用户名: 密码: 验证码:
青春期前双酚A暴露对大鼠卵泡发育的影响及其相关基因的表达与调控
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
双酚A(Bisphenol A,BPA)学名2,2-二(4-羟基苯基)丙烷,是世界已知重要的环境雌激素之一。BPA是人工合成的高分子材料的单体,是生产塑料增塑剂、农药、涂料等化工产品的原料。在婴儿奶瓶、饭盒、玩具及自来水管等材料中广泛存在。双酚A单体可从盛装食物或饮料的塑料容器中游离出来,在高温或强酸碱等条件下可加速游离过程。BPA暴露人群非常广泛,流行病学研究表明,超过90%的个体尿中可检测到BPA。BPA的化学结构与乙烯雌酚类似,进入体内可模拟雌激素活性。
     目前欧盟、美国和中国等众多国家只是禁止含BPA的塑料用于制造婴儿奶瓶,实际上,青春期前的儿童BPA暴露也是一个值得关注的问题。这个时期是生殖系统发育成熟前的一个关键阶段。这个时期的儿童可能通过多种途径暴露于BPA,特别是发生食品和饮水污染事件时,儿童还可能会短期暴露于较高浓度的BPA。尽管环境雌激素与天然激素相比在体内的浓度较低,但由于处于发育期的儿童下丘脑-垂体-性腺轴尚未发育成熟,体内性激素水平比较低,此时的个体对外源性雌激素的反应较成年敏感。同时,较高浓度的BPA对卵巢发育的毒性效应问题也不容忽视。我们推测,青春期前较高浓度BPA短期暴露很可能会影响雌性卵泡的正常发育过程,并且有可能通过影响卵泡发育相关调控基因而发挥作用。本研究通过观察促进卵泡发育的Kitlg、Figla和H1foo基因以及抑制卵泡发育的AMH基因表达的表达和DNA甲基化模式,探讨卵巢发育相关的基因在大鼠BPA短期暴露所致卵巢发育毒性中的作用及其分子生物学机制,为进一步阐明BPA对儿童生殖系统发育的影响提供实验依据。
     第一部分:青春期前BPA暴露对卵巢发育和功能的影响
     目的:通过建立青春期前BPA短期暴露的大鼠动物模型,观察BPA对卵巢形态、功能,卵泡细胞的凋亡以及卵巢细胞超微结构等改变,探讨青春期前BPA暴露对卵巢发育和功能的影响。
     方法:28日龄雌性wistar大鼠通过腹腔注射BPA(10mg/kg、40mg/kg、160mg/kg),每天染毒1次,连续染毒1周。观察卵巢重量、各级卵泡构成、卵泡凋亡(TUNEL)、阴道开放率、第一次动情期出现率、血清性激素水平、卵巢细胞超微结构。
     结果:
     1.青春期前大鼠BPA暴露后,染毒组大鼠在各个时间段的体重与对照组比较差异均无统计学意义(P>0.05);BPA染毒组的卵巢重量和脏器系数随染毒剂量升高而出现下降,其中40mg/kg和160mg/kgBPA组大鼠卵巢重量与对照组比较有显著性差异(P<0.01)。
     2.各染毒剂量组阴道开放率和和首次动情期出现率对照组比较差异均无统计学意义(P>0.05)。
     3.随染毒剂量增加,各染毒组大鼠血清雌E2水平有下降趋势,与对照组比较无显著性差异(P>0.05)。而血清P4水平与对照组比较有显著性差异(P<0.01),其中,40mg/kg和160mg/kg BPA组血清P4水平下降与对照组比较有显著性差异(P<0.01)。
     4.随着染毒剂量升高,各染毒组卵泡数量呈下降趋势,其中10mg/kg、40mg/kg和160mg/kg BPA组与对照组比较差异有统计学意义(P<0.05,P<0.01和P<0.01);始基卵泡、初级卵泡/腔前卵泡、有腔卵泡和黄体构成比均呈下降趋势,而闭锁卵泡构成比有升高趋势,其中40mg/kg和160mg/kg BPA组与对照组比较差异有统计学意义(P<0.01)。
     5.随染毒剂量的增加,各染毒剂量组中,腔前卵泡、有腔卵泡以及黄体/白体凋亡率均呈现上升趋势,与对照组比较差异均有统计学意义。
     6.电镜观察卵巢细胞超微结构,与对照组比较,40mg/kg BPA组和160mg/kgBPA组镜下的细胞超微结构显示,细胞内脂肪变性增多,次级溶酶体增多,尤其在160mg/kg BPA组中,大部分细胞胞质中几乎都充斥着脂肪颗粒和次级溶酶体。
     第二部分:青春期前BPA暴露对卵泡发育相关基因表达的影响
     目的:青春期前BPA暴露影响卵泡发育过程中,对发育相关基因表达的影响,探讨BPA卵巢毒性的分子机制。
     方法:整体动物模型同前,用实时荧光定量PCR、Western blot分析以及免疫组化技术检测卵泡发育相关基因:干细胞因子(KITLG)、基础螺旋环转录因子(FIGLA)、卵母细胞特有的H1连结组蛋白(H1FOO)、抗苗勒激素(AMH)的mRNA及其蛋白的表达水平。
     结果:
     1.各染毒剂量组Kitlg mRNA相对表达量呈下降趋势,其中160mg/kgBPA组与对照组比较差异具有统计学意义(p﹤0.01);各染毒剂量组Figla mRNA相对表达量呈下降趋势,其中160mg/kgBPA组与对照组比较差异具有统计学意义(p﹤0.05);各染毒剂量组H1foo mRNA相对表达量呈下降趋势,与对照组比较差异均具有统计学意义(p﹤0.01);各染毒剂量组AMH mRNA相对表达量呈上升趋势,其中40mg/kgBPA组和160mg/kgBPA组与对照组比较差异具有统计学意义(p﹤0.05和p﹤0.01)。
     2. Western blot结果显示,KITLG蛋白表达水平在各BPA染毒组均呈明显下调,其中10mg/kg BPA组和40mg/kg BPA组与对照组比较差异有统计学意义(P<0.05),160mg/kg BPA组与对照组比较差异有统计学意义(P<0.01);FIGLA蛋白表达水平在160mg/kg BPA组呈明显下调,与对照组比较差异有统计学意义(P<0.05);H1FOO蛋白表达水平在各BPA染毒组均呈明显下调,其中10mg/kgBPA组与对照组比较差异有统计学意义(P<0.05),40mg/kg和160mg/kg BPA组与对照组比较差异有统计学意义(P<0.01);AMH蛋白表达水平在各BPA染毒组均呈明显上调,其中10mg/kg BPA组与对照组比较差异有统计学意义(P<0.05),40mg/kg和160mg/kg BPA组与对照组比较差异有统计学意义(P<0.01)。
     第三部分青春期前BPA暴露影响卵泡发育的表观遗传学调控机制研究
     目的:从卵巢细胞DNA总甲基化状态和卵泡发育相关基因启动子区DNA甲基化状态两个方面,初步探讨BPA的表观遗传学的调控机制。
     方法:整体动物模型同前,卵巢细胞DNA总甲基化采用免疫组化检测卵巢细胞5-甲基胞嘧啶(5-mC)水平。采用亚硫酸氢盐修饰后测序法(BSP)检测卵巢发育相关基因Kitlg启动子区CpG岛的甲基化状况。
     结果:
     1.随着染毒剂量的增加,卵巢颗粒细胞5-mC免疫组化的平均光密度值(OD)和积分光密度值(IOD)呈总体上升趋势,其中,40mg/kg BPA组和160mg/kg BPA组与对照组比较差异均有统计学意义(P<0.05)。
     2.采用Methprimer软件对以上全部基因的启动子区域进行CpG岛检测,只有Kitlg基因启动子区存在一个CpG岛,35个甲基化位点。Kitlg基因BSP产物重组T载体质粒的测序结果显示,随着染毒剂量增加,发生Cs的个数呈上升趋势,其中,160mg/kg BPA组Cs的甲基化率与对照组比较差异有统计学意义(P<0.05);第7甲基化位点(Cs)在对照组存在甲基化状态,在染毒组中出现较为明显的去甲基化现象;第16甲基化位点在对照组呈现无甲基化状态,而随着染毒剂量增加,在染毒组中出现较为明显的甲基化现象。
     结论:
     根据以上结果结合讨论可得出如下结论:
     1.青春期前BPA较高浓度短期暴露可能对卵巢卵泡的发育和性激素分泌功能具有抑制毒效应,主要表现为卵巢重量及卵巢脏器系数下降、卵泡总数下降、生长卵泡构成比下降及闭锁卵泡构成比升高、卵泡凋亡率升高、血清孕激素水平下降。
     2.促进卵泡发育的Kitlg基因、Figla基因、H1foo基因表达水平下调以及抑制卵泡发育的AMH基因表达上调,可能在青春期前BPA暴露抑制卵巢发育过程中发挥了重要作用。
     3. DNA甲基化模式的改变在Kitlg、Figla、H1foo及AMH等基因表达调控中的可能作用值得我们重视;Kitlg基因表达下调可能与其启动子区CpG岛甲基化模式的改变有关。
Introduction
     Bisphenol A (BPA,CAS:80-05-7) name2,2-two (4-hydroxyphenyl) propane,is recognized as one of several environmental estrogens. BPA is a monomer of thesynthetic polymer material that is used in the production of plasticizers, pesticides,paint, and other chemical products. BPA is used in a wide variety of products, such asbaby bottles, lunch boxes, toys, water pipes, and other materials. BPA monomers canleach from a plastic container that holds food or beverages, and the release process isaccelerated under conditions of high temperature, strong acidity, or strong alkalinity.Human exposure to BPA is extensive; epidemiological studies have shown that thechemical could be detected in the urine of more than90%of tested individuals. Thechemical structure of BPA is similar to that of estradiol (E2); it can therefore mimicestrogenic actions in the body.
     The use of BPA in baby products has already been banned in the European Union,the United States, China, and many other countries. However, the prepubertal periodis also an important time in child development, and BPA exposure will occur duringthis period through a variety of pathways. Children are especially vulnerable to higherconcentrations of BPA as a consequence of food and drinking water contamination.Although environmental concentration compared with estrogens in vivo is low,thehypothalamus-pituitary-gonadal axis of children is not yet mature during thepre-puberty stage, and the levels of sex hormones in the body are relatively low;therefore, children’s reproductive systems are more sensitive to environmentalestrogens than those of adults. We speculated that exposure to high concentrations ofBPA during the prepubertal period may affect the normal developmental process of ovarian follicles, and the resulting toxic effects may be mediated by the regulatorygenes involved in follicular development. This study explored the roles andmechanisms of genes that are associated with ovarian development in the toxic effectsof short-term BPA exposure on rat ovarian development. We accomplished this aim bystudying changes in expression among follicle development-promoting genes, such asKitlg, Figla and H1foo, and follicular development inhibitory genes, such as AMH.This study could provide an important experimental evidence for the reproductivesystem developmental effect of children exposure to BPA.
     Part Ⅰ: Effect of bisphenol A on ovarian development and function inprepubertal rat.
     Objective: The aim of this study was to determine whether BPA could affect ovariandevelopment and function in prepubertal rat.
     Methods: In this study,28-day-old female Wistar rats were exposed to BPA throughdaily intraperitoneal injections (at rates of10mg/kg,40mg/kg, and160mg/kg) forone week. The effects of BPA on ovarian structure and function were assessed bymeasuring the weight of the ovaries, counting ovarian follicles, apoptosis in ovarianfollicles, ratios of vaginal opening and first estrus, assaying sex hormone levels in theserum, and the ultrastrueture of ovarian tissue use of transmission electronmicroscopy.
     Results:
     1. Prepubertal rats exposed to BPA for7days, no significant difference wasobserved in body weights between the BPA exposure groups and the control group,whereas the ovarian weights in the BPA exposure groups decreased with increasingBPA doses. The ovarian weights and ovary coefficients of the rats from the40mg/kgand160mg/kg BPA groups were significantly different from those of the controlgroup (P<0.01)
     2. The ratios of vaginal opening and first estrus have no significant differencebetween the BPA exposure groups and the control group(P>0.05).
     3. The levels of serum E2in rats from each BPA group decreased with increasingdoses of BPA, but the results were not significantly different from that of the rats in the control group (P0.05). However, the levels of serum P4in rats from the BPAgroups were significantly different from that of the control group rats (P<0.01); inparticular, the decreases of serum P4in the40mg/kg and160mg/kg BPA groupswere significantly different from that of the control group, respectively (P<0.01).
     4. The number of follicles in each BPA exposure group decreased with increasingBPA doses; in comparison to the control group, significant changes were observed inthe10mg/kg,40mg/kg, and160mg/kg BPA groups (P<0.05, P<0.01, and P<0.01,respectively); In addition, the constituent ratios of primordial follicles, primaryfollicles/preantral follicles, antral follicles, and corpus luteum (CL) all decreased inresponse to increasing BPA concentrations, but the constituent ratio of atretic folliclesincreased. These changes in the40mg/kg and160mg/kg BPA groups relative to thecontrol group were statistically significant (P<0.01).
     5. Compered with control group, the apoptosis ratios of preantral follicles, antralfollicles, and corpus luteum (CL) all increased in response to increasing BPAconcentrations.
     6. The ovarian tissue ultrastrueture of steatosis and secondary lysosomes allincreased in response to increasing BPA concentrations, compered with control group.
     Part Ⅱ: Effect of ovarian follicle development-related genes expression inprepubertal rat exposed to bisphenol A.
     Objective: The aim of this study was to determine whether BPA could affect ovarianfollicle development-related genes expression in prepubertal rat.
     Methods: In this study,28-day-old female Wistar rats were exposed to BPA throughdaily intraperitoneal injections (at rates of10mg/kg,40mg/kg, and160mg/kg) forone week. The mRNA and protein expression levels of follicle development-relatedgenes: Stem cell factor(Kitlg), Factor In the Germline alpha (Figla), oocyte-specifichistone H1variant (H1foo), and anti-Mullerian hormone (AMH) were analyzed usingreal-time quantitative PCR, western blots and immunohistochemistry.
     Results:
     1. The real-time PCR revealed that Kitlg gene mRNA expression levels in the160mg/kg BPA group significantly decreased (P<0.01) in comparison to the control. The mRNA expression levels of the Figla gene in all of the BPA groups significantlydecreased (P<0.05) relative to the control. And the mRNA expression levels of theH1foo gene in all of the BPA groups significantly decreased (P<0.01) relative to thecontrol, but the mRNA expression levels of the AMH gene in the160mg/kg BPAgroup significantly increased (P<0.01) relative to the control.
     2. Western blot analysis revealed that protein expression levels of KITLG in eachBPA group significantly decreased relative to the control, with P<0.05for the10mg/kg BPA and40mg/kg group and P<0.01for the160mg/kg groups, and theprotein expression levels of FIGLA in the160mg/kg BPA group significantlydecreased (P<0.05) relative to the control, and the protein expression level of H1FOOin each BPA group significantly decreased relative to the control, with P<0.05for the10mg/kg BPA group and P<0.01for the40mg/kg and160mg/kg groups, but theprotein expression level of the AMH gene in each BPA group significantly increasedrelative to the control, with P<0.05for the10mg/kg BPA group and P<0.01for the40mg/kg and160mg/kg groups.
     Part Ⅲ: Study on epigenetic regulation mechanism of toxicity during ovarianfollicle development in prepubertal rat exposed to bisphenol A.
     Objective: The aim of this study was to determine whether BPA could affect DNAtotal methylation status and gene promoter region DNA methylation status of ovarianfollicle development-related genes in prepubertal rat.
     Methods: In this study,28-day-old female Wistar rats were exposed to BPA throughdaily intraperitoneal injections (at rates of10mg/kg,40mg/kg, and160mg/kg) forone week. Study on global methylation status, and gene promoter region DNAmethylation status, to explore the epigenetic regulation mechanisms underlying BPAtoxicity during ovarian development.
     Results:
     1. Compered with control group,the OD and IOD of combined5-mC scores ofovarian granulosa cell increased gradually in response to increasing BPAconcentrations. These changes in the40mg/kg and160mg/kg BPA groups relative tothe control group were statistically significant (P<0.05).
     2. All genes test results from the Methprimer software showed only that there isone CpG island in the promoter region of the Kitlg gene, with35methylationcites(Cs). and then use the bisulfite sequencing polymerase chain reaction (BSP)method to test the methylation status of Kitlg gene. The sequencing results showedthat levels of methylation cites increased with increasing doses of BPA. in particular,the increases of methylation cites in the160mg/kg BPA groups was significantlydifferent from that of the control group (P<0.05). and7Cs exists methylation status inthe control group, but demethylation in BPA exposure group;16Cs show nomethylation status in the control group,but obvious methylation in BPA exposuregroup.
     Conclusion:
     1. Our results indicated that short-term, concentrated BPA exposure during theprepubertal period may have inhibitory effects on ovarian follicle development andhormone secretion, which were observed as the ovarian weight, counting ovarianfollicles were decreased, the constituent ratios of all growing follicles decreased andatretic follicles increased, the apoptosis ratios of follicles increased, and the inhibitionof progesterone secretion.
     2. The down-regulation of Kitlg, Figla and H1foo genes and the up-regulation ofthe AMH gene may play important roles in the BPA-induced mechanism of toxicitythat affects ovarian development.
     3. The possible role of DNA methylation patterns change in the regulation ofgene expression in Kitlg, Figla, H1foo and AMH genes are clearly worth considering;the mRNA expression levels of the Kitlg gene decreased significantly in the BPAgroups,may associated with promoter region methylation pattern.
引文
[1] Brotons JA, Olea-Serrano MF, Villalobos M, Pedraza V, Olea N. Xenoestrogensreleased from lacquer coatings in food cans. Environ Health Perspect.1995;103:608-12.
    [2] Hunt PA, Susiarjo M, Rubio C, Hassold TJ. The bisphenol A experience: a primerfor the analysis of environmental effects on mammalian reproduction. Biol Reprod.2009;81:807-13.
    [3] Soto AM, Sonnenschein C, Chung KL, Fernandez MF, Olea N, Serrano FO. TheE-SCREEN assay as a tool to identify estrogens: an update on estrogenicenvironmental pollutants. Environ Health Perspect.1995;103Suppl7:113-22.
    [4] Nerin C, Fernandez C, Domeno C, Salafranca J. Determination of potentialmigrants in polycarbonate containers used for microwave ovens by high-performanceliquid chromatography with ultraviolet and fluorescence detection. J Agric FoodChem.2003;51:5647-53.
    [5] Brede C, Fjeldal P, Skjevrak I, Herikstad H. Increased migration levels ofbisphenol A from polycarbonate baby bottles after dishwashing, boiling and brushing.Food Addit Contam.2003;20:684-9.
    [6] Vandenberg LN, Chahoud I, Heindel JJ, Padmanabhan V, Paumgartten FJ,Schoenfelder G. Urinary, circulating, and tissue biomonitoring studies indicatewidespread exposure to bisphenol A. Environ Health Perspect.2010;118:1055-70.
    [7] Sharpe RM. The 'oestrogen hypothesis'-where do we stand now? Int J Androl.2003;26:2-15.
    [8] Ohyama K.[Disorders of sex differentiation caused by exogenous hormones].Nihon Rinsho.2004;62:379-84.
    [9] Miyagawa S, Buchanan DL, Sato T, Ohta Y, Nishina Y, Iguchi T. Characterizationof diethylstilbestrol-induced hypospadias in female mice. Anat Rec.2002;266:43-50.
    [10] Matthews JB, Twomey K, Zacharewski TR. In vitro and in vivo interactions ofbisphenol A and its metabolite, bisphenol A glucuronide, with estrogen receptorsalpha and beta. Chem Res Toxicol.2001;14:149-57.
    [11] Howdeshell KL, Peterman PH, Judy BM, Taylor JA, Orazio CE, Ruhlen RL, et al.Bisphenol A is released from used polycarbonate animal cages into water at roomtemperature. Environ Health Perspect.2003;111:1180-7.
    [12] Toda K, Miyaura C, Okada T, Shizuta Y. Dietary bisphenol A prevents ovariandegeneration and bone loss in female mice lacking the aromatase gene (Cyp19). Eur JBiochem.2002;269:2214-22.
    [13] Markey CM, Wadia PR, Rubin BS, Sonnenschein C, Soto AM. Long-term effectsof fetal exposure to low doses of the xenoestrogen bisphenol-A in the female mousegenital tract. Biol Reprod.2005;72:1344-51.
    [14] Braun JM, Hauser R. Bisphenol A and children's health. Curr Opin Pediatr.2011;23:233-9.
    [15]美资助研究双酚A对儿童影响.塑料助剂.2010;2:28.
    [16] Bushnik T, Haines D, Levallois P, Levesque J, Van Oostdam J, Viau C. Lead andbisphenol A concentrations in the Canadian population. Health Rep.2010;21:7-18.
    [17] Becker K, Goen T, Seiwert M, Conrad A, Pick-Fuss H, Muller J, et al. GerES IV:phthalate metabolites and bisphenol A in urine of German children. Int J Hyg EnvironHealth.2009;212:685-92.
    [18] Sohoni P, Sumpter JP. Several environmental oestrogens are also anti-androgens.J Endocrinol.1998;158:327-39.
    [19] Villalobos M, Olea N, Brotons JA, Olea-Serrano MF, Ruiz de Almodovar JM,Pedraza V. The E-screen assay: a comparison of different MCF7cell stocks. EnvironHealth Perspect.1995;103:844-50.
    [20] Kamata R, Itoh K, Nakajima D, Kageyama S, Sawabe A, Terasaki M, et al. Thefeasibility of using mosquitofish (Gambusia affinis) for detectingendocrine-disrupting chemicals in the freshwater environment. Environ Toxicol Chem.2011;30:2778-85.
    [21] El Sheikh Saad H, Meduri G, Phrakonkham P, Berges R, Vacher S, Djallali M, etal. Abnormal peripubertal development of the rat mammary gland following exposurein utero and during lactation to a mixture of genistein and the food contaminantvinclozolin. Reprod Toxicol.2011;32:15-25.
    [22] Can A, Semiz O, Cinar O. Bisphenol-A induces cell cycle delay and alterscentrosome and spindle microtubular organization in oocytes during meiosis. MolHum Reprod.2005;11:389-96.
    [23]李君君,李力军,徐惠诚,赵增强,高彬,刘琨.双酚A的健康影响以及各国对其在塑料制品中的限量要求.环境与健康杂志.2012;29:379-83.
    [24] Edginton AN, Ritter L. Predicting plasma concentrations of bisphenol A inchildren younger than2years of age after typical feeding schedules, using aphysiologically based toxicokinetic model. Environ Health Perspect.2009;117:645-52.
    [25] Mielke H, Gundert-Remy U. Bisphenol A levels in blood depend on age andexposure. Toxicol Lett.2009;190:32-40.
    [26] Andersson AM, Skakkebaek NE. Exposure to exogenous estrogens in food:possible impact on human development and health. Eur J Endocrinol.1999;140:477-85.
    [27] Klein KO, Baron J, Colli MJ, McDonnell DP, Cutler GB, Jr. Estrogen levels inchildhood determined by an ultrasensitive recombinant cell bioassay. J Clin Invest.1994;94:2475-80.
    [28] Parent AS, Teilmann G, Juul A, Skakkebaek NE, Toppari J, Bourguignon JP. Thetiming of normal puberty and the age limits of sexual precocity: variations around theworld, secular trends, and changes after migration. Endocr Rev.2003;24:668-93.
    [29] Monje L, Varayoud J, Luque EH, Ramos JG. Neonatal exposure to bisphenol Amodifies the abundance of estrogen receptor alpha transcripts with alternative5'-untranslated regions in the female rat preoptic area. J Endocrinol.2007;194:201-12.
    [30] Braniste V, Jouault A, Gaultier E, Polizzi A, Buisson-Brenac C, Leveque M, et al.Impact of oral bisphenol A at reference doses on intestinal barrier function and sexdifferences after perinatal exposure in rats. Proc Natl Acad Sci U S A.2010;107:448-53.
    [31] Hengstler JG, Foth H, Gebel T, Kramer PJ, Lilienblum W, Schweinfurth H, et al.Critical evaluation of key evidence on the human health hazards of exposure tobisphenol A. Crit Rev Toxicol.2011;41:263-91.
    [32] Yamasaki K, Sawaki M, Takatsuki M. Immature rat uterotrophic assay ofbisphenol A. Environ Health Perspect.2000;108:1147-50.
    [33] Lee CK, Kim SH, Moon DH, Kim JH, Son BC, Kim DH, et al.[Effects ofbisphenol A on the placental function and reproduction in rats]. J Prev Med PublicHealth.2005;38:330-6.
    [34] Golub MS, Wu KL, Kaufman FL, Li LH, Moran-Messen F, Zeise L, et al.Bisphenol A: developmental toxicity from early prenatal exposure. Birth Defects ResB Dev Reprod Toxicol.2010;89:441-66.
    [35] Lewis EM, Barnett JF, Jr., Freshwater L, Hoberman AM, Christian MS. Sexualmaturation data for Crl Sprague-Dawley rats: criteria and confounding factors. DrugChem Toxicol.2002;25:437-58.
    [36] Fernandez-Fernandez R, Navarro VM, Barreiro ML, Vigo EM, Tovar S, SirotkinAV, et al. Effects of chronic hyperghrelinemia on puberty onset and pregnancyoutcome in the rat. Endocrinology.2005;146:3018-25.
    [37]施新猷.医学动物实验方法.北京:人民卫生出版社;1981. p.1141-3.
    [38]黄雅卿,张文昌,李煌元.镉对雌性大鼠体重变化和卵巢脏器系数的影响.职业与健康.2003;19:7-9.
    [39] Khurana S, Ranmal S, Ben-Jonathan N. Exposure of newborn male and femalerats to environmental estrogens: delayed and sustained hyperprolactinemia andalterations in estrogen receptor expression. Endocrinology.2000;141:4512-7.
    [40] Nah WH, Park MJ, Gye MC. Effects of early prepubertal exposure to bisphenolA on the onset of puberty, ovarian weights, and estrous cycle in female mice. Clin ExpReprod Med.2011;38:75-81.
    [41] Rivera OE, Varayoud J, Rodriguez HA, Munoz-de-Toro M, Luque EH. Neonatalexposure to bisphenol A or diethylstilbestrol alters the ovarian follicular dynamics inthe lamb. Reprod Toxicol.2011;32:304-12.
    [42]苗明三.实验动物和动物实验技术[M].第一版ed:中国中医药出版社;1997.
    [43] Urbanski HF, Ojeda SR. Activation of luteinizing hormone-releasing hormonerelease advances the onset of female puberty. Neuroendocrinology.1987;46:273-6.
    [44]伍传金.雌性大鼠青春期起始的内分泌调控机制.中国食品卫生杂志.1994:51-4.
    [45]刘兆平张,张文众,宋雁,向钱,王伟,李宁.大豆异黄酮和双酚A联合暴露对雌性大鼠不同组织雌激素受体表达的影响[J].中国食品卫生杂志.2008:510-4.
    [46]周伟刘,崔毓桂,刘金勇.双酚A对颗粒细胞激素生成及相关甾体生成酶的影响[J].江苏医药.2008:62-5.
    [47] Mlynarcikova A, Kolena J, Fickova M, Scsukova S. Alterations in steroidhormone production by porcine ovarian granulosa cells caused by bisphenol A andbisphenol A dimethacrylate. Mol Cell Endocrinol.2005;244:57-62.
    [48] Fernandez M, Bourguignon N, Lux-Lantos V, Libertun C. Neonatal exposure tobisphenol a and reproductive and endocrine alterations resembling the polycysticovarian syndrome in adult rats. Environ Health Perspect.2010;118:1217-22.
    [49] Kwintkiewicz J, Nishi Y, Yanase T, Giudice LC. Peroxisomeproliferator-activated receptor-gamma mediates bisphenol A inhibition ofFSH-stimulated IGF-1, aromatase, and estradiol in human granulosa cells. EnvironHealth Perspect.2010;118:400-6.
    [50] Tilly JL, Kowalski KI, Johnson AL, Hsueh AJ. Involvement of apoptosis inovarian follicular atresia and postovulatory regression. Endocrinology.1991;129:2799-801.
    [51]李爱冬、羊慧君、王凡.大鼠卵巢颗粒细胞IGF-I、TGF-β、Fas-L表达与卵泡闭锁发生的研究.华西医科大学学报.1999;30:158-61.
    [52] Peretz J, Gupta RK, Singh J, Hernandez-Ochoa I, Flaws JA. Bisphenol A impairsfollicle growth, inhibits steroidogenesis, and downregulates rate-limiting enzymes inthe estradiol biosynthesis pathway. Toxicol Sci.2011;119:209-17.
    [53] Peretz J, Craig ZR, Flaws JA. Bisphenol A inhibits follicle growth and inducesatresia in cultured mouse antral follicles independently of the genomic estrogenicpathway. Biol Reprod.2012;87:63.
    [54] Xu J, Osuga Y, Yano T, Morita Y, Tang X, Fujiwara T, et al. Bisphenol A inducesapoptosis and G2-to-M arrest of ovarian granulosa cells. Biochem Biophys ResCommun.2002;292:456-62.
    [55] O'Shea JD, Hay MF, Cran DG. Ultrastructural changes in the theca interna duringfollicular atresia in sheep. J Reprod Fertil.1978;54:183-7.
    [56] Ronnback C, de Rooij DG. Effects of3,3',4,4'-tetrachlorobiphenyl on foetal germcells in two mouse strains after repeated treatment of the dams during and afterpregnancy. Pharmacol Toxicol.1994;74:287-93.
    [57] Wolf CJ, Ostby JS, Gray LE, Jr. Gestational exposure to2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) severely alters reproductive function offemale hamster offspring. Toxicol Sci.1999;51:259-64.
    [58] Hiyama M, Choi EK, Wakitani S, Tachibana T, Khan H, Kusakabe KT, et al.Bisphenol-A (BPA) affects reproductive formation across generations in mice. J VetMed Sci.2011;73:1211-5.
    [59] Braw-Tal R, Roth Z. Gene expression for LH receptor,17alpha-hydroxylase andStAR in the theca interna of preantral and early antral follicles in the bovine ovary.Reproduction.2005;129:453-61.
    [60] McLaughlin EA, McIver SC. Awakening the oocyte: controlling primordialfollicle development. Reproduction.2009;137:1-11.
    [61] Ginsburg M, Snow MH, McLaren A. Primordial germ cells in the mouse embryoduring gastrulation. Development.1990;110:521-8.
    [62]屈丽华,罗文奇,刘月顺,龙治峰,罗红梅,李美香,石金凤,莫中成.大鼠卵巢的生后发育.四川动物.2009;28:746-9.
    [63] Smith MA, Court EL, Smith JG. Stem cell factor: laboratory and clinical aspects.Blood Rev.2001;15:191-7.
    [64] Abir R, Fisch B, Jin S, Barnnet M, Kessler-Icekson G, Ao A. Expression of stemcell factor and its receptor in human fetal and adult ovaries. Fertil Steril.2004;82Suppl3:1235-43.
    [65] Liu L, Rajareddy S, Reddy P, Jagarlamudi K, Du C, Shen Y, et al.Phosphorylation and inactivation of glycogen synthase kinase-3by soluble kit ligandin mouse oocytes during early follicular development. J Mol Endocrinol.2007;38:137-46.
    [66] Liu K. Stem cell factor (SCF)-kit mediated phosphatidylinositol3(PI3) kinasesignaling during mammalian oocyte growth and early follicular development. FrontBiosci.2006;11:126-35.
    [67] Soyal SM, Amleh A, Dean J. FIGalpha, a germ cell-specific transcription factorrequired for ovarian follicle formation. Development.2000;127:4645-54.
    [68] Choi Y, Rajkovic A. Genetics of early mammalian folliculogenesis. Cell Mol LifeSci.2006;63:579-90.
    [69] Huntriss J, Gosden R, Hinkins M, Oliver B, Miller D, Rutherford AJ, et al.Isolation, characterization and expression of the human Factor In the Germline alpha(FIGLA) gene in ovarian follicles and oocytes. Mol Hum Reprod.2002;8:1087-95.
    [70] Suzumori N, Pangas SA, Rajkovic A. Candidate genes for premature ovarianfailure. Curr Med Chem.2007;14:353-7.
    [71] van Dooren MF, Bertoli-Avellab AM, Oldenburg RA. Premature ovarian failureand gene polymorphisms. Curr Opin Obstet Gynecol.2009;21:313-7.
    [72] Tanaka M, Hennebold JD, Macfarlane J, Adashi EY. A mammalianoocyte-specific linker histone gene H1oo: homology with the genes for theoocyte-specific cleavage stage histone (cs-H1) of sea urchin and the B4/H1M histoneof the frog. Development.2001;128:655-64.
    [73] Tanaka M, Kihara M, Hennebold JD, Eppig JJ, Viveiros MM, Emery BR, et al.H1FOO is coupled to the initiation of oocytic growth. Biol Reprod.2005;72:135-42.
    [74] Furuya M, Tanaka M, Teranishi T, Matsumoto K, Hosoi Y, Saeki K, et al. H1foois indispensable for meiotic maturation of the mouse oocyte. J Reprod Dev.2007;53:895-902.
    [75] Durlinger AL, Gruijters MJ, Kramer P, Karels B, Ingraham HA, Nachtigal MW,et al. Anti-Mullerian hormone inhibits initiation of primordial follicle growth in themouse ovary. Endocrinology.2002;143:1076-84.
    [76] Schmidt KL, Kryger-Baggesen N, Byskov AG, Andersen CY. Anti-Mullerianhormone initiates growth of human primordial follicles in vitro. Mol Cell Endocrinol.2005;234:87-93.
    [77] Ikeda Y, Nagai A, Ikeda MA, Hayashi S. Neonatal estrogen exposure inhibitssteroidogenesis in the developing rat ovary. Dev Dyn.2001;221:443-53.
    [78] Ikeda Y, Nagai A, Ikeda MA, Hayashi S. Increased expression ofMullerian-inhibiting substance correlates with inhibition of follicular growth in thedeveloping ovary of rats treated with E2benzoate. Endocrinology.2002;143:304-12.
    [79] te Velde ER, Pearson PL. The variability of female reproductive ageing. HumReprod Update.2002;8:141-54.
    [80] Themmen AP. Anti-Mullerian hormone: its role in follicular growth initiation andsurvival and as an ovarian reserve marker. J Natl Cancer Inst Monogr.2005:18-21.
    [81] Kandaraki E, Chatzigeorgiou A, Livadas S, Palioura E, Economou F, KoutsilierisM, et al. Endocrine disruptors and polycystic ovary syndrome (PCOS): elevatedserum levels of bisphenol A in women with PCOS. J Clin Endocrinol Metab.2011;96:E480-4.
    [82] Wolffe AP, Matzke MA. Epigenetics: regulation through repression. Science.1999;286:481-6.
    [83] Holliday R. The possibility of epigenetic transmission of defects induced byteratogens. Mutat Res.1998;422:203-5.
    [84] Jablonka E, Lamb MJ. The changing concept of epigenetics. Ann N Y Acad Sci.2002;981:82-96.
    [85] Chuang JC, Jones PA. Epigenetics and microRNAs. Pediatr Res.2007;61:24R-9R.
    [86] Allis CJ, T.; Reinberg, D. Epigenetics edn. Cold Spring Harbor Laboratory Press;2007.
    [87] Millar DH, R.; Grigg, G. Five not four: History and significance of the fifth base.In: Beck,S.; Olek, A., editors. The Epigenome, Molecular Hide and Seek. Wiley-VCHVerlag GmbH Co.KGaA;2003. p.3-20.
    [88] Grewal SI, Moazed D. Heterochromatin and epigenetic control of geneexpression. Science.2003;301:798-802.
    [89] Reik W, Dean W, Walter J. Epigenetic reprogramming in mammaliandevelopment. Science.2001;293:1089-93.
    [90] Riggs AD. X inactivation, differentiation, and DNA methylation. Cytogenet CellGenet.1975;14:9-25.
    [91] Holliday R, Pugh JE. DNA modification mechanisms and gene activity duringdevelopment. Science.1975;187:226-32.
    [92] Turner BM. Epigenetic responses to environmental change and their evolutionaryimplications. Philos Trans R Soc Lond B Biol Sci.2009;364:3403-18.
    [93] Baylin SB, Esteller M, Rountree MR, Bachman KE, Schuebel K, Herman JG.Aberrant patterns of DNA methylation, chromatin formation and gene expression incancer. Hum Mol Genet.2001;10:687-92.
    [94] Illingworth RS, Bird AP. CpG islands--'a rough guide'. FEBS Lett.2009;583:1713-20.
    [95] Turek-Plewa J, Jagodzinski PP. The role of mammalian DNA methyltransferasesin the regulation of gene expression. Cell Mol Biol Lett.2005;10:631-47.
    [96] Zama AM, Uzumcu M. Epigenetic effects of endocrine-disrupting chemicals onfemale reproduction: an ovarian perspective. Front Neuroendocrinol.2010;31:420-39.
    [97] Hou L, Zhang X, Wang D, Baccarelli A. Environmental chemical exposures andhuman epigenetics. Int J Epidemiol.2012;41:79-105.
    [98] Bernal AJ, Jirtle RL. Epigenomic disruption: the effects of early developmentalexposures. Birth Defects Res A Clin Mol Teratol.2010;88:938-44.
    [99] Dolinoy DC, Huang D, Jirtle RL. Maternal nutrient supplementation counteractsbisphenol A-induced DNA hypomethylation in early development. Proc Natl Acad SciU S A.2007;104:13056-61.
    [100] Bromer JG, Zhou Y, Taylor MB, Doherty L, Taylor HS. Bisphenol-A exposurein utero leads to epigenetic alterations in the developmental programming of uterineestrogen response. FASEB J.2010;24:2273-80.
    [101] Weng YI, Hsu PY, Liyanarachchi S, Liu J, Deatherage DE, Huang YW, et al.Epigenetic influences of low-dose bisphenol A in primary human breast epithelialcells. Toxicol Appl Pharmacol.2010;248:111-21.
    [102] Zafirellis K, Agrogiannis G, Zachaki A, Gravani K, Karameris A, Kombouras C.Prognostic significance of VEGF expression evaluated by quantitativeimmunohistochemical analysis in colorectal cancer. J Surg Res.2008;147:99-107.
    [103] Liu WB, Liu JY, Ao L, Zhou ZY, Zhou YH, Cui ZH, et al. Dynamic changes inDNA methylation during multistep rat lung carcinogenesis induced by3-methylcholanthrene and diethylnitrosamine. Toxicol Lett.2009;189:5-13.
    [104] Li LC, Dahiya R. MethPrimer: designing primers for methylation PCRs.Bioinformatics.2002;18:1427-31.
    [105] Wu J, Issa JP, Herman J, Bassett DE, Jr., Nelkin BD, Baylin SB. Expression ofan exogenous eukaryotic DNA methyltransferase gene induces transformation of NIH3T3cells. Proc Natl Acad Sci U S A.1993;90:8891-5.
    [106] Kuo KC, McCune RA, Gehrke CW, Midgett R, Ehrlich M. Quantitativereversed-phase high performance liquid chromatographic determination of major andmodified deoxyribonucleosides in DNA. Nucleic Acids Res.1980;8:4763-76.
    [107] Fraga MF, Uriol E, Borja Diego L, Berdasco M, Esteller M, Canal MJ, et al.High-performance capillary electrophoretic method for the quantification of5-methyl2'-deoxycytidine in genomic DNA: application to plant, animal and human cancertissues. Electrophoresis.2002;23:1677-81.
    [108] Oefner PJ, Bonn GK, Huber CG, Nathakarnkitkool S. Comparative study ofcapillary zone electrophoresis and high-performance liquid chromatography in theanalysis of oligonucleotides and DNA. J Chromatogr.1992;625:331-40.
    [109] Oakeley EJ, Schmitt F, Jost JP. Quantification of5-methylcytosine in DNA bythe chloroacetaldehyde reaction. Biotechniques.1999;27:744-6,8-50,52.
    [110] Feber A, Wilson GA, Zhang L, Presneau N, Idowu B, Down TA, et al.Comparative methylome analysis of benign and malignant peripheral nerve sheathtumors. Genome Res.2011;21:515-24.
    [111] Portela A, Esteller M. Epigenetic modifications and human disease. NatBiotechnol.2010;28:1057-68.
    [112] Dudziec E, Miah S, Choudhry HM, Owen HC, Blizard S, Glover M, et al.Hypermethylation of CpG islands and shores around specific microRNAs andmirtrons is associated with the phenotype and presence of bladder cancer. Clin CancerRes.2011;17:1287-96.
    [113] Li LC. Designing PCR primer for DNA methylation mapping. Methods MolBiol.2007;402:371-84.
    [114] Tang WY, Ho SM. Epigenetic reprogramming and imprinting in origins ofdisease. Rev Endocr Metab Disord.2007;8:173-82.
    [115] Yagi M, Koshland ME. Expression of the J chain gene during B celldifferentiation is inversely correlated with DNA methylation. Proc Natl Acad Sci U SA.1981;78:4907-11.
    [116] McCarrey J. The role of DNA methylation in regulating tissue-specific geneexpression during gametogenesis. The42nd Annual Meeting of the Society forStudy of Reproduction Pittsburgh. PA2009.
    [1] Wolffe AP, Matzke MA. Epigenetics: regulation through repression. Science.1999;286:481-6.
    [2] Chuang JC, Jones PA. Epigenetics and microRNAs. Pediatr Res.2007;61:24R-9R.
    [3] Allis CJ, T.; Reinberg, D. Epigenetics edn. Cold Spring Harbor Laboratory Press;2007.
    [4] Millar DH, R.; Grigg, G. Five not four: History and significance of the fifth base.In: Beck,S.; Olek, A., editors. The Epigenome, Molecular Hide and Seek. Wiley-VCHVerlag GmbH Co.KGaA;2003. p.3-20.
    [5] Grewal SI, Moazed D. Heterochromatin and epigenetic control of gene expression.Science.2003;301:798-802.
    [6] Reik W, Dean W, Walter J. Epigenetic reprogramming in mammaliandevelopment. Science.2001;293:1089-93.
    [7] Orphanides G, Reinberg D. A unified theory of gene expression. Cell.2002;108:439-51.
    [8] Yang AS, Estecio MR, Doshi K, Kondo Y, Tajara EH, Issa JP. A simple methodfor estimating global DNA methylation using bisulfite PCR of repetitive DNAelements. Nucleic Acids Res.2004;32:e38.
    [9] Schulz WA. L1retrotransposons in human cancers. J Biomed Biotechnol.2006;2006:83672.
    [10] Slotkin RK, Martienssen R. Transposable elements and the epigenetic regulationof the genome. Nat Rev Genet.2007;8:272-85.
    [11] Kelly TL, Trasler JM. Reproductive epigenetics. Clin Genet.2004;65:247-60.
    [12] Sharma S, Kelly TK, Jones PA. Epigenetics in cancer. Carcinogenesis.2010;31:27-36.
    [13] Li S, Washburn KA, Moore R, Uno T, Teng C, Newbold RR, et al.Developmental exposure to diethylstilbestrol elicits demethylation ofestrogen-responsive lactoferrin gene in mouse uterus. Cancer Res.1997;57:4356-9.
    [14] Kouzarides T. Chromatin modifications and their function. Cell.2007;128:693-705.
    [15] Jackson RJ, Standart N. How do microRNAs regulate gene expression? SciSTKE.2007;2007:re1.
    [16] Pillai RS, Bhattacharyya SN, Filipowicz W. Repression of protein synthesis bymiRNAs: how many mechanisms? Trends Cell Biol.2007;17:118-26.
    [17] Herbst AL, Ulfelder H, Poskanzer DC. Adenocarcinoma of the vagina.Association of maternal stilbestrol therapy with tumor appearance in young women. NEngl J Med.1971;284:878-81.
    [18] Nelson KG, Sakai Y, Eitzman B, Steed T, McLachlan J. Exposure todiethylstilbestrol during a critical developmental period of the mouse reproductivetract leads to persistent induction of two estrogen-regulated genes. Cell Growth Differ.1994;5:595-606.
    [19] Kamiya K, Sato T, Nishimura N, Goto Y, Kano K, Iguchi T. Expression ofestrogen receptor and proto-oncogene messenger ribonucleic acids in reproductivetracts of neonatally diethylstilbestrol-exposed female mice with or withoutpost-puberal estrogen administration. Exp Clin Endocrinol Diabetes.1996;104:111-22.
    [20] Yamashita S, Takayanagi A, Shimizu N. Effects of neonatal diethylstilbestrolexposure on c-fos and c-jun protooncogene expression in the mouse uterus. HistolHistopathol.2001;16:131-40.
    [21] Falck L, Forsberg JG. Immunohistochemical studies on the expression andestrogen dependency of EGF and its receptor and C-fos proto-oncogene in the uterusand vagina of normal and neonatally estrogen-treated mice. Anat Rec.1996;245:459-71.
    [22] Xie S, Wang Z, Okano M, Nogami M, Li Y, He WW, et al. Cloning, expressionand chromosome locations of the human DNMT3gene family. Gene.1999;236:87-95.
    [23] Newbold RR, Bullock BC, McLachlan JA. Uterine adenocarcinoma in micefollowing developmental treatment with estrogens: a model for hormonalcarcinogenesis. Cancer Res.1990;50:7677-81.
    [24] Li S, Hansman R, Newbold R, Davis B, McLachlan JA, Barrett JC. Neonataldiethylstilbestrol exposure induces persistent elevation of c-fos expression andhypomethylation in its exon-4in mouse uterus. Mol Carcinog.2003;38:78-84.
    [25] Sato K, Fukata H, Kogo Y, Ohgane J, Shiota K, Mori C. Neonatal exposure todiethylstilbestrol alters expression of DNA methyltransferases and methylation ofgenomic DNA in the mouse uterus. Endocr J.2009;56:131-9.
    [26] Blatt J, Van Le L, Weiner T, Sailer S. Ovarian carcinoma in an adolescent withtransgenerational exposure to diethylstilbestrol. J Pediatr Hematol Oncol.2003;25:635-6.
    [27] Turusov VS, Trukhanova LS, Parfenov Yu D, Tomatis L. Occurrence of tumoursin the descendants of CBA male mice prenatally treated with diethylstilbestrol. Int JCancer.1992;50:131-5.
    [28] Newbold RR, Hanson RB, Jefferson WN, Bullock BC, Haseman J, McLachlanJA. Increased tumors but uncompromised fertility in the female descendants of miceexposed developmentally to diethylstilbestrol. Carcinogenesis.1998;19:1655-63.
    [29] Newbold RR, Hanson RB, Jefferson WN, Bullock BC, Haseman J, McLachlanJA. Proliferative lesions and reproductive tract tumors in male descendants of miceexposed developmentally to diethylstilbestrol. Carcinogenesis.2000;21:1355-63.
    [30] Bennetts HW, Underwood EJ. The oestrogenic effects of subterranean clover(trifolium subterraneum); uterine maintenance in the ovariectomised ewe on clovergrazing. Aust J Exp Biol Med Sci.1951;29:249-53.
    [31] Tang WY, Newbold R, Mardilovich K, Jefferson W, Cheng RY, Medvedovic M,et al. Persistent hypomethylation in the promoter of nucleosomal binding protein1(Nsbp1) correlates with overexpression of Nsbp1in mouse uteri neonatally exposedto diethylstilbestrol or genistein. Endocrinology.2008;149:5922-31.
    [32] Dolinoy DC, Huang D, Jirtle RL. Maternal nutrient supplementation counteractsbisphenol A-induced DNA hypomethylation in early development. Proc Natl AcadSci U S A.2007;104:13056-61.
    [33] Salian S, Doshi T, Vanage G. Impairment in protein expression profile oftesticular steroid receptor coregulators in male rat offspring perinatally exposed toBisphenol A. Life Sci.2009;85:11-8.
    [34] Rusiecki JA, Baccarelli A, Bollati V, Tarantini L, Moore LE,Bonefeld-Jorgensen EC. Global DNA hypomethylation is associated with highserum-persistent organic pollutants in Greenlandic Inuit. Environ Health Perspect.2008;116:1547-52.
    [35] Moffat ID, Boutros PC, Celius T, Linden J, Pohjanvirta R, Okey AB.microRNAs in adult rodent liver are refractory to dioxin treatment. Toxicol Sci.2007;99:470-87.
    [36] Filipic M, Hei TK. Mutagenicity of cadmium in mammalian cells: implication ofoxidative DNA damage. Mutat Res.2004;546:81-91.
    [37] Huang D, Zhang Y, Qi Y, Chen C, Ji W. Global DNA hypomethylation, ratherthan reactive oxygen species (ROS), a potential facilitator of cadmium-stimulatedK562cell proliferation. Toxicol Lett.2008;179:43-7.
    [38]雷毅雄,吴中亮, Joseph P, Ong T-m.镉转化细胞DNA异常甲基化对肿瘤相关基因表达的影响.中华劳动卫生职业病杂志.2003:37-9.
    [39] Takiguchi M, Achanzar WE, Qu W, Li G, Waalkes MP. Effects of cadmium onDNA-(Cytosine-5) methyltransferase activity and DNA methylation status duringcadmium-induced cellular transformation. Exp Cell Res.2003;286:355-65.
    [40]王丙莲,张迎梅,谭玉凤,候亚妮,刘阳.镉铅对泥鳅DNA甲基化水平的影响.毒理学杂志.2006:78-80.
    [41]刘莉莉,陈家,安社娟,吴中亮.结晶型硫化镍及反式-BPDE恶性转化16HBE细胞hMSH2基因甲基化的研究.癌变畸变突变.2005:129-32.
    [42] Lee YW, Klein CB, Kargacin B, Salnikow K, Kitahara J, Dowjat K, et al.Carcinogenic nickel silences gene expression by chromatin condensation and DNAmethylation: a new model for epigenetic carcinogens. Mol Cell Biol.1995;15:2547-57.
    [43] Ke Q, Davidson T, Chen H, Kluz T, Costa M. Alterations of histonemodifications and transgene silencing by nickel chloride. Carcinogenesis.2006;27:1481-8.
    [44] Broday L, Peng W, Kuo MH, Salnikow K, Zoroddu M, Costa M. Nickelcompounds are novel inhibitors of histone H4acetylation. Cancer Res.2000;60:238-41.
    [45] Chen H, Ke Q, Kluz T, Yan Y, Costa M. Nickel ions increase histone H3lysine9dimethylation and induce transgene silencing. Mol Cell Biol.2006;26:3728-37.
    [46] Karaczyn AA, Golebiowski F, Kasprzak KS. Ni(II) affects ubiquitination of corehistones H2B and H2A. Exp Cell Res.2006;312:3252-9.
    [47] Golebiowski F, Kasprzak KS. Inhibition of core histones acetylation bycarcinogenic nickel(II). Mol Cell Biochem.2005;279:133-9.
    [48] Govindarajan B, Klafter R, Miller MS, Mansur C, Mizesko M, Bai X, et al.Reactive oxygen-induced carcinogenesis causes hypermethylation of p16(Ink4a) andactivation of MAP kinase. Mol Med.2002;8:1-8.
    [49] Zoroddu MA, Schinocca L, Kowalik-Jankowska T, Kozlowski H, Salnikow K,Costa M. Molecular mechanisms in nickel carcinogenesis: modeling Ni(II) bindingsite in histone H4. Environ Health Perspect.2002;110Suppl5:719-23.
    [50] Zhao CQ, Young MR, Diwan BA, Coogan TP, Waalkes MP. Association ofarsenic-induced malignant transformation with DNA hypomethylation and aberrantgene expression. Proc Natl Acad Sci U S A.1997;94:10907-12.
    [51] Chanda S, Dasgupta UB, Guhamazumder D, Gupta M, Chaudhuri U, Lahiri S, etal. DNA hypermethylation of promoter of gene p53and p16in arsenic-exposedpeople with and without malignancy. Toxicol Sci.2006;89:431-7.
    [52] Chen H, Liu J, Zhao CQ, Diwan BA, Merrick BA, Waalkes MP. Association ofc-myc overexpression and hyperproliferation with arsenite-induced malignanttransformation. Toxicol Appl Pharmacol.2001;175:260-8.
    [53] Zhong CX, Mass MJ. Both hypomethylation and hypermethylation of DNAassociated with arsenite exposure in cultures of human cells identified bymethylation-sensitive arbitrarily-primed PCR. Toxicol Lett.2001;122:223-34.
    [54] Mass MJ, Wang L. Arsenic alters cytosine methylation patterns of the promoterof the tumor suppressor gene p53in human lung cells: a model for a mechanism ofcarcinogenesis. Mutat Res.1997;386:263-77.
    [55] Reichard JF, Schnekenburger M, Puga A. Long term low-dose arsenic exposureinduces loss of DNA methylation. Biochem Biophys Res Commun.2007;352:188-92.
    [56] Sciandrello G, Caradonna F, Mauro M, Barbata G. Arsenic-induced DNAhypomethylation affects chromosomal instability in mammalian cells. Carcinogenesis.2004;25:413-7.
    [57] Chen H, Li S, Liu J, Diwan BA, Barrett JC, Waalkes MP. Chronic inorganicarsenic exposure induces hepatic global and individual gene hypomethylation:implications for arsenic hepatocarcinogenesis. Carcinogenesis.2004;25:1779-86.
    [58] Pilsner JR, Liu X, Ahsan H, Ilievski V, Slavkovich V, Levy D, et al. Genomicmethylation of peripheral blood leukocyte DNA: influences of arsenic and folate inBangladeshi adults. Am J Clin Nutr.2007;86:1179-86.
    [59] Pilsner JR, Liu X, Ahsan H, Ilievski V, Slavkovich V, Levy D, et al. Folatedeficiency, hyperhomocysteinemia, low urinary creatinine, and hypomethylation ofleukocyte DNA are risk factors for arsenic-induced skin lesions. Environ HealthPerspect.2009;117:254-60.
    [60]傅海英,沈建箴.多发性骨髓瘤患者p16基因甲基化及砷剂诱导去甲基化的研究.中华内科杂志.2005:411-4.
    [61] Onishchenko N, Karpova N, Sabri F, Castren E, Ceccatelli S. Long-lastingdepression-like behavior and epigenetic changes of BDNF gene expression inducedby perinatal exposure to methylmercury. J Neurochem.2008;106:1378-87.
    [62] Kondo K, Takahashi Y, Hirose Y, Nagao T, Tsuyuguchi M, Hashimoto M, et al.The reduced expression and aberrant methylation of p16(INK4a) in chromate workerswith lung cancer. Lung Cancer.2006;53:295-302.
    [63] Schnekenburger M, Talaska G, Puga A. Chromium cross-links histonedeacetylase1-DNA methyltransferase1complexes to chromatin, inhibitinghistone-remodeling marks critical for transcriptional activation. Mol Cell Biol.2007;27:7089-101.
    [64] Tao L, Ge R, Xie M, Kramer PM, Pereira MA. Effect of trichloroethylene onDNA methylation and expression of early-intermediate protooncogenes in the liver ofB6C3F1mice. J Biochem Mol Toxicol.1999;13:231-7.
    [65] Jenkins TF, Hewitt AD, Grant CL, Thiboutot S, Ampleman G, Walsh ME, et al.Identity and distribution of residues of energetic compounds at army live-fire trainingranges. Chemosphere.2006;63:1280-90.
    [66] Zhang B, Pan X. RDX induces aberrant expression of microRNAs in mousebrain and liver. Environ Health Perspect.2009;117:231-40.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700