed. Meanwhile, these numerical experiments provide some valuable information for the determination of appropriate operation condition, optimization of design and intensification of relevant process inside the rig.
     The second part is the mixing mechanisms and the influence of different factors on the mixing of ICFB. Progress of solid mixing inside the ICFB is analyzed. Different stages of mixing and the temporal and spatial range of each mixing mechanism are distinguished. Besides, relevant design, operation and solid parameters'influence on the mixing is quantified. Based on the same aeration, process of solid mixing in the ICFB and the corresponding evenly-aerated bubbling fluidized bed is compared, and the ICFB is found to be more advantage on the solid mixing.
     The third part is the study of ICFB equipped with immersed tubes. Solid flow dynamics and solid mixing process inside the ICFB with immersed tubes arc quantitatively analyzed. The solid cycle time between the chambers and solid residence time in each of the chambers are comparatively studied for the influence of different number of immersed tubes and the position where they are located. In addition, the circular distribution of tube erosion is extracted and analyzed, and the obtained rule can provide some reference for the wear-proof of such facilities.
     The last part is the3-D simulation of detailed gas-solid flow dynamics inside a CFB, and the influence of riser cross-section shape on the characteristics of gas-solid flow. A trial to uncover the details of gas-solid flow in the CFB is conducted using numerical method. The distribution of time-averaged solid holdup, pressure, turbulent intensity of solid velocity and gas-solid velocity and its corresponding flux is discussed from whole to local. Emphasis is focused on the comparison of the similarities and differences between the gas-solid flow dynamics of the facilities equipped with square and circular risers. Additional calculation of solid dispersion and its relevant stress and rotation is carried out, and the variation of these parameters under the influence of different fluidization gas velocities is analyzed. Finally, the possibility that whether this information can be used as judgement to the transition of flow pattern is discussed.
引文
[I]Y T. Activities in discrete particle simulation in Japan[J]. Powder TechnologyNeptis Symposium on Fluidization- Present and Future,2000,113(3):278-286.
    [2]Elghobashi S. Particle-laden turbulent flows:direct simulation and closure models[J]. Applied Scientific Research,1991,48(3-4):301-314.
    [3]van der Hoef M A, Ye M, van Sint Annaland M, et al. Multiscale Modeling of Gas-Fluidized Beds[M]. Academic Press,2006.
    [4]Gidaspow D. Multiphase flow and fluidization:Continuum and kinetic theory descriptions [M]. San Diego, CA:Academic Press,1994.
    [5]Zhu H P, Zhou Z Y, Yang R Y, et al. Discrete particle simulation of particulate systems:A review of major applications and findings[J]. Chemical Engineering Science,2008,63(23):5728-5770.
    [6]van der Hoef M A, van Sint Annaland M, Deen N G, et al. Numerical simulation of dense gas-solid fluidized beds:a multiscale modeling strategy[J]. Annual Review of Fluid Mechanics,2008,40:47-70.
    [7]Yutaka T. Multi-scale modeling of dense phase gas-particle flow[J]. Chemical Engineering ScienceFrontier of Chemical Engineering-Multi-scale Bridge between Reductionism and Holism, 2007,62(13):3410-3418.
    [8]van der Hoef M A, van Sint Annaland M, Kuipers J A M. Computational fluid dynamics for dense gas-solid fluidized beds:a multi-scale modeling strategy[J]. China Particuology,2005,3(1-2):69-77.
    [9]Li J, Kwauk M. Exploring complex systems in chemical engineerings—the multi-scale methodology[J]. Chemical Engineering Science 17th International Symposium of Chemical Reaction Engineering (IS CRE 17), 2003,58(3-6):521-535.
    [10]Wang W, Lu B, Zhang N, et al. A review of multiscale CFD for gas-solid CFB modeling[J]. International Journal of Multiphase FlowSpecial Issue:Multiphase Flow Research in China, 2010,36(2):109-118.
    [11]Cundall P A, Strack O D L A discrete numerical model for granular assemblies[J]. Geotechnique, 1979,29(1):331-336.
    [12]Campbell C S, Brennen C E. Computer simulation of granular shear flows[J]. Journal of Fluid Mechanics, 1985,151:167-188.
    [13]Lesieur M, Metais O. New trends in large-eddy simulations of turbulence[J]. Annual Review of Fluid Mechanics,1996,28:45-82.
    [14]Zhou H, Flamant G, Gauthier D, et al. Numerical Simulation of the Turbulent Gas-Particle Flow in a Fluidized Bed by an LES-DPM Model[J]. Chemical Engineering Research and Design,2004,82(7):918-926.
    [15]Murakami S. Overview of turbulence models applied in CWE[J]. Journal of Wind Engineering and Industrial Aerodynamics,1998,74-76(0):1-24.
    [16]Hoomans B P B, Kuipers J A M, Briels W J, et al. Discrete particle simulation of bubble and slug formation in a two-dimensional gas-fluidised bed:A hard-sphere approach[J]. Chemical Engineering Science, 1996,51(1):99-118.
    [17]Tsuji Y, Kawaguchi T, Tanaka T. Discrete particle simulation of two-dimensional fluidized bed[J]. Powder Technology,1993,77(1):79-87.
    [18]Yamamoto Y, Tanaka T, Kajishima T, et al. Large-eddy simulation of turbulent gas-particle flow in a vertical channel:effect of considering inter-particle collisions[J]. Journal Of Fluid Mechanics, 2001,442(0):303-334.
    [19]Zhou H, Flamant G, Gauthier D. DEM-LES of coal combustion in a bubbling fluidized bed. Part I: gas-particle turbulent flow structure[J]. Chemical Engineering Science,2004,59(20):4193-4203.
    [20]Zhou H, Flamant G, Gauthier D. Modelling of the turbulent gas-particle flow structure in a two-dimensional circulating fluidized bed riser[J]. Chemical Engineering Science,2007,62(1-2):269-280.
    [21]He Y, Sint Annaland Van M, Deen N G, et al. Gas-solid two-phase turbulent flow in a circulating fluidized bed riser:an experimental and numerical study:World Congress on Particle Technology 5, WCPT 2006,2006[C].
    [22]Vreman A W. An eddy-viscosity subgrid-scale model for turbulent shear flow:Algebraic theory and applications[J]. Physics of Fluids,2004,16(10):3670-3681.
    [23]He Y, Deen N G, Annaland M V S, et al. Gas-Solid Turbulent Flow in a Circulating Fluidized Bed Riser: Numerical Study of Binary Particle Systems[J]. Industrial & Engineering Chemistry ResearchInd. Eng. Chem. Res.Industrial & Engineering Chemistry Research,2009,48(17):8098-8108.
    [24]Smagorinsky J. General circulation experiments with the primitive equations[J]. Monthly Weather Review,1963,91(3):99-164.
    [25]Gui N, Fan J R, Luo K. DEM-LES study of 3-D bubbling fluidized bed with immersed tubes[J]. Chemical Engineering Science,2008,63(14):3654-3663.
    [26]Gui N, Fan J R, Cen K F. Effect of local disturbance on the particle-tube collision in bubbling fluidized bed[J]. Chemical Engineering Science,2009,64(15):3486-3497.
    [27]Gui N, Fan J R. Numerical study of particle mixing in bubbling fluidized beds based on fractal and entropy analysis[J]. Chemical Engineering Science,2011,66(12):2788-2797.
    [28]Gui N, Fan J R. Numerical simulation of pulsed fluidized bed with immersed tubes using DEM-LES coupling method[J]. Chemical Engineering Science,2009,64(11):2590-2598.
    [29]赵明举,曹青,宋旗跃,等.不均匀配风的内循环流化床特性研究[J].煤炭转化,2002,25(4):50-53.
    [30]Kuramoto M, Furusawa T, Kunii D. Development of a new system for circulating fluidized particles within a single vessel[J]. Powder Technology,1985,44(1):77-84.
    [31]Kuramoto M, Kunii D, Furusawa T. Flow of dense fluidized particles through an opening in a circulation system[J]. Powder Technology,1986,47(2):141-149.
    [32]LaNauze R D. A circulating fluidized bed[J]. Powder Technol,1976,15:117-127.
    [33]Milne B J, Berruti F, Behie L A, et al. The internally circulating fluidized bed (ICFB):a novel solution to gas bypassing in spouted beds[J]. The Canadian Journal of Chemical Engineering,1992,70(5):910-915.
    [34]Sutkar V S, Deen N G, Kuipers J A M. Spout fluidized beds:Recent advances in experimental and numerical studies[J]. Chemical Engineering Science,2013,86(0):124-136.
    [35]Merry J M D, Davidson J F. "Gulf stream" circulation in shallow fluidized bed[J]. Trans. Inst. Chem. Eng,1973,51(4):361-386.
    [36]Garncarek Z, Przybylski L, Botterill J S M, et al. A measure of the degree of inhomogeneity in a distribution and its application in characterising the particle circulation in a fluidized bed[J]. Powder Technology,1994,80(3):221-225.
    [37]魏小林,田文栋,盛宏至.内循环流化床研究进展及其在废弃物焚烧技术中的应用[J].电站系统工程,1999(05):3-8.
    [38]焦永刚.内循环流化床冷渣器内颗粒混合特性试验研究[D].东南大学热能工程,2009.
    [39]Wei X, Sheng H, Tian W. Characterizing particle dispersion by image analysis in ICFB[J]. International Journal of Heat and Mass Transfer,2006,49(19-20):3338-3342.
    [40]Mukadi L, Guy C, Legros R. Parameter analysis and scale-up considerations for thermal treatment of industrial waste in an internally circulating fluidized bed reactor[J]. Chemical Engineering Science, 1999,54(15-16):3071-3078.
    [41]Mukadi L, Guy C, Legros R. Modeling of an internally circulating fluidized bed reactor for thermal treatment of industrial solid wastes[J]. The Canadian Journal of Chemical Engineering,1999,77(2):420-431.
    [42]Milne B J, Behie L A, Berruti F. Recycling of waste plastics by ultrapyrolysis using an internally circulating fluidized bed reactor[J]. Journal of Analytical and Applied Pyrolysis,1999,51(1-2):157-166.
    [43]Wei X, Wang Y, Liu D, et al. Release of Sulfur and Chlorine during Cofiring RDF and Coal in an Internally Circulating Fluidized Bed[J]. Energy & Fuels,2009,23(3):1390-1397.
    [44]Lovett S, Berruti F, Behie L A. Ultrapyrolytic Upgrading of Plastic Wastes and Plastics/Heavy Oil Mixtures to Valuable Light Gas Products[J]. Industrial & Engineering Chemistry Research, 1997,36(11):4436-4444.
    [45]Xie K C. Cofiring of coal and refuse-derived fuel in a new type of internally circulating fluidized bed system[J]. Energy Sources,2003,25(11):1073-1081.
    [46]Lee J M, Kim Y J, Kim S D. Catalytic coal gasification in an internally circulating fluidized bed reactor with draft tube[J]. Applied Thermal Engineering,1998,18(11):1013-1024.
    [47]Kim Y J, Lee J M, Kim S D. Coal gasification characteristics in an internally circulating fluidized bed with draught tube[J]. Fuel,1997,76(11):1067-1073.
    [48]Zhang H Y, Xiao R, Wang D H, et al. Hydrodynamics of a novel biomass autothermal fast pyrolysis reactor:Solid circulation rate and gas bypassing[J]. Chemical Engineering Journal,2012,181-182(0):685-693.
    [49]Cao J, Xiao X, Zhang S, et al. Preparation and characterization of bio-oils from internally circulating fluidized-bed pyrolyses of municipal, livestock, and wood waste[J]. Bioresource Technology, 2011,102(2):2009-2015.
    [50]Xiao X, Le D D, Morishita K, et al. Multi-stage biomass gasification in Internally Circulating Fluidized-bed Gasifier (ICFG):Test operation of animal-waste-derived biomass and parametric investigation at low temperature[J]. Fuel Processing Technology,2010,91(8):895-902.
    [51]Zhang H Y, Xiao R, Pan Q W, et al. Hydrodynamics of a novel biomass autothermal fast pyrolysisr:flow pattern and pressure drop[J]. Chemical Engineering & Technology,2009,32(1):27-37.
    [52]Zhou Z, Ma L, Yin X, et al. Study on biomass circulation and gasification performance in a clapboard-type internal circulating fluidized bed gasifier[J]. Biotechnology Advances,2009,27(5):612-615.
    [53]Kehlenbeck R, Yates J G, Di Felice R, et al. Particle Residence Time and Particle Mixing in a Scaled Internal Circulating Fluidized Bed[J]. Industrial & Engineering Chemistry Research,2002,41(11):2637-2645.
    [54]Lee W, Cho Y, Kim J, et al. Coal combustion characteristics in a fluidized bed combustor with a draft tube[J]. Korean Journal of Chemical Engineering,1992,9(4):206-211.
    [55]Chu C Y, Hwang S J. Flue gas desulfurization in an internally circulating fluidized bed reactor[J]. Powder Technology,2005,154(1):14-23.
    [56]Chu C Y, Hwang S J. Attrition and sulfation of calcium sorbent and solids circulation rate in an internally circulating fluidized bed[J]. Powder Technology,2002,127(3):185-195.
    [57]Fang M, Yu C, Shi Z, et al. Experimental research on solid circulation in a twin fluidized bed system[J]. Chemical Engineering Journal,2003,94(3):171-178.
    [58]Gokon N, Mataga T, Kondo N, et al. Thermochemical two-step water splitting by internally circulating fluidized bed of NiFe2O4 particles:Successive reaction of thermal-reduction and water-decomposition steps[J]. International Journal of Hydrogen Energy,2011,36(8):4757-4767.
    [59]Xie D, Lim C J, Grace J R, et al. Gas and particle circulation in an internally circulating fluidized bed membrane reactor cold model[J]. Chemical Engineering Science,2009,64(11):2599-2606.
    [60]Hirota T, Ohshita T, Kosugi S, et al. Characteristics of the internally circulating fluidized bed boiler [EB/OL]. http://www.seas.columbia.edu/earth/wtert/sofos/nawtec/1990-National-Waste-Processing-Conference/1990-N ational-Waste-Processing-Conference-36.pdf.
    [61]王儿宏,罗薇楠,姚杰,等.三相内循环流化床光催化反应器及其光辐射传递规律[J].环境科学,2005,26(1):112-116.
    [62]卢刚,郑平,夏凤毅.内循环颗粒污泥床硝化反应器临界曝气强度的研究[J].生物工程学报,2004,20(5):795-799.
    [63]卢刚,郑平.内循环颗粒污泥床硝化反应器流体力学特征研究[J].环境科学学报,2004,24(2):249-254.
    [64]Reichhold A, Hofbauer H. Internally circulating fluidized bed for continuous adsorption and desorption[J]. Chemical Engineering and Processing:Process Intensification,1995,34(6):521-527.
    [65]Yang W C, Keairns D L. Design of recirculating fluidized beds for commercial applications [J]. A.I.Ch.E. Symp,1978,5(74):218-228.
    [66]Fox D, Molodtsof Y, Large J F. Control mechanisms of fluidized solids circulation between adjacent vessels[J]. AIChE Journal,1989,35(12):1933-1941.
    [67]Song B H, Kim Y T, Kim S D. Circulation of solids and gas bypassing in an internally circulating fluidized bed with a draft tube[J]. Chemical Engineering Journal,1997,68(2-3):115-122.
    [68]Ahn H S, Lee W J, Kim S D, et al. Solid circulation and gas bypassing in an internally circulating fluidized bed with an orifice-type draft Tube[J]. Korean Journal of Chemical Engineering, 1999,16(5):618-623.
    [69]Kim S D, Kim Y H, Roh S A, et al. Solid circulation characteristics in an internally circulating fluidized bed with orifice-type draft tube[J]. Korean J. Chem. Eng.,2002,19(5):911-916.
    [70]Shih H H, Chu C Y, Hwang S J. Solids circulation and attrition rates and gas bypassing in an internally circulating fluidized bed[J]. Industrial & Engineering Chemistry Research,2003,42(23):5915-5923.
    [71]Jeon J H, Kim S D, Kim S J, et al. Solid circulation and gas bypassing characteristics in a square internally circulating fluidized bed with draft tube[J]. Chemical Engineering and Processing:Process Intensification,2008,47(12):2351-2360.
    [72]Kim Y T, Song B H, Kim S D. Entrainment of solids in an internally circulating fluidized bed with draft tube[J]. Chemical Engineering Journal,1997,66(2):105-110.
    [73]黄立成,马隆龙,周肇秋,等.隔板式内循环流化床的流动特性研究[J].太阳能学报,2008,29(7):900-904.
    [74]Kronberger B, Johansson E, Loffler G, et al. A Two-Compartment Fluidized Bed Reactor for CO2 Capture by Chemical-Looping Combustion[J]. Chemical Engineering & Technology,2004,27(12):1318-1326.
    [75]Choi Y T, Kim S D. Bubble characteristics in an internally circulating fluidized bed[J]. Journal of Chemical Engineering of JAPAN,1991,24(2):195-202.
    [76]Werther J. Measurement techniques in fluidized beds[J]. Powder Technology,1999,102(1):15-36.
    [77]Marschall K J, Mleczko L. CFD modeling of an internally circulating fluidized-bed reactor[J]. Chemical Engineering Science,1999,54(13-14):2085-2093.
    [78]Mukadi L, Guy C, Legros R. Prediction of gas emissions in an internally circulating fluidized bed combustor for treatment of industrial solid wastes[J]. Fuel,2000,79(9):1125-1136.
    [79]Kim Y J, Lee J M, Kim S D. Modeling of coal gasification in an internally circulating fluidized bed reactor with draught tube[J]. Fuel,2000,79(1):69-77.
    [80]Bin Y, Zhang M C, Dou B L, et al. Discrete particle simulation and visualized research of the gas-solid flow in an internally circulating fluidized bed[J]. Industrial & Engineering Chemistry Research, 2002,42(1):214-221.
    [81]Tian F G, Zhang M C, Fan H J, et al. Numerical study on microscopic mixing characteristics in fluidized beds via DEM[J]. Fuel Processing Technology,2007,88(2):187-198.
    [82]Snieders F F, Hoffmann A C, Cheesman D, et al. The dynamics of large particles in a four-compartment interconnected fluidized bed[J]. Powder Technology,1999,101 (3):229-239.
    [83]Abellon R D, Kolar Z I, den Hollander W, et al. A single radiotracer particle method for the determination of solids circulation rate in interconnected fluidized beds[J]. Powder Technology, 1997,92(1):53-60.
    [84]徐旭,池涌,李斌,等.内旋流流化床床内颗粒运动特性的试验研究[J].中国电机工程学报,2001,21(11):9-13.
    [85]Ashton M D, Valentin F H H. The mixing powders and particles in industrial mixers[J]. Transactions of the Institute of Chemical Engineers,1966,a(44):166-188.
    [86]Bertrand F, Leclaire L A, Levecque G. DEM-based models for the mixing of granular materials[J]. Chemical Engineering Science 5th International Symposium on Mixing in Industrial Processes (ISMIP5), 2005,60(8-9):2517-2531.
    [87]Ottino J M, Khakhar D V. Mixing and segregation of granular materials[J]. Annual Review of Fluid Mechanics,2000,32 (1):55-91.
    [88]Miiller C R, Holland D J, Sederman A J, et al. Magnetic Resonance Imaging of fluidized beds[J]. Powder Technology,2008,183(l):53-62.
    [89]Ommen J R V, Mudde R F. Measuring the Gas-Solids Distribution in Fluidized Beds--A Review[J]. International Journal of Chemical Reactor Engineering,2008,1(6).
    [90]Feng Y, Swenser-Smith T, Witt P J, et al. CFD modeling of gas-solid flow in an internally circulating fluidized bed[J]. Powder Technology,2012,219(0):78-85.
    [91]Mabrouk R, Chaouki J, Guy C. Exit effect on hydrodynamics of the internal circulating fluidized bed riser[J]. Powder Technology,2008,182(3):406-414.
    [92]金涌.流态化工程原理[M].清华大学出版社,2001.
    [93]Berruti F, Pugsley T S, Godfroy L, et al. Hydrodynamics of circulating fluidized bed risers:A review[J]. The Canadian Journal of Chemical Engineering,1995,73(5):579-602.
    [94]Van de Velden M, Baeyens J, Smolders K. Solids mixing in the riser of a circulating fluidized bed[J]. Chemical Engineering Science,2007,62(8):2139-2153.
    [95]Zhu J X, Bi H T. Distinctions between low density and high density circulating fluidized beds[J]. The Canadian Journal of Chemical Engineering,1995,73(5):644-649.
    [96]Issangya A S, Grace J R, Bai D, et al. Further measurements of flow dynamics in a high-density circulating fluidized bed riser[J]. Powder Technology,2000,111(1-2):104-113.
    [97]Werther J. Fluid mechanics of large-scale CFB units[M]//AVIDAN A A. Circulating fluidized bed technology IV. New York:AIChE,1994:1-16.
    [98]Brereton C M H, Grace J R. Microstructural aspects of the behaviour of circulating fluidized beds[J]. Chemical Engineering Science,1993,48(14):2565-2572.
    [99]Yerushalmi J, Cankurt N T. Further studies of the regimes of fluidization[J]. Powder Technology, 1979,24(2):187-205.
    [100]Yerushalmi J, Turner D H, Squires A M. The Fast Fluidized Bed[J]. Industrial & Engineering Chemistry Process Design and Development,1976,15(1):47-53.
    [101]Bi H T, Grace J R. Flow regime diagrams for gas-solid fluidization and upward transport[J]. International Journal of Multiphase Flow,1995,21(6):1229-1236.
    [102]Bi H T, Grace J R, Zhu J X. regime transitions affecting gas-solids suspensions and fluidized bed[J]. Chemical Engineering Research & Design,1995,73:154-161.
    [103]Bai D, Jin Y, Yu Z. Flow regimes in circulating fluidized beds[J]. Chemical Engineering & Technology, 1993,16(5):307-313.
    [104]Bai D, Kato K. generalized correlations of solids holdups at dense and dilute regimes of circulating fluidized bed:7th SCEJ symp. on CFB, Toyko, Japan[C].
    [105]Bai D, Shibuya E, Nakagawa N, et al. Characterization of gas fluidization regimes using pressure fluctuations[J]. Powder Technology,1996,87(2):105-111.
    [106]Bi H T, Ellis N, Abba I A, et al. A state-of-the-art review of gas-solid turbulent fluidization[J]. Chemical Engineering Science,2000,55(21):4789-4825.
    [107]白丁荣,金涌,俞芷青.循环流态化(Ⅰ)[J].化学反应工程与工艺,1991(02):202-213.
    [108]李静海.两相流多尺度作用模型和能量最小方法[D].北京:中国科学院化工冶金研究所,1987.
    [109]Brereton C M H, Stromeberg L. some aspects of the fluid behaviour of fast fluidized beds[M]//BASU P. Circulating Fluidized Bed Technology. Toronto:Pergamon Press,1986:133-143.
    [110]白丁荣,金涌,俞芷青.循环流化床内颗粒的加速作用及气固两相间的动量交换[J].化学反应工程与工艺,1991(03):260-270.
    [111]白丁荣,金涌,俞芷青.快速流化床内颗粒加速运动段长度[J].化学反应工程与工艺,1990(03):34-39.
    [112]Bai D, Jin Y, Yu Z. Acceleration of particles and momentum exchange between gas and solids in fast fluidized beds[M]//KWAUK M, HASATANI M. Fluidization 91-Science and Technology. Beijing:Science Press,1991:46-55.
    [113]Louge M, Chang H. Pressure and voidage gradients in vertical gas-solid risers[J]. Powder Technology, 1990,60(2):197-201.
    [114]Bai D R, Jin Y, Yu Z Q, et al. The axial distribution of the cross-sectionally averaged voidage in fast fluidized beds[J]. Powder Technology,1992,71(1):51-58.
    [115]Li Y, Kwauk M. The dynamics of fast fluidiztion[M]//GRACE J R, MATSEN J M. Fluidization. New York: Plenum Press,1980:537-544.
    [116]Bai D R, Jin Y, Yu Z Q, et al. The axial distribution of the cross-sectionally averaged voidage in fast fluidized beds[J]. Powder Technology,1992,71(1):51-58.
    [117]J L, Tung Y, Kwauk M. Axial voidage profile of fluidized beds in different operation regions[M]//BASU P, LARGE J F. Circulating Fluidized Bed Technology Ⅱ. Oxford:Pergamon Press,1988:193-203.
    [118]Issangya A S, Bai D, Bi II T, et al. Axial voidage profiles in a high density circulating fluidized bed riser[M]//KWAUK M, LI J. Circulating Fluidized Bed V. Beijing:Science Press,1997:60-65.
    [119]郭慕孙,李洪钟.流态化手册[M].北京:化学工业出版社,2007.
    [120]Bi H, Zhu J. Static instability analysis of circulating fluidized beds and concept of high-density risers[J]. AIChE Journal,1993,39(8):1272-1280.
    [121]Bai D R, Jin Y, Yu Z Q, et al. The axial distribution of the cross-sectionally averaged voidage in fast fluidized beds[J]. Powder Technology,1992,71(1):51-58.
    [122]Zhang W, Tung Y, Johnsson F. Radial voidage profiles in fast fluidized beds of different diameters[J]. Chemical Engineering Science,1991,46(12):3045-3052.
    [123]Lin Q, Wei F, Jin Y. Transient density signal analysis and two-phase micro-structure flow in gas-solids fluidization[J]. Chemical Engineering Science,2001,56(6):2179-2189.
    [124]Parssinen J H, Zhu J X. Particle velocity and flow development in a long and high-flux circulating fluidized bed riser[J]. Chemical Engineering Science,2001,56(18):5295-5303.
    [125]Huber N, Sommerfeld M. Characterization of the cross-sectional particle concentration distribution in pneumatic conveying systems[J]. Powder Technology,1994,79(3):191-210.
    [126]Zhou J, Grace J R, Qin S, et al. Voidage profiles in a circulating fluidized bed of square cross-section[J]. Chemical Engineering Science,1994,49(19):3217-3226.
    [127]Malcus S, Chaplin G, Pugsley T. The hydrodynamics of the high-density bottom zone in a CFB riser analyzed by means of electrical capacitance tomography (ECT)[J]. Chemical Engineering Science, 2000,55(19):4129-4138.
    [128]Kantzas A, Kalogerakis N. Monitoring the fluidization characteristics of polyolefin resins using X-ray Computer Assisted Tomography scanning[J]. Chemical Engineering Science,1996,51(10):1979-1990.
    [129]Xu G, Sun G, Gao S. Estimating radial voidage profiles for all fluidization regimes in circulating fluidized bed risers[J]. Powder Technology,2004,139(2):186-192.
    [130]Wei F, Lin H, Cheng Y, et al. Profiles of particle velocity and solids fraction in a high-density riser[J]. Powder Technology,1998,100(2-3):183-189.
    [131]Chen C, Chen C. Experimental study of bed-to-wall heat transfer in a circulating fluidized bed[J]. Chemical Engineering Science,1992,47(5):1017-1025.
    [132]Rhodes M J, Wang X S, Cheng H, et al. Similar profiles of solid flux in circulating fluidized-bed risers[J]. Chemical Engineering Science,1992,47(7):1635-1643.
    [133]Rhodes M, Zhou S, Benkreira H. Flow of dilute gas-particle suspensions[J]. AIChE Journal, 1992,38(12):1913-1915.
    [134]Xu G, Sun G, Nomura K, et al. Two distinctive variational regions of radial particle concentration profiles in circulating fluidized bed risers[J]. Powder Technology,1999,101(1):91-100.
    [135]Moran J C, Glicksman L R. Mean and fluctuating gas phase velocities inside a circulating fluidized bed[J]. Chemical Engineering Science,2003,58(9):1867-1878.
    [136]Yutaka T, Yoshinobu M, Hiroshi S. LDV measurements of an air-solid two-phase flow in a vertical pipe[J]. Journal Of Fluid Mechanics,1984,139:417-434.
    [137]Crowe C T, Sommerfeld M, Tsuji Y. Multiphase Flows with Droplets and Particles[M]. CRC Press, 1998.
    [138]张斌.快速流化床反应器线流流动模型[D].北京:中国科学院化上冶金研究所,1990.
    [139]Yang Y L, Jin Y, Yu Z Q, et al. Investigation on slip velocity distributions in the riser of dilute circulating fluidized bed[J]. Powder Technology,1992,73(1):67-73.
    [140]Lodes A, Mierka O. The velocity field in a vertical gas-solid suspension flow[J]. International Journal of Multiphase Flow,1990,16(2):201-209.
    [141]Werther J, Hage B, Rudnick C. A comparison of laser Doppler and single-fibre reflection probes for the measurement of the velocity of solids in a gas-solid circulating fluidized bed[J]. Chemical Engineering and Processing:Process Intensification,1996,35(5):381-391.
    [142]Bhusarapu S, Al-Dahhan M H, Dudukovic M P, et al. Experimental Study of the Solids Velocity Field in Gas-Solid Risers[J]. Industrial & Engineering Chemistry Research,2005,44(25):9739-9749.
    [143]Miller A, Gidaspow D. Dense, vertical gas-solid flow in a pipe[J]. AIChE Journal, 1992,38(11):1801-1815.
    [144]Bi H T, Zhou J, Qin S Z, et al. Annular wall layer thickness in circulating fluidized bed risers[J]. The Canadian Journal of Chemical Engineering,1996,74(5):811-814.
    [145]Ibsen C H, Solberg T, Hjertager B H, et al. Laser Doppler anemometry measurements in a circulating fluidized bed of metal particles[J]. Experimental Thermal and Fluid Science,2002,26(6-7):851-859.
    [146]Pantzali M N, Lozano Bayon N, Heynderickx G J, et al. Three-component solids velocity measurements in the middle section of a riser[J]. Chemical Engineering Science,2013,101(0):412-423.
    [147]俞芷青,白丁荣,蒋大洲,等.动能探头测定循环流化床中颗粒流动特性[J].石油化工1994(08):508-514.
    [148]Teplitskiy Y S, Ryabov G A. Scaling in a circulating fluidized bed:particle concentration and heat transfer coefficient in a transport zone[J]. International Journal of Heat and Mass Transfer, 1999,42(21):4065-4075.
    [149]Rhodes M J. Modelling the flow structure of upward-flowing gas-solids suspensions[J]. Powder Technology,1990,60(1):27-38.
    [150]Herb B, Dou S, Tuzla K, et al. Solid mass fluxes in circulating fluidized beds[J]. Powder Technology, 1992,70(3):197-205.
    [151]Fei W, Fangbin L, Yong J, et al. Mass flux profiles in a high density circulating fluidized bed[J]. Powder Technology,1997,91(3):189-195.
    [152]Rhodes M J, Laussmann P. A simple non-isokinetic sampling probe for dense suspensions[J]. Powder Technology,1992,70(2):141-151.
    [153]Rhodes M J, Zhou S, Hirama T, et al. Effects of operating conditions on longitudinal solids mixing in a circulating fluidized bed riser[J]. AIChE Journal,1991,37(10):1450-1458.
    [154]Wang X S, Rhodes M J, Gibbs B M. Influence of temperature on solids flux distribution in a CFB riser[J]. Chemical Engineering Science,1995,50(15):2441-2447.
    [155]Salvaterra A, Geldart D, Ocone R. Solid Flux in a Circulating Fluidized Bed Riser[J]. Chemical Engineering Research and Design,2005,83(1):24-29.
    [156]Mastellone L M, Umberto A. The effect of particle size and density on solids distribution along the riser of a circulating fluidized bed[J]. Chemical Engineering Science, 1999,54(22):5383-5391.
    [157]Chesonis D C, Klinzing G E, Shah Y T, et al. Hydrodynamics and mixing of solids in a recirculating fluidized bed[J]. Industrial & Engineering Chemistry Research,1990,29(9):1785-1792.
    [158]Ambler P A, Milne B J, Berruti F, et al. Residence time distribution of solids in a circulating fluidized bed:Experimental and modelling studies[J]. Chemical Engineering Science,1990,45(8):2179-2186.
    [159]Wei F, Zhu J. Effect of flow direction on axial solid dispersion in gas—solids cocurrent upflow and downflow systems[J]. The Chemical Engineering Journal and the Biochemical Engineering Journal, 1996,64(3):345-352.
    [160]Wang X S, Rhodes M J. Determination of particle residence time at the walls of gas fluidized beds by discrete element method simulation[J]. Chemical Engineering Science,2003,58(2):387-395.
    [161]Smolders K, Baeyens J. Overall solids movement and solids residence time distribution in a CFB-riser[J]. Chemical Engineering Science,2000,55(19):4101-4116.
    [162]Kojima T, Ishihara K, Guilin Y, et al. Measurement of Solids Behaviour in a Fast Fluidized Bed[J]. JOURNAL OF CHEMICAL ENGINEERING OF JAPAN,1989,22(4):341-346.
    [163]魏飞,陈卫,金涌,等.循环流化床提升管中固体颗粒停留时间的分布[J].高校化学工程学报,1996(03):49-55.
    [164]Bhusarapu S, Al-Dahhan M, Dudukovic M P. Quantification of solids flow in a gas-solid riser:single radioactive particle tracking[J]. Chemical Engineering Science,2004,59(22-23):5381-5386.
    [165]Harris A T, Davidson J F, Thorpe R B. Particle residence time distributions in circulating fluidised beds[J]. Chemical Engineering Science,2003,58(11):2181-2202.
    [166]白丁荣,金涌,俞芷青.循环流态化——(Ⅳ)气、固混合[J].化学反应工程与工艺,1992(01):116-125.
    [167]Bai D, Yi J, Jin Y, et al. Residence time distribution of gas and solids in a circulating fluidized bed[M]//POTTER O E, NICKLIN D J. Fluidization VII. New York:Engineering Foundation,1992:195-202.
    [168]Harris A T, Davidson J F, Thorpe R B. The influence of the riser exit on the particle residence time distribution in a circulating fluidised bed riser[J]. Chemical Engineering Science,2003,58(16):3669-3680.
    [169]van Putten I C, van Sint Annaland M, Weickert G. Fluidization behavior in a circulating slugging fluidized bed reactor. Part Ⅰ:Residence time and residence time distribution of polyethylene solids[J]. Chemical Engineering Science,2007,62(9):2522-2534.
    [170]刘会娥,杨艳辉,魏飞,等.内构件对于提升管中颗粒混合行为的影响[J].化学反应工程与工艺,2002(02):109-114.
    [171]Van Zoonen D. Measurements of diffusional phenomena and velocity profiles in a vertical riser, London, 1963[C]. Institute of Chemical Engineers.
    [172]Harris A T, Thorpe R B, Davidson J F. Stochastic modelling of the particle residence time distribution in circulating fluidised bed risers[J]. Chemical Engineering Science,2002,57(22-23):4779-4796.
    [173]Harris A T, Davidson J F, Thorpe R B. A novel method for measuring the residence time distribution in short time scale particulate systems[J]. Chemical Engineering Journal,2002,89(1-3):127-142.
    [174]Guio-Perez D C, Proll T, Wassermann J, et al. Design of an Inductance Measurement System for Determination of Particle Residence Time in a Dual Circulating Fluidized Bed Cold Flow Model[J]. Industrial & Engineering Chemistry Research,2013.
    [175]Guio-Perez D C, Proll T, Hofbauer H. Measurement of ferromagnetic particle concentration for characterization of fluidized bed fluid-dynamics[J]. Powder Technology,2013,239(0):147-154.
    [176]Pallares D, Johnsson F. A novel technique for particle tracking in cold 2-dimensional fluidized beds— simulating fuel dispersion[J]. Chemical Engineering Science,2006,61(8):2710-2720.
    [177]Avidan A, Yerushalmi J. Solids mixing in an expanded top fluid bed[J]. AIChF Journal, 1985,31(5):835-841.
    [178]Mostoufi N, Chaouki J. Local solid mixing in gas-solid fluidized beds[J]. Powder Technology, 2001,114(1-3):23-31.
    [179]Wolny A, Kabata M. Mixing of solid particles in vertical pneumatic transport[J]. Chemical Engineering Science,1985,40(11):2113-2118.
    [180]Westphalen D, Glicksman L. Lateral solid mixing measurements in circulating fluidized beds[J]. Powder Technology,1995,82(2):153-167.
    [181]Wei F, Jin Y, Yu Z, et al. Lateral and Axial Mixing of the Dispersed Particles in CFB[J]. JOURNAL OF CHEMICAL ENGINEERING OF JAPAN,1995,28(5):506-510.
    [182]Du B, Wei F. Lateral solids mixing behavior of different particles in a riser with FCC particles as fluidized material[J]. Chemical Engineering and Processing:Process Intensification,2002,41(4):329-335.
    [183]Breault R W. A review of gas-solid dispersion and mass transfer coefficient correlations in circulating fluidized beds[J]. Powder Technology,2006,163(1-2):9-17.
    [184]Jiradilok V, Gidaspow D, Breault R W. Computation of gas and solid dispersion coefficients in turbulent risers and bubbling beds[J]. Chemical Engineering Science,2007,62(13):3397-3409.
    [185]Liu D Y, Chen X P. Lateral solids dispersion coefficient in large-scale fluidized beds[J]. Combustion and Flame,2010,157(11):2116-2124.
    [186]Kunii D, Levenspiel O. Fluidization Engineering[M]. Butterworth-Heinemann,1991.
    [187]Bellgardt D, Werther J. A novel method for the investigation of particle mixing in gas-solid systems[J]. Powder Technology,1986,48(2):173-180.
    [188]Shi Y F, Fan L T. Lateral mixing of solids in batch gas-solids fluidized beds[J]. Industrial & Engineering Chemistry Process Design and Development,1984,23(2):337-341.
    [189]Borodulya V A, Epanov Y G, Teplitskii Y S. Horizontal particle mixing in a free fluidized bed[J]. Journal of engineering physics,1982,42(5):528-533.
    [190]Berruti F, Scott D S, Rhodes E. Measuring and modelling lateral solid mixing in a three-dimensional batch gas—solid fluidized bed reactor[J]. The Canadian Journal of Chemical Engineering,1986,64(1):48-56.
    [191]华彬,李洪钟,刘献玲,等.提升管反应器预提升段结构的优化[M]//催化裂化协作组第六届年会报告论文集.1996:607-612.
    [192]Li C, Yang C, Shan H. Maximizing Propylene Yield by Two-Stage Riser Catalytic Cracking of Heavy Oil[J]. Industrial & Engineering Chemistry Research,2007,46(14):4914-4920.
    [193]Gan J, Yang C, Li C, et al. Gas-solid flow patterns in a novel multi-regime riser[J]. Chemical Engineering Journal,2011,178(0):297-305.
    [194]Gan J, Zhao H, Berrouk A S, et al. Numerical Simulation of Hydrodynamics and Cracking Reactions in the Feed Mixing Zone of a Multiregime Gas-Solid Riser Reactor[J]. Industrial & Engineering Chemistry Research,2011,50(20):11511-11520.
    [195]Zhu X, Yang C, Li C, et al. Comparative study of gas-solids flow patterns inside novel multi-regime riser and conventional riser[J]. Chemical Engineering Journal,2013,215-216(0):188-201.
    [196]Zhu H, Zhu J. Comparative study of flow structures in a circulating-turbulent fluidized bed[J]. Chemical Engineering Science,2008,63(11):2920-2927.
    [197]Zhu H, Zhu J. Gas-solids flow structures in a novel circulating-turbulent fluidized bed[J]. AIChE Journal, 2008,54(5):1213-1223.
    [198]Qi X, Zhu H, Zhu J. Demarcation of a new circulating turbulent fluidization regime[J]. AIChE Journal, 2009,55(3):594-611.
    [199]岑可法,倪明江,骆仲泱,等.循环流化床锅炉理论设计与运行[M].中国电力出版社,1998.
    [200]Harrison D, Grace J R. Fluidized bed with internal baffles[M]//DAVIDSON J F, HARRISON D. Fluidization. London:Academic Press,1971:599-626.
    [201]赵珺,钟兴,许贺卿.气——固多孔挡板流化床级间固体返混的研究[J].天津大学学报,1989(04):1-10.
    [202]Balasubramanian N, Srinivasa Kannan C. Hydrodynamic Aspects of a Circulating Fluidized Bed with Internals[J]. Industrial & Engineering Chemistry Research,1998,37(6):2548-2552.
    [203]甘宁俊,蒋大洲,白丁荣,等.内置钝体对快速流化床中颗粒浓度分布的影响[J].高校化学工程学报,1990(03):273-277.
    [204]郑传根,董元吉,张文楠,等.内部构件对循环流化床颗粒径向分布的影响[J].化工冶金,1990(04):296-302.
    [205]周遊,鲁维民,郑冲,等.多孔挡板导流筒型流化床内构件研究[J].化工冶金,1995(02):143-150.
    [206]Wang C, Lu Z, Li D. Experimental study of the effect of internals on optimizing gas-solid flow in a circulating fluidized bed[J]. Powder Technology,2008,184(3):267-274.
    [207]Zhang J, You C, Chen C. Effect of Internal Structure on Flue Gas Desulfurization with Rapidly Hydrated Sorbent in a Circulating Fluidized Bed at Moderate Temperatures[J]. Industrial & Engineering Chemistry Research,2010,49(22):11464-11470.
    [208]Grace J R, Avidan A A, Knowlton T M. Circulating Fluidized Beds[M]. Blackie Academic and Professional=ed.,1997.
    [209]Jiang P, Bi H, Jean R, et al. Baffle effects on performance of catalytic circulating fluidized bed reactor[J]. AIChE Journal,1991,37(9):1392-1400.
    [210]Therdthianwong A, Pantaraks P, Therdthianwong S. Modeling and simulation of circulating fluidized bed reactor with catalytic ozone decomposition reaction[J]. Powder Technology,2003,133(1-3):1-14.
    [211]Zhu J X, Salah M, Zhou Y M. Radial and Axial Voidage Distributions in Circulating Fluidized Bed with Ring-Type Internals[J]. JOURNAL OF CHEMICAL ENGINEERING OF JAPAN,1997,30(5):928-937.
    [212]Bu J, Zhu J. Influence of ring-type internals on axial pressure distribution in circulating fluidized bed[J]. The Canadian Journal of Chemical Engineering,1999,77(1):26-34.
    [213]Guio-Perez D C, Marx K., Proll T, et al. Fluid dynamic effects of ring-type internals in a dual circulating fluidized bed system[M]//KNOWLTON T M. Proceedings of the 10th International Conference on Circulating Fluidized Beds and Fluidization Technology. New York:Engineering Conferences International,2011.
    [214]Guio-Perez D C, Hofbauer H, Proll T. Effect of ring-type internals on solids distribution in a dual circulating fluidized bed system—cold flow model study[J]. AIChE Journal,2013,10(59):3612-3623.
    [215]Hosseini S H, Rahimi R, Zivdar M, et al. The effect of ring baffles on the hydrodynamics of a gas—solid bubbling fluidized bed using computational fluid dynamics[J]. Proceedings of the Institution of Mechanical Engineers, Part C:Journal of Mechanical Engineering Science,2009,223(10):2281-2289.
    [216]Samruamphianskun T, Piumsomboon P, Chalermsinsuwan B. Effect of ring baffle configurations in a circulating fluidized bed riser using CFD simulation and experimental design analysis[J]. Chemical Engineering Journal,2012,210(0):237-251.
    [217]Ding J M, Gidaspow D. A bubbling fluidization model using kinetic theory of granular flow[J]. AIChE Journal,1990,36(4):523-538.
    [218]Neri A, Gidaspow D. Riser hydrodynamics:Simulation using kinetic theory[J]. AIChE Journal, 2000,46(1):52-67.
    [219]Gidaspow D, Jung J, Singh R K. Hydrodynamics of fluidization using kinetic theory:an emerging paradigm:2002 Flour-Daniel lecture[J]. Powder Technology,2004,148(2-3):123-141.
    [220]Huilin L, Yunhua Z, Ding J, et al. Investigation of mixing/segregation of mixture particles in gas-solid fluidized beds[J]. Chemical Engineering Science,2007,62(1-2):301-317.
    [221]Huilin L, Shuyan W, Yunhua Z, et al. Prediction of particle motion in a two-dimensional bubbling fluidized bed using discrete hard-sphere model[J]. Chemical Engineering Science,2005,60(12):3217-3231.
    [222]Tartan M, Gidaspow D. Measurement of granular temperature and stresses in risers[J]. AIChE Journal, 2004,50(8):1760-1775.
    [223]Li T, Dietiker J, Shahnam M. MFIX simulation of NETL/PSRI challenge problem of circulating fluidized bed[J]. Chemical Engineering Science,2012,84(0):746-760.
    [224]Nikolopoulos A, Nikolopoulos N, Charitos A, et al. High-resolution 3-D full-loop simulation of a CFB carbonator cold model[J]. Chemical Engineering Science,2013,90(0):137-150.
    [225]Jin B, Wang X, Zhong W, et al. Modeling on High-Flux Circulating Fluidized Bed with Geldart Group B Particles by Kinetic Theory of Granular Flow[J]. Energy & Fuels,2010,24(5):3159-3172.
    [226]Lu B, Zhang N, Wang W, et al.3-D full-loop simulation of an industrial-scale circulating fluidized-bed boiler[J]. AlChE Journal,2013,59(4):1108-1117.
    [227]Jackson R. Locally averaged equations of motion for a mixture of identical spherical particles and a Newtonian fluid[J]. Chemical Engineering Science,1997,52(15):2457-2469.
    [228]张兆顺,崔桂香,许春晓.湍流大涡数值模拟的理论与应用[M].清华大学出版社,2008.
    [229]Lilly D K. Lecture Notes on Turbulence[G]. Singapore:World Scientific,1987.
    [230]Hertz H. Uber die Beruhrung fester elastischer K6rper.[J]. Journal fur die reine und angewandte Mathematik,1826,92:156-171.
    [231]Mindlin R D, Deresiewicz H. Elastic spheres in contact under varying oblique forces[J]. Journal of Applied Mechanics,1953,20(3).
    [232]Zhu H P, Zhou Z Y, Yang R Y, et al. Discrete particle simulation of particulate systems:Theoretical developments[J]. Chemical Engineering Science,2007,62(13):3378-3396.
    [233]Raji A O. Discrete element modelling of the deformation of bulk agricultural particulates[D]. Newcastle UniversityDepartment of Agricultur al and Environm ental Sciences at the University of Newcastle upon Tyne, 1999.
    [234]Gidaspow D. Hydrodynamics of Fiuidizatlon and Heat Transfer:Supercomputer Modeling[J]. Applied Mechanics Reviews,1986,39(1):1-23.
    [235]Richardson J F, Zaki W N. Sedimentation and fluidisation:Part I[J]. Chemical Engineering Research and Design,1997,75, Supplement(0):S82-S100.
    [236]Di Felice R. The voidage function for fluid-particle interaction systems[J]. International Journal of Multiphase Flow,1994,20(1):153-159.
    [237]Gibilaro L G, Di Felice R, Waldram S P, et al. Generalized friction factor and drag coefficient correlations for fluid-particle interactions [J]. Chemical Engineering Science,1985,40(10):1817-1823.
    [238]Arastoopour H, Pakdel P, Adewumi M. Hydrodynamic analysis of dilute gas—solids flow in a vertical pipe[J]. Powder Technology,1990,62(2):163-170.
    [239]Syamlal M, O'Brien T J. Simulation of granular layer inversion in liquid fluidized beds[J]. International Journal of Multiphase Flow,1988,14(4):473-481.
    [240]Wen C Y, Yu Y H. Mechanics of fluidization[J]. Chemical Engineering Progress Symposium Series, 1966,62(62):100-111.
    [241]Ergun S. Fluid flow through packed columns[J]. Chemical Engineering Progress,1952,48(2):89-94.
    [242]Koch D L, Hill R J. Inertial effects in suspension and porous-media flows[J]. Annual Review of Fluid Mechanics,2001,33(1):619-647.
    [243]Kriebitzsch S H L, van der Hoef M A, Kuipers J A M. Fully resolved simulation of a gas-fluidized bed: A critical test of DEM models[J]. Chemical Engineering Science,2013,91(0):1-4.
    [244]Kuipers J A M, Duin Van K J, Beckum Van F P H, et al. Computer simulation of the hydrodynamics of a two-dimensional gas-fluidized bed[J]. Computers & Chemical Engineering,1993,17(8):839-858.
    [245]Muller C R, Scott S A, Holland D J, et al. Validation of a discrete element model using magnetic resonance measurements[J]. Particuology,2009,7(4):10.
    [246]Muller C R, Holland D J, Sederman A J, et al. Granular temperature:comparison of magnetic resonance measurements with discrete element model simulations[J]. Powder Technology,2008,184(2):241-253.
    [247]Li T, Garg R, Galvin J, et al. Open-source MFIX-DEM software for gas-solids flows:Part Ⅱ Validation studies[J]. Powder Technology,2012,220(0):138-150.
    [248]Garg R, Galvin J, Li T, et al. Open-source MFIX-DEM software for gas- solids flows:Part Ⅰ— Verification studies[J]. Powder Technology,2012,220(0):122-137.
    [249]Crank J, Nicolson P. A practical method for numerical evaluation of solutions of partial differential equations of the heat-conduction type[J]. Mathematical Proceedings of the Cambridge Philosophical Society, 1947,43(01):50-67.
    [250]Chung Y C, Ooi J Y. Influence of Discrete Element Model Parameters on Bulk Behavior of a Granular Solid under Confined Compression[J]. Particulate Science and TechnologyParticulate Science and TechnologyParticulate Science and Technology,2007,26(1):83-96.
    [251]Du W, Bao X, Xu J, et al. Computational fluid dynamics (CFD) modeling of spouted bed:Influence of frictional stress, maximum packing limit and coefficient of restitution of particles[J]. Chemical Engineering Science,2006,61(14):4558-4570.
    [252]van Buijtenen M S, Deen N G, Heinrich S, et al. Discrete Particle Simulation Study on the Influence of the Restitution Coefficient on Spout Fluidized-Bed Dynamics[J]. Chemical Engineering & Technology, 2009,32(3):454-462.
    [253]Kuo H P, Knight P C, Parker D J, et al. The influence of DEM simulation parameters on the particle behaviour in a V-mixer[J]. Chemical Engineering Science,2002,57(17):3621-3638.
    [254]Beetstra R, van Der M A H, Kuipers J A M. Drag force of intermediate Reynolds number flow past mono- and bidisperse arrays of spheres[J]. AIChE Journal,2007,53(2):489-501.
    [255]Yang S, Luo K, Fang M, et al. Parallel CFD-DEM modeling of the hydrodynamics in a lab-scale double slot-rectangular spouted bed with a partition plate[J]. Chemical Engineering Journal, 2014,236(0):158-170.
    [256]Yang S L, Luo K, Fang M M, et al. Discrete element simulation of the hydrodynamics in a 3D spouted bed:Influence of tube configuration[J]. Powder Technology,2013,243(0):85-95.
    [257]Luo K, Yang S L, Zhang K, et al. Particle dispersion and circulation patterns in a 3D spouted bed with or without draft tube[J]. Industrial & Engineering Chemistry Research,2013,52(28):9620-9631.
    [258]Yang S, Luo K, Fang M, et al. Three-Dimensional Modeling of Gas-Solid Motion in a Slot-Rectangular Spouted Bed with the Parallel Framework of the Computational Fluid Dynamics-Discrete Element Method Coupling Approach[J]. Industrial & Engineering Chemistry Research,2013,52(36):13222-13231.
    [259]Yang S L, Luo K, Fang M M, et al. CFD-DEM simulation of the spout-annulus interation in a 3-D spouted bed with a conical base[J]. The Canadian Journal of Chemical Engineering,2013.
    [260]Yang S L, Luo K, Fang M M, et al. Numerical investigation of the gas-solid flow characteristics in a three-dimensional spouted bed with a draft tube[J]. Chemical Engineering & Technology, 2013,36(12):2035-2043.
    [261]Burugupalli V R K. Process analysis of a twin fluidized bed biomass gasification system[J]. Industrial & engineering chemistry research,1988,27:304-312.
    [262]Jeon J H, Kim S D, Kim S J, et al. Combustion and heat transfer characteristics in a square internally circulating fluidized bed combustor with draft tube[J]. Fuel,2008,87(17-18):3710-3713.
    [263]Todes O M, Goroskhov V D.:Proceedings of the USSR Symposium on Processes with Fluidized Beds, Gostechnika, Moscow,1957[C].
    [264]Li J, Kuipers J A M. Effect of pressure on gas-solid flow behavior in dense gas-fluidized beds:a discrete particle simulation study[J]. Powder Technology,2002,127(2):173-184.
    [265]Rong D, Horio M. Behavior of particles and bubbles around immersed tubes in a fluidized bed at high temperature and pressure:a DEM simulation[J]. International Journal of Multiphase Flow,2001,27(1):89-105.
    [266]Tsuji Y, Tanaka T, Ishida T. Lagrangian numerical simulation of plug flow of cohesionless particles in a horizontal pipe[J]. Powder Technology,1992,71(3):239-250.
    [267]Bokkers G A, van Sint Annaland M, Kuipers J A M. Mixing and segregation in a bidisperse gas-solid fluidised bed:a numerical and experimental study[J]. Powder Technology 1st International Workshop on Granulation (Granulation across the length scales:linking microscopic experiments and models to real process operation),2004,140(3):176-186.
    [268]Cooper S, Coronella C J. CFD simulations of particle mixing in a binary fluidized bed[J]. Powder Technology,2005,151(1-3):27-36.
    [269]Dahl S R, Hrenya C M. Size segregation in gas-solid fluidized beds with continuous size distributions[J]. Chemical Engineering Science,2005,60(23):6658-6673.
    [270]Di Renzo A, Di Maio F P, Girimonte R, et al. DEM simulation of the mixing equilibrium in fluidized beds of two solids differing in density[J]. Powder Technology,2008,184(2):214-223.
    [271]Eames I, Gilbertson M A. Mixing and drift in gas-fluidised beds[J]. Powder Technology,2005,154(2-3):185-193.
    [272]Feng Y Q, Xu B H, Zhang S J, et al. Discrete particle simulation of gas fluidization of particle mixtures[J]. AIChE Journal,2004,50(8):1713-1728.
    [273]Feng Y Q, Yu A B. Microdynamic modelling and analysis of the mixing and segregation of binary mixtures of particles in gas fluidization[J]. Chemical Engineering Science,2007,62(1-2):256-268.
    [274]Feng Y Q, Yu A B. CFD-DEM modelling of gas fluidization of particle mixtures with size and density differences:Seventh International Conference on CFD in the Minerals and Process Industries, CSIRO, Melbourne, Australia,2009[C].
    [275]Formisani B, Cristofaro G D, Girimonte R. A fundamental approach to the phenomenology of fluidization of size segregating binary mixtures of solids[J]. Chemical Engineering Science, 2001,56(1):109-119.
    [276]Olivieri G, Marzocchella A, Salatino P. Segregation of fluidized binary mixtures of granular solids[J]. AIChE Journal,2004,50(12):3095-3106.
    [277]Shen L H, Zhang M Y. Effect of particle size on solids mixing in bubbling fluidized beds[J]. Powder Technology,1998,97(2):170-177.
    [278]Wu S Y, Baeyens J. Segregation by size difference in gas fluidized beds[J]. Powder Technology, 1998,98(2):139-150.
    [279]Huang H, Hu G X. Mixing Characteristics of a Novel Annular Spouted Bed with Several Angled Air Nozzles[J]. Industrial & Engineering Chemistry Research,2007,46(24):8248-8254.
    [280]Ren B, Shao Y J, Zhong W Q, et al. Investigation of mixing behaviors in a spouted bed with different density particles using discrete element method[J]. Powder Technology,2012(0).
    [281]Zhu R R, Zhu W B, Xing L C, et al. DEM simulation on particle mixing in dry and wet particles spouted bed[J]. Powder Technology,2011,210(1):73-81.
    [282]Jin B S, Zhang Y, Zhong W Q, et al. Experimental Study of the Effect of Particle Density on Mixing Behavior in a Spout-Fluid Bed[J]. Industrial & Engineering Chemistry Research,2009,48(22):10055-10064.
    [283]Zhang Y, Jin B, Zhong W. Experimental Investigations on the Effect of the Trancer Location on Mixing in a Spout-Fluid Bed[J]. International Journal of Chemical Reactor Engineering,2008,6(A 46).
    [284]Zhang Y, Jin B, Zhong W. Experiment on particle mixing in flat-bottom spout-fluid bed[J]. Chemical Engineering and Processing:Process Intensification,2009,48(1):126-134.
    [285]Zhang Y, Zhong W Q, Jin B S, et al. Mixing and Segregation Behavior in a Spout-Fluid Bed:Effect of Particle Size[J]. Industrial & Engineering Chemistry Research,2012,51(43):14247-14257.
    [286]Zhang Y, Jin B S, Zhong W Q, et al. DEM simulation of particle mixing in flat-bottom spout-fluid bed[J]. Chemical Engineering Research and Design,2010,88(5-6):757-771.
    [287]Lacey P M C. Developments in the theory of particle mixing[J]. Journal of Applied Chemistry, 1954,4(5):257-268.
    [288]Feng Y Q, Xu B H, Zhang S J, et al. Discrete particle simulation of gas fluidization of particle mixtures[J]. AIChE Journal,2004,50(8):1713-1728.
    [289]Finnie I. Erosion of surfaces by solid particles[J]. Wear,1960,3(2):87-103.
    [290]Ibsen C H, Helland E, Hjertager B H, et al. Comparison of multifluid and discrete particle modelling in numerical predictions of gas particle flow in circulating fluidised beds[J]. Powder Technology, 2004,149(1):29-41.
    [291]Wang J, van der Hoef M A, Kuipers J A M. CFD study of the minimum bubbling velocity of Geldart A particles in gas-fluidized beds[J]. Chemical Engineering Science,2010,65(12):3772-3785.
    [292]Breault R W, Panday R, Shadle L J, et al. Preface[J]. Powder Technology,2010,203(1):1-2.
    [293]van der Meer E H, Thorpe R B, Davidson J F. Flow patterns in the square cross-section riser of a circulating fluidised bed and the effect of riser exit design[J]. Chemical Engineering Science, 2000,55(19):4079-4099.
    [294]Rhodes M J, Sollaart M, Wang X S. Flow structure in a fast fluid bed[J]. Powder Technology, 1998,99(2):194-200.
    [295]Chu K W, Wang B, Xu D L, et al. CFD-DEM simulation of the gas-solid flow in a cyclone separator[J]. Chemical Engineering Science,2011,66(5):834-847.
    [296]Prandt L. Essentials of fluid dynamics[M]. London:1953.
    [297]Pallares D, Johnsson F. Modeling of fuel mixing in fluidized bed combustors[J]. Chemical Engineering Science,2008,63(23):5663-5671.
    [298]Senior R C, Brereton C. Modelling of circulating fluidised-bed solids flow and distribution[J]. Chemical Engineering Science,1992,47(2):281-296.
    [299]Zhang N, Lu B, Wang W, et al.3D CFD simulation of hydrodynamics of a 150MWe circulating fluidized bed boiler[J]. Chemical Engineering Journal,2010,162(2):821-828.
    [300]Zhang N, Lu B, Wang W, et al. Virtual experimentation through 3D full-loop simulation of a circulating fluidized bed[J]. Particuology,2008,6(6):529-539.
    [301]Kunii D, Levenspiel O. Effect of exit geometry on the vertical distribution of solids in circulating fluidized beds. Part I:solution of fundamental equations; Part Ⅱ:analysis of reported data and prediction[J]. Powder Technology,1995,84(l):83-90.
    [302]Senior R C, Brereton C. Modelling of circulating fluidised-bed solids flow and distribution[J]. Chemical Engineering Science,1992,47(2):281-296.
    [303]Chalermsinsuwan B, Kuchonthara P, Piumsomboon P. CFD modeling of tapered circulating fluidized bed reactor risers:Hydrodynamic descriptions and chemical reaction responses[J]. Chemical Engineering and Processing:Process Intensification,2010,49(11):1144-1160.
    [304]Li J, Luo Z, Lan X, et al. Numerical simulation of the turbulent gas-solid flow and reaction in a polydisperse FCC riser reactor[J]. Powder Technology,2013,237(0):569-580.
    [305]Mann U, Crosby E J. Cycle time distribution in circulating systems[J]. Chemical Engineering Science, 1973,28(2):623-627.
    [306]Wen C Y, Fan L T. Models for flow systems and chemical reactors[M]. New York:Marcel Dekker, 1975.
    [307]Buffham B A, Mason G. Holdup and dispersion:tracer residence times, moments and inventory measurements[J]. Chemical Engineering Science,1993,48(23):3879-3887.
    [308]W. Chan C, Seville J P K, Parker D J, et al. Particle velocities and their residence time distribution in the riser of a CFB[J]. Powder Technology,2010,203(2):187-197.
    [309]Mahmoudi S, Baeyens J, Seville J. The solids flow in the CFB-riser quantified by single radioactive particle tracking[J]. Powder Technology,2011,211(1):135-143.
    [310]Einstein A, Furth R. Investigations on the Theory of the Brownian Movement[M]. Dover Publications, 1956.
    [311]Wu X, Wang Q, Luo Z, et al. Theoretical and experimental investigations on particle rotation speed in CFB riser[J]. Chemical Engineering Science,2008,63(15):3979-3987.
    [312]Smolders K, Baeyens J. Gas fluidized beds operating at high velocities:a critical review of occurring regimes[J]. Powder Technology,2001,119(2-3):269-291.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700