用户名: 密码: 验证码:
麝香草酚抗真菌活性及麝香草酚对酿酒酵母表达谱影响的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
临床上感染性疾病主要由细菌、真菌或病毒三大类微生物引起,治疗真菌性感染性疾病是临床抗感染治疗的重要组成部分。近年来,真菌的发病率不断升高,人们对真菌的研究也开始逐渐重视。目前临床上使用有效治疗药物不是毒性太大就是易产生耐药性致使复发率和再感染率升高,并有一些不良反应,而使其临床应用受到限制,因此急需开发出高效、低毒的抗真菌新型药物。从中草药中寻找抗真菌新药已成为非常重要的研究方向,近百年来,人们已发现300余种中药具有抗真菌活性。麝香草酚(THY),来源于麝香草属的植物百里香及陈皮。THY广泛用于抗菌,防腐,消毒,也有显著的抗病原性真菌活性。联合用药可谓是治疗真菌感染的有效治疗方案。通过联合用药来提高抗真菌药物的治疗效果和减少药物的毒性。本研究考察了THY对临床分离耐药真菌的体外敏感性及THY与两性霉素B(AMB)和氟康唑(FLC)联合应用抗临床分离耐药真菌的体外药物敏感性,并运用基因芯片从分子水平研究了THY对模式真菌酿酒酵母的作用机制,通过表型试验验证了芯片结果。研究结果表明,THY具有较好的抗真菌活性,THY与FLC和AMB有明显的体外协同抗临床分离耐药真菌的活性。本研究为探索THY作用靶标和天然药物THY的深开发奠定基础,为临床治疗真菌感染提供了新型的有效治疗方案。
Clinical infectious diseases by bacteria, fungi or viruses cause three main types of micro-organisms, so the treatment of fungal infections is an important part of clinical anti-infective treatment. In recent years, with tumor and AIDS patients increasing, organ transplants, and duct intubation and endoscope technology to carry out widespread and a wide range of applications of efficient broad-spectrum antibiotics, immunosuppressants and glucocorticoids, more and more often fungal infections see. Clinically, many years amphotericin B, and azole drug are special effect and first-choice drugs of treatment of fungal infections. However, renal toxicity caused by amphotericin B, narrow-spectrum treatment of azole drugs and emergence of drug-resistant strains, making an in-depth study of fungus-resistant mechanisms, and to overcome and slow down the development of drug resistance, the development of new safe and effective antifungal agents are particularly prominent. China's rich traditional Chinese medicine resources in the search for effective antifungal agents has aroused widespread attention. Thymol (Thymol), from the plants of thyme and oregano and tangerine peel. Research shows that thymol widely used anti-bacterial, anti-corrosion and disinfection. It is worth noting that it has significant activity of disease-resistant pathogenic fungi.
     Global gene expression profile can be analyzed quickly and systematically in the whole genome level of gene expression by use of DNA microarray. And through monitoring the concentration of mRNA can be done specifically for each gene analysis. Using microarrays on a biological analysis of all the genes in parallel model for the understanding of gene function can provide some clues (target identification). Yeast as a model eukaryotic, has many similarities with higher eukaryotic life in the adjustment mechanism and is a ideal model to study the mechanism of antifungal agents.
     This study researched on in vitro drug sensitivity of thymol against clinical isolates of fungi alone and in combination with fluconazole and amphotericin B. Notablely, this study in the international arenas for the first time analyzed the expression profile of thymol effected on Saccharomyces cerevisiae and explain the molecular mechanism of thymol effected on Saccharomyces cerevisiae. Furthermore, the results of DNA microarray has been verified by using RT-PCR and chip-related phenotype tcDNA has been done. The results show that thymol fluconazole and significantly synergy when thymol was in combination with fluconazole and amphotericin B; The results of gene expression profile show that the 517 genes differentially expressed, 305 genes upregulated and 212 genes downregulated. On this basis, we used advanced cluster analysis software, T-profiler to analyze the data. At the same time, RT-PCR tcDNA showed the good results consistent with the results of the microarray. In addition, glucose-dependent efflux of rhodamine 6G from Saccharomyces cerevisiae showed that thymol can activate efflux pump of Saccharomyces cerevisiae.
引文
[1]关洪全,穿刺法所致体癣模型在抗真菌中药研究中的应用探讨[J].中国中医药信息杂志,2002,9(6):24-25.
    [2]富毓静,安汝国。虞慧,等.164种中药乙醇提取物抗真菌作用研究[J].中草药,2002, 33(1):42-47.
    [3]曲戈霞,齐秀兰,刘宏伟,等.抗真菌中草药的初步筛选[J].洗阳药科大学学报,2002, 19(3):218-220.
    [4]王理达,胡迎庆,果德安,等.13种生药提取物及化学成分的抗真菌活性筛选[J].中草药,2001, 32(3):241-244.
    [5]刘翠青,王桂荣,刘艳军.中药地肤子乙醚提取物抗角膜真菌作用研究[J].中国现代应用药学,2005, 5(18):658.
    [6]刘翠青,陈联群,王刚生,等.12种中药乙醚提取物对角膜真菌的作用研究[J].中国微生态学杂志,2005, 17(3):197.
    [7]吕小迅,周玉珍,方舟云,等.黄芩黄精等4种中药抗真菌试验研究[J].广东药学院学报,1995, 11(1):18-19.
    [8]廖万清,吴绍熙.真茵研究进展[M].上海:第二军医大学出版社,1998,11-12.
    [9]付爱华,尹建元,孙莹,等.黄精和生姜抗皮肤鲜菌活性研究[J].白求恩医科大学学报,2001,27(4):384-385.
    [10]杜青云,胡永狮.姜黄挥发油洗剂对家兔石膏样毛藓菌感染模型的作用研究[J].药学实践杂志,2003,21(1):90-91.
    [11]叶其馨。林吉,桂蜀华,等.防风等11种中药体外抗真菌活性严究[J].海南医学,2005,16(9):161.
    [12]张广文,蓝文键,苏镜娱,等.广藿香精油化学成分分析及其抗菌活性(II)[J].中草药,2002,33(3):210-212.
    [13]张文平,傅颖嫒,谢小梅.柠檬醛、肉桂醛抗曲霉菌作用机制研究[J].江西医学院学报,2003,43(6):10-12.
    [14]罗曼,黄耀熊,蒋立科,等.彗星系统定量检测柠檬醛损伤黄曲霉DNA的研究[J].微生物学报,2002,42(3):341-347.
    [15]金慧玲,张汝芝,高玉祥,等.高蒿琥酯抗真菌、抗细菌的试验研究[J].中圆微生态学杂志.2003,t5(1):26-27.
    [16]战广琴,黄有凯,李耀亭.香茅醛对黑曲霉有关形态及结构影响的研究[J].安徽农业大学学报,2003.30(2);220-223.
    [17]江涛,曹煜。赵秀华,等.22种中草药有效成分抗真菌研究及新剂型应用[J].中华皮肤科杂志,1999,32(5):316-18.
    [18]张虹,王洪泉等.日本榧叶挥发油成分抗真菌作用研究[J].中国药师,2002,5(9):549
    [19]姜欣,王晓波,杨淑芝,等.补中益气汤对肺真菌感染辅助治疗作用的试验研究[J].中国试验方荆学杂志,1997,3(3):28-30.
    [20]曲莉莎,宋杰云,方玉珍,等.龙香散药理作用观察[J]湖北中医杂志,1998,20(2):55-59.
    [21]廖万清,吴绍熙真菌研究进展[M].上海:第二军医大学出版社.1998,11-12.
    [22]王理达,胡迎庆,果德安,等13种生药提取物及化学成分的抗真菌活性筛选[J].中草药.2001,32(3):241:24.
    [33]宫毓静,安汝国,虞慧,等.164次中药乙醇提取物抗真菌作用研究[J].中草药.2002,33(1):42-47.
    [24]纪丽莲,张强华.八种菊科中草药抗霉菌及饲料霉变的研究[J].生命科学研究.2003,7(4):350-354.
    [25]吴吴,杨红伟,杨风琴,等,丹参、苦参、蛇床子等十种中草药对致病性浅部真菌的抑菌试验研究[J].宁夏医学杂志.1997,19(4):193-194.
    [26]付爱华,尹建元,孙莹,等.黄精和生姜抗皮肤鲜菌活性研究[J].白求恩医科大学学报.2001,27(4):384-385.
    [27]尹秀芝,蒲卓,王冰梅,等.中药苍术抗真菌作用的研究及临床观察[J].北华大学学报(自然科学版).2000,1(6):492-494.
    [28]屠鹏飞,郭洪祝,果德安.中药与天然药物活性成分研究及新药的发现[J].北京大学学报(医学版)2002,34(5):513-518.
    [29]刘小琴,万福珠,郑世玲,紫苏、白苏的抑菌试验[J].天然产物研究与开发.1999,12(1):42-45.
    [30]侯幼红,王正文.七种中草药对白念珠菌体外粘附作用及电镜观察[J].中国皮肤性病杂志.1990,4(3):136.
    [31]何进,何力,张美霞,等.大蒜油B一环湖精包合物的抗深部真菌作用[J].沈阳药科大学学报.1998,15(2):134-135.
    [32]付爱华,张宏桂,张林,等.东北刺人参挥发油抗真菌试验及临床研究[J].中华皮肤科杂志.1997,30(5):310-31l.
    [33]张广文,蓝文键,苏镜娱,等.广藿香精油化学成分分析及其抗菌活性(Ⅱ)[J].中草药.2002,33(3):210-212.
    [34]杨得坡藿香和广藿香挥发油对皮肤癣菌和条件致病真菌的抑制作用[J].中国药学杂志.2000,35(1):9-11.
    [35]杜青云,胡永狮,姜黄挥发油洗剂对家兔石膏样毛藓菌感染模型的作用研究[J].药学实践杂志.2003,21(1):90-91.
    [36]夏忠弟,李沛涛.山苍子油乳剂对白色念珠菌超微结构的影响[J].湖南医科大学学报.1992,17(4):329-332.
    [37]方芳,吕昭萍,王正文,等.山苍子油抗念珠菌的敏感性及作用机理的电镜研究[J].中华皮肤科杂志.2002,25(5):349-351. [38 ]江涛,曹煜,赵秀华,等.22种中草药有效成分抗真菌研究及新剂型应用[J].中华皮肤科杂志.1999,32(5):316-318.
    [39]张文平,傅颖媛,谢小梅.柠檬醛、肉桂醛抗曲霉菌作用机制研究[J].江西医学院学报.2003,43(6):10-12.
    [40]罗曼,黄耀熊,蒋立科,等.彗星系统定量检测柠檬醛损伤黄曲霉DNA的研究[J].微生物学报.2002。42(3):341-347.
    [41]罗曼,蒋立科,吴子健.柠檬醛对黄曲霉质膜损伤机制的初步研究[J].微生物学报.2001。41(6):723-730.
    [42]罗曼,蒋立科.柠檬醛损伤黄曲霉线粒体生化机理的研究[J].微生物学报.2002。42(2):226-231.
    [43]金慧玲,张汝芝,高玉祥,等.高蒿琥酯抗真菌、抗细菌的试验研究[J].中国微生态学杂志.2003,15(1):26-27.
    [44]战广琴,黄有凯,李耀亭.香茅醛对黑曲霉有关形态及结构影响的研究[J].安徽农业大学学报.2003,30(2):220-223.
    [45]吴建华,温海,梁小博,等.用流式细胞术研究中药对白念珠菌的抗菌作用[J].中国中西医结合皮肤性病学杂志.2003,2(3):141-144.
    [46]谢小梅,付颖媛,许杨.微量液基稀释法测定中药抗曲霉活性[J].微生物学通报.2003,30(6):89-91.
    [47]谢小梅,张文平,付颖瑗,等,肉桂醛、柠檬醛抗曲霉菌作用机制的研究[J].中草药.2007,35(4):430-432.
    [48]白玫.茴香醛抗真菌作用的试验及临床治疗研究[J].中华皮肤科杂志.1995,22(2):364.
    [49]王理达,果德安,袁兰,等.3种抗真菌生药活性成分对两种真菌细胞遗传物质的影响[J].药学学报.2000,35(11):860-863.
    [50]李大宁,吴建华,陈德利,等.流式细胞术测定3种中药提取物对白念珠菌胞核的影响[J].临床皮肤科杂志.2002,31(5):287-289.
    [51]张岩,张亮,张一鸣,等.用酿酒酵母全基因组DNA芯片研究盐酸小檗碱的药理作用机制[J].中国中西医结合杂志.2003,23(1):48-53.
    [52] RENEE J Gmyer, EFFREY B H.A survey of antifungal compounds from higher plants[J].Phytoehemistry.1994,34(1):19.
    [53]陈征宇.植物体内的抗真菌药成分[J].国外医药(植物分册).1993,8(1):3-8.
    [54]王淑芳,王勇,王宁宁,等.苍耳粗蛋白生物活性的研究[J].南开大学学报(自然科学).1998,31(3):68-74.
    [55]姜欣,王晓波,杨淑芝,等.补中益气汤对肺真菌感染辅助治疗作用的试验研究[J].中国试验方剂学杂志.1997,3(3):28-30.
    [56]曲莉莎,宋杰云,方玉珍,等.龙香散药理作用观察[J].湖北中医杂志.1998,20(2):55-59.
    [57]张长生,曾志良,李骊,复方虎仗液对四种致病性真菌的抑菌试验报告[J].湖南中医学院学报.2000,2(2):50.
    [58]吴永良,张敏建,卢介珍,等.复方苦参素液的药效学研究与临床[J].时珍国医国药.1997,8(5):422-423.
    [59]宋军,李鹤玉,赵小秋,等.丁香酚抗真菌作用的试验研究.中国皮肤性病学杂志.1996,10(4):203.
    [60] J Barug D,sams0n R A,Kerkenear A.Microscopic studies of Candida albicans and TomLopsis glabrata after in vitro treatment with Bifonazole Drug Res.1983,33(4):528.
    [61]李开泉,唐陶.山苍子油抗真菌有效成分的研究.中国医院药学杂志.1986,6(11):3.
    [62]蔡杉杉,李建春,关洪全.中药抗深部真菌试验研究进展.中医函授通讯.2000,19(4):11.
    [63]曹煜,茅颖,向俊才,等.中药姜黄有效成分抗真菌研究及临床应用研究[J]..中华皮肤科杂志.1994,27(6):354.
    [64]周立刚,张颖君,蔡艳,等.黄酮和甾体类化合物的抗真菌活性[J].天然产物研究与开发.1997,9(3):24.
    [65]吕小迅,周玉珍,吕华冲,等.黄芩与黄精抗真菌作用试验研究[J].广东药学院学报.1995,ll(3):180.
    [66]姜欣,王晓波,李中山,等.十全大补汤在抗真菌治疗中的辅助作用试验研究[J].中医药研究.1997,13(20:49.
    [67] David J F,Kim D B,David·C,et al. A whole.cell Candida albicans assay for the detection of inhibitors towards fungal cel wall synthesis and assembly.J Antibiot.1995,48(4):306.
    [68]王理达,果德安,袁兰,等.3种抗真菌生药活性成分对两种真菌细胞遗传物质的影响[J].药学学报.2000,35(1)1:860.
    [69]王理达,胡迎庆,屠鹏飞,等.13种生药提取物及化学成分的抗真菌活性:筛选[J].中草药.2001,32(3):241.
    [70]夏忠弟,李沛涛.山苍子油乳剂对白色念珠菌超微结构的影响[J].湖南医科大学学报,1992,17(增刊):20.
    [71]闻玉梅.现代医学微生物学[M].上海:上海医科大学出版社.1998.677.
    [72]黎杉杉,李建春,关洪全.中药抗深部真菌试验研究进展[J].中医函授通讯.2000,19(4):11.
    [73]曹煜,茅颖,向俊才,等.中药姜黄有效成分抗真菌研究及临床应用研究[J].中华皮肤科杂志.1994,27(6):354.
    [74]周立刚,张颖君,禁艳,等.黄酮和甾体类化合物的抗真菌活性[J].天然产物研究与开发.1997,9(3):24.
    [75]吕小迅,周玉珍,吕华冲,等.黄芪与黄精抗真菌作用试验研究[J].广东药学院学报.1995,11(3):180.
    [76]姜欣,王晓波,李中山,等.十全大补汤住抗真菌治疗中的辅助作用试验研究[J].中医药研究.1997,13(2):49.
    [77]李沛涛、周坚、夏忠笫.等.山苍子汕乳剂的抗菌机制研究[J].湖南医科大学学报.1994,19(6):471-475.
    [78]谢小梅,张文甲,傅颖媛.肉棒醛与柠檬醛抗曲霉菌作用机制的研究[J].中草药.2007,35(4):430-432.
    [79]山芳,吕昭平,王正文,等.山苍子油抗念珠菌的敏感性及作用机理的电镜观察[J].中华皮肤科杂志.2002,35(2):349-351.
    [80]关洪,李建春.SY-O1的抗真菌活性及其机理的探讨[J].微生态学杂志.1995,7(2):19.
    [81] National committee for clinical laboratory standards.Reference method for broth dilutionantifungal susceptibility testing of yeast;Approved Standard M27-A.Lancaster Avenue,Villanova.Pennsylvania:NCCLS,1997.1-12.
    [82]王文莉,王端礼,李若瑜,等.酵母菌的NCCLS药敏试验方法及其应用中华医学检验杂志.1997,20:119-122.
    [83] Pfaller MA,Rex JH,Rinaldi MG.Antifungal susceptibility testing:technical adnances and potential clinical applications.Clin Infect Dis,1997.24:776-784.
    [84]王辉,陈民均.药敏试验的方法学研究进展[J].中华医学检验杂志.1997,20:342-345.
    [85] Bolmstrom A,Karlsson A,Mills K, et al.Antifungal susceptibility testing of yeasts with Etest , abstr260.In:Program and Abstracts of the 33rd Interscience Conference on Antimicrobial Agents and Chemotherapy.Washington D C:American Society for Microbiology,1993.167.
    [86] Espinel-Ingroff A.Etest for Antifungal susceptibility testing of yeasts.Diagnostic Microbiol Infect dis,1994,19:217-220.
    [87] Sewell DL,Pfaller MA,Barry AL.Comparison of broth macrodilution,vroth microdilution and Etest antifungal susceptibility tests for fluconazole.J Clin Microbiol , 1994 ,32:2099-2102.
    [88]沈定霞,谢灵,刘梅,等.酵母菌对FLC的敏感性及三唑类药敏试验方法的比较。中华医学检验杂志.1998,21:199-201.
    [89] Colombo AL,Barchiesi F,McGough DA, et al. Comparison of Etest and National Committee for Clinical Laboratory Standards broth macrodilution method for azole antifungal susceptibility testing.J Clin Microbial,1995,33:535-540.
    [90] WangerA,Mils K,Nelson PW, et al. Comparison of Etest and NCCLS broth macrodilution mehod for antifungal susceptibility testing:Enhanced ablity to detect ampnotericin B-resistant Candida isolates.Antimicrbial Agents and Chemotherapy.1995,39:2520-2522.
    [91] van Eldere J,Joosten L,Verhaeghe V, et al. Fluconazole and amphotericin B antifungal susceptibility testing by NCCLS broth macrodilution method compared with Etest and semiautomated broth microdilution test.Jclin Microbiol,1996,34:842-847.
    [92] Espinel-Ingroff A,Pfaller M,Erwin ME, et al. Interlaboratory evaluation of Etest method for testing antifungal susceptibilities of pathogenic yeasts to five antifungal agents by using Casitone agar and solidified R/MINI 1640 medium with 2% glucose.J Clin Microbial,1996,34:848-852.
    [93] Pfaller MA,Messer SA,Karlsson A, et al. Evaluation of the Etest method for determining fluconazole susceptibilities of 402 clinical yeast isolates by using three different agar media.J Clin Microbiol,1998,36:2586-2589.
    [94] Pfaller MA,Messer SA,Bolmstrom A, et al. Multisete reproducibility of the Etest MIC method for antifungal susceptibility testing of yeast isolates.J Clin Microbiol,1996,34:1691-1693
    [95] Warnock DW,Johnson EM,Rogers TR.Multi-centre evaluation of the Etest method for antifungal drug susceptibility testing of Candida spp.and Cryptococcus neoformans.BSAX Working Party on Antifungal Chemotherapy.J Antimicrob Chemother,1998,42:321-331
    [96] Velegraki A,Papalambrou D,Soremi S, et al.Variable antifungal susceptibility of wild-type Candida albicans phenotypes from neutropenic hosts.Eur J Clin Microbiol Infect Dis,1996,15:854-860.
    [97] Arikan S,Gur D,Akova M. Comparison for Etest,microdilution and colorimetric dilution with reference broth macrodilution method for antifungal susceptibility testing of clinically significant Candida species isolated from immunocompromised patients.Mycoses,1997,40:291-296.
    [98] Mills K, Wanger A.Susceptibility testing of Aspergillus species using Etest.Etest yeast update,Dalvagen,Solna,Sweden:AB BIODISK,1997.678.
    [99] AB BIODISK.Etest technical guide 10.Dalvagen,Solna,Sweden:AB BIODISK,1997.171
    [100] ruhnke M,Schmidt-westhausen A,Engelmann E, et a..Comparative evaluation of three antifungal susceptibility test methods for Candida albicans isolates and correlation wiiith response to fluconazole therapy. J Clin Microbiol,1996,34:3208-3211.
    [101] Pfaller MA,Messer Sa,Bolmstrom A.Evaluation of Etest for determining in vitro susceptibility of yeast isolates to amphotericin B.Diagn Miceobiol Infect Dis,1998,32:223-227.
    [102] A, Kish CWJR , Kerkering TM, et al. Collaborative comparison of broth macrodilution and microdilution antifungal susceptibility tests.J Clin Microbio 1992,30(12):3138~3145
    [103] National Committee for Clinical Laboratory Standards. Reference method for broth dilution antifungal susceptibility testing of yeasts. Tentative Standard M27-T Pennsylvania : NCCLS, 1995,15:1~221
    [104] Arikan S, Akova M, Hayran M, et al.Correlation of in vitro fluconazole susceptibility with clinical outcome for SeverelyⅢpatients with oropharyngeal candiasis. Clin Infect Dis. 1998,26:903-908
    [105]John H Rex, Michael A, Galgiani JN, et al.Development of interpretive breakpoits for antifungal susceptibility testing: Conceptual framework and analysis of in vitro-in vivo correlation data for Fluconazole, Itraconazole and Candida infections. Clin Infec Dis. 1997,24: 235-247
    [106] John H Rex, Page W Nelson, Victor L, et al. Optimizing the correlation between results of testing in vitro and therapeutic outcome in vivo for Fluconazole by testing critical isolates in a murine model of invasive Candidiasis. Antimicrob Agents Chemother 1998,42:129-134
    [107]White TC,Marr KA,Bowden RA. Clinical, cellular and molecular factors that contribute to antifungal drug resistance. Clin Microbiol Rev. 1998,11:382-402
    [108]Sanati H, Messer SA,Witt M, et al. Multicenter evaluation of broth microdilution method for suseptibility testing Crytococcus neoformations against Fluconazole. J Clin Microbiol. 1996,34(5):1280-1282
    [109]Wanger A,Mills K,Nelson PW, et al.Comparison of E-test and national committee for clinical committee for clinical laboratory standards broth macrodilution method for antifungal Susceptibility testing:Enhanced ability to detect Amphotericin B-resistant Candida isolates. Antimicrob Agents Chemother. 1995,39:2520-2522
    [110] Tiballi RN, Xiaogang HE,Zarins LT, et al. Use of a colormetric System for yeast susceptibility testing. J Clin Microbiol. 1995,33:915-917
    [111]Wing-Kin TO, Fothergill AW, Rinakdi WG, Comparative evaluation of macrodilution and Alamar colorimetric microdilution broth methods for antifungal susceptibility testing of yeast isolates. J Clin Microbiol. 1995,33:2660-2664
    [112] Arikan S, Gur D, Akova. Comparison of E-test, microdilution and colorimetric dilution with reference broth macrodilution method for antifungal susceptibility testing of clinically significant Candida species isolated from immunocompromised patiets.Mycoses. 1997,40:291-296
    [113] Revankar SG, Kirkpartrick WR, Mcatee RK, et al. Interpretation of trailing endpoints in antifungal susceptibility testing by the National Committee for Clinical LaboratoryStandards Method. J Clin Microbiol. 1998,36:153-156
    [114] Tornatore MA, Noskin GA, Hacek DM, et al. Effects of incubation time and buffer concentration on in vitro activities of antifungal agents against Candida albicans.Antimicrob Agents Chemother. 1997,35:1473-1476
    [115] Colombo AL ,Barchiesi F ,McCough DA ,et al. Comparison of E test and national committee for clinical laboratory standards broth macrodilution method for azole antifungal susceptibility testing. J Clin Microbiol, 1995, 33: 535-5401
    [116] Wanger A, Mills K, Nelson PW, Rex JH. Comparison of Etest and National Committee for Clinical Laboratory Standards broth macrodilution method for antifungal susceptibility testing: enhanced ability to detect amphotericin B-resistant Candida isolates. Antimicrob Agents Chemother, 1995, 39(11): 2520-2522
    [117] Espinel-Ingroff A, Rezusta A. E-test method for testing susceptibilities of Aspergillus spp. to the new triazoles voriconazole and posaconazole and to established antifungal agents: comparison with NCCLS broth microdilution method. J Clin Microbiol, 2002, 40(6): 2101-2107
    [118] Yoshida T, Jono K, Okonogi K. Modified agar dilution susceptibility testing method for determining in vitro activities of antifungal agents, including azole compounds. Antimicrob Agents Chemother, 1997, 41(6): 1349-1351
    [119] Paterson PJ, Mcwhinney PH, Potter M, et al. The combination of oral amphotericin B with azoles prevents the emergence of resistant Candida species in nertropenic patients. Br J Haematol, 2001, 112(1): 175-180
    [120] Ghannoum MA,Elewski B. Successful treatment of fluconazole-resistant oropharyngeal candiasis by a combination of fluconazole and terbinafine. Clin Diagn Lab Immunol, 1999, 6(6): 921-923
    [121] Marchetti O, Entenza JM, Sanglard D, et al. Flucanzole plus cyclosporine: a fungicidal combination effetive against experimental endocarditis due to Candida albicans. Antimicrob Agents Chemother, 2000, 44(11): 2932-2938
    [122] Rodriguez-Adrian LJ, Grazziutti ML, Rex JH, et al.The potential role of cytokine therapy for fungal infections in patients with cancer:is recoverery from neutropenia all that is needed?. Clin Infect Dis, 1998, 26(6): 1270-1278
    [123] Stevens DA.Combination immunotherapy and antifungal chemotherapy . Clin InfectDis, 1998, 26(6): 1266-1269
    [124] Shigefumi M, Mohammad AH, Yoshitisugu M, et al. Efficacy of FK463,α(1,3)-B-D-Glucan synthase inhibitor, in disseminated azole-resistant Candida albicans infection in mice. Antimicrob Agents Chemother, 2000, 44(6): 1728-1730
    [125] Quindos G, Carrillo-munoz AJ, Arevalo MP, et al. In vitro susceotibility of candida dubliniensis to current and new antifungal agents.Chemotherapy, 2000, 46(60): 295-401
    [126] Aviles P, Falcoz C, San Roman R, et al. Pharmacokinetics- pharmacodynamicsof a sordarin derivative (GM237354) in murine model of lethal candiasis. Antimicrob Agents Chemother, 2000, 44(9): 2333-2340
    [127] Sheehan DJ, Hitchcock CA, Sibley CM. Current and emerging azole antifungal agents. Clin Microbiol Rev, 1999, 12(1): 40-79
    [128] Marichal, P., H. Vanden Bossche, F. C. Odds, et al. Molecular-biological characterization of an azole-resistant Candida glabrata isolate. Antimicrob. Agents Chemother. 1997, 41: 2229–2237
    [129] He, L, Mo, H, Hadisusilo, S, et al. Elson Isoprenoids suppress the growth of murine B16 melanomas in vitro and in vivo. J Nutr 1997,127, 668-74.
    [130] Robledo S, Osorio E, Mu?oz D, et al. In vitro and in vivo cytotoxicities and antileishmanial activities of thymol and hemisynthetic derivatives. Antimicrob Agents Chemother 2005, 49, 1652-5.
    [131] Burt, S. A., van der Zee, R., et al. Carvacrol induces heat shock protein 60 and inhibits synthesis of flagellin in Escherichia coli O157:H7. Appl Environ Microbiol 2007,.73, 4484-90.
    [132] Quan, H., Cao, Y. Y., Xu, Z., et al. Potent in vitro synergism of fluconazole and berberine chloride against clinical isolates of Candida albicans resistant to fluconazole. Antimicrob Agents Chemother 2006,50, 1096–1099.
    [133] Guo, N, Yu, L, Meng, R., et al. Global gene expression profile of Saccharomyces cerevisiae induced by dictamnine. Yeast 2008 ,25, 631-641.
    [134] Murata, Y., Watanabe, T., Sato, M., et al. Dimethyl sulfoxide exposure facilitates phospholipid biosynthesis and cellular membrane proliferation in yeast cells. J Biol Chem .2003, 278, 33185–93.
    [135] Hirsch , J. P. & Henry , S. A. Expression of the Saccharomyces cerevisiaeinositol-1-phosphate synthase (INO1) gene is regulated by factors that affect phospholipid synthesis. Mol Cell Biol 1986, 6, 3320–3328.
    [136] Nikawa, J., Tsukagoshi, Y. and Yamashita, S. Isolation and characterization of two distinct myo-inositol transporter genes of Saccharomyces cerevisiae. J Biol Chem 1991,266, 11184–91.
    [137] Parveen, M., Hasan, M. K. & Takahashi, J. Response of Saccharomyces cerevisiae to a monoterpene: evaluation of antifungal potential by DNA microarray analysis. J Antimicrob Chemother (2004),54, 46–55.
    [138] Kurita, S., Kitagawa, E., Kim, C. H., et al. Studies on the Antimicrobial Mechanisms of Capsaicin Using Yeast DNA Microarray. Biosci Biotechnol Biochem 66, 2002, 532–536.
    [139] Carman, G. M. & Henry, S. A. Phospholipid biosynthesis in yeast. Annu Rev Biochem 1989.,58, 635–669.
    [140] Zakrzewska, A., Boorsma, A., Brul, S., et al. Transcriptional Response of Saccharomyces cerevisiae to the Plasma Membrane-Perturbing Compound Chitosan. Eukaryot Cell 2005, 4, 703–715.
    [141] Regenberg, B., Grotkjaer, T., et al.. Growth-rate regulated genes have profound impact on interpretation of transcriptome profiling in Saccharomyces cerevisiae. Genome Biol 2006,7, R107.
    [142]Yarragudi, A., Parfrey, L. W. & Morse, R. H. Genome-wide analysis of transcriptional dependence and probable target sites for Abf1 and Rap1 in Saccharomyces cerevisiae. Nucleic Acids Res 2007,. 35, 193-202.
    [143] Balzi, E. & Goffeau, A. Yeast multidrug resistance: the PDR network. J Bioenerg Biomembr 1995,.27, 71–76.
    [144] Mahé, Y., Parle-McDermott, A., Nourani, A., et al. The ATP-binding cassette multidrug transporter Snq2 of Saccharomyces cerevisiae: a novel target for the transcription factors Pdr1 and Pdr3. Mol Microbiol 1996,.20, 109–117.
    [145] Decottignies, A., Grant, A. M., Nichols, et al.. ATPase and multidrug transport activities of the overexpressed yeast ABC protein Yor1p. J Biol Chem 1998,273, 12612-12622.
    [146] Paulsen, I. T., Brown, M. H. & Skurray, R. A.. Proton-dependent multidrug effluxsystems. Microbiol Rev ,1996,60, 575–608.
    [147] Owsianik, G., Balzi, l, L. & Ghislain, M. Control of 26S proteasome expression by transcription factors regulating multidrug resistance in Saccharomyces cerevisiae, Mol Microbiol 2002, 43, 1295–1308.
    [148] Huisinga, K. L. & Pugh, B. F.. A genome-wide housekeeping role for TFIID and a highly regulated stress-related role for SAGA in Saccharomyces cerevisiae. Mol Cell .2004,13, 573-585.
    [149] Shin,S.and Kim, J.H..Antifungal activities of essential oils from Thymus quinquecostatus and T. magnus. Planta Med 2004,70, 1090-1092.
    [150] Natarajan, K., Meyer, M. R., Jackson, et al. Transcriptional profiling shows that Gcn4p is a master regulator of gene expression during amino acid starvation in yeast. Mol Cell Biol 2001,. 21, 4347-4368.
    [151] Bammert, G.F. & Fostel, J.M. Genome-wide expression patterns in Saccharomyces cerevisiae: comparison of drug treatments and genetic alterations affecting biosynthesis of ergosterol. Antimicrob Agents Chemother .2000,44, 1255–1265.
    [152] Zhang, L., Zhang, Y., Zhou, Y., et al. Response of gene expression in Saccharomyces cerevisiae to amphotericin B and nystatin measured by microarrays. J Antimicrob Chemother . 2002,49, 905-915.
    [153] Akache B , Turcotte B. New regulators of drug sensitivity in the family of yeast zinc cluster proteins. J Biol Chem , 2002 , 277 (24) : 21254 - 21260
    [154] Hellauer K, Akache B , MacPherson S , et al. Zinc cluster protein Rdr1p is a transcriptional repressor of the PDR5 gene encoding a multidrug transporter. J Biol Chem , 2002 , 277 ( 20 ) : 17671 -17676

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700