用户名: 密码: 验证码:
臭氧—微波诱导催化氧化饮用水中的内分泌干扰物邻苯二甲酸二丁酯
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
内分泌干扰化学物质(Endocrine Disrupting Chemicals (EDCs),简称内分泌干扰物)是一种典型的持久性有毒物质,对包括人类在内的一切生物有着严重的危害作用,已成为环境污染特别是饮用水安全的重大问题。目前的常规处理工艺混凝、沉淀和过滤对这些物质的去除能力有限,因此需要探索高效的内分泌干扰物的处理方法。本论文针对环境内分泌干扰物的污染问题,以饮用水源水为研究对象,选择在饮用水源中普遍存在并具有内分泌干扰活性的邻苯二甲酸二丁酯(DBP)作模型污染物,系统地对比了O3、O3/Ru/Al2O3和O3/MW/Mn/Al2O3三种反应体系对水中DBP降解去除的效能,探讨了影响因素并分析DBP在不同条件下的降解特征,首次提出了可矿化去除水中内分泌干扰物的臭氧-微波诱导催化氧化方法,并对多相催化臭氧化和臭氧-微波诱导催化氧化的作用机制进行了考察。
     在半间歇反应器中,臭氧能较快氧化降解水中的DBP,降解效率受底物浓度、反应初始温度、反应初始pH值、03+02混合气体的通气量以及共存有机物的影响。在其它反应条件相同的情况下,底物浓度对降解效果有较大的影响,较低的底物浓度可以获得较高的去除效率。低温条件有利于动态体系的臭氧转移,因此半间歇反应的降解效率随反应初始温度的降低而升高,03+02混合气体的通气量不宜太大或太小,pH值对臭氧氧化DBP的效果影响很大,中性和酸性环境中DBP的降解率比较接近,此时O3与DBP的反应以直接反应为主,随着pH值的升高,DBP的降解率呈现快速上升的趋势,叔丁醇对碱性条件DBP的臭氧氧化降解有明显的抑制作用,说明碱性条件下以03间接反应为主
     Ru/Al2O3的催化作用可以提高臭氧对水中DBP的降解率,采用超声浸渍法制备的Ru/Al2O3催化剂具有较高的催化活性,O3/Ru/Al2O3催化氧化体系的氧化效能受催化剂浸渍浓度、催化剂投加量、DBP初始浓度、臭氧投加量、溶液初始pH值、水中重碳酸盐以及叔丁醇等因素的影响,在本实验条件下,0.01464M的浸渍浓度、15g/L的催化剂投加量和较高的溶液初始pH值都能获得较高的DBP降解率,水中存在较低浓度的碳酸氢根是·OH自由基反应的促进剂而较高浓度时则是抑制剂。叔丁醇对O3/Ru/Al2O3催化臭氧化体系的抑制作用十分明显,说明催化臭氧化反应中主要是Ru/Al2O3催化促进水中O3分解所产生·OH的作用,遵循自由基反应机理。
     O3/MW/Mn/Al2O3体系的氧化效率受催化剂浸渍浓度、微波功率、DBP初始浓度、微波辐照时间、溶液初始pH值、水中重碳酸盐以及叔丁醇等因素的影响。在Mn/Al2O3催化剂的存在下,臭氧的加入可以提高微波诱导催化氧化有机物的能力,缩短微波辐照时间和反应时间。在本实验条件下,12.5%的浸渍浓度、400W的微波功率、60s以上的微波辐照时间以及高的溶液初始pH值都能获得较高的DBP降解率。水中存在低浓度的重碳酸盐碱度可以促进氧化反应的进行,加快反应速率,当pH为11时,反应2min即达到98%的降解率,表现出极强的催化活性。叔丁醇对O3/MW/Mn/Al2O3体系有十分明显的抑制作用,说明该体系的氧化反应遵循自由基反应机理。
     Ru/Al2O3催化臭氧化和O3/MW/Mn/Al2O3的微波诱导催化臭氧化体系均具有较高的TOC去除率。对中间产物的分析表明,.OH自由基的攻击DBP的点位可能有两个,脂肪链和DBP结构中的的芳香环。当·OH自由基攻击脂肪链时形成一些芳香类中间产物,并进一步通过苯环破裂形成脂肪化合物如甲酸,乙酸和乙醛的反应等。其次,·OH自由基攻击除5C和6C外的芳香环,导致芳香环上的羟基及其羟基中间产物的形成,并进一步被.OH自由基攻击而羟基化,此外,·OH自由基有可能攻击5C和6C的两个碳原子而形成羧基,产生长链结构的中间体。在多相催化臭氧化中,臭氧的直接氧化和间接氧化水中的DBP均符合伪一级反应动力学模型。
     本项研究表明,Ru/Al2O3催化臭氧化和O3/MW/Mn/Al2O3的微波诱导催化臭氧化体系能提供一个简单、快速的方法生成·OH自由基,·OH自由基是积极的和环境友好的氧化剂,它会在绿色化学、环保以及其他相关领域发挥重要作用,对以·OH自由基为主导反应的高级氧化技术的研究具有重要意义。
Endocrine Disrupting Chemicals (EDCs) is a typical and persistent toxic substance and has a very harmful effect on the all organisms, including the human beings, which has become an important issue on environmental pollution, especially referring to the security of drinking water. The removal ability for these compounds is limited in the current commen treatment mathods of coagulation, sedimentation and filtration. Therefore the new treatment methods of endorcrine disruptors with high efficiency need to be explored. In this paper, di-n-butyl phthalate (DBP), a kind of endocrine disrupter which generally exists in the drinking water source, was taken as the model pollutant. The removal efficiency of DBP by three processes, such as O3, O3/Ru/Al2O3and O3/MW/Mn/Al2O3were compared. And the influence on the DBP removal and its degradation characteristics under different conditions were evaluated. It was firstly proposed to remove the EDCs by the ozone-microwave induced catalytic oxidation techonology and the mechanism of heterogeneous catalytic ozonation and ozone-microwave induced catalytic oxidation were analyzed.
     The DBP could be oxidized quickly by ozone and the removal was affected by the substance concentration, initial reaction temperature, initial pH value, flux of mixed03and O2and concomitant organics. The substance concentration had a major influence and the removal efficiency was higher with the lower substance concentration when the other reaction conditions were same. The low temperature was in favor of the O3transfer in dynamic system, therefore, the efficiency in semi-continuous reaction increased with the decrease of initial temperature. The flux of mixed O3and O2should be controlled properly. The pH value is another important factor for DBP removal by ozonation. The removal efficiency was almost same in the neutral and acidic conditions, which was mainly the direct reaction between O3and DBP. With the increase of pH value, the removal efficiency presented the fast rising trend. However, the DBP removal by ozonation under the alkaline condition was seriously inhibited by tert butyl alcohol (TBA), which indicated that the indirect reaction of O3dominated in the alkaline condition.
     The catalysis of Ru/Al2O3could improve the DBP removal efficiency by ozone and the Ru/Al2O3catalyst prepared by ultrasonic immersion method has a higher catalytic activity. The oxidation efficiency of O3/Ru/Al2O3process is affected by catalyst immersion concentration, catalyst dosage, initial DBP concentration, ozone concentration, initial pH value, the existence of bicarbonate and TBA. In this study, the higher DBP removal was obtained with the immersion concentration of0.01464M, catalyst dosage of15g/L and higher initial pH value. The bicarbonate is a kind of accelerating agent in a low concentration, while it is an inhibitor with higher concentration. The inhibition of TBA to O3/Ru/Al2O3process was also evident, which indicated that in this catalytic ozonation process, ozone was decomposed to produce the hydroxyl radical by the catalysis of Ru/Al2O3and it followed the reaction mechanism of free radical.
     The oxidation efficiency of O3/MW/Mn/Al2O3process is affected by catalyst immersion concentration, microwave power, initial DBP concentration, microwave irradiation time, initial pH value, the existence of bicarbonate and TBA. The addition of ozone could enhance the capacity of microwave induced catalytic oxidation with the shortened microwave irradiation time and reaction time. In this study, the higher DBP removal was obtained with the immersion concentration of12.5%, microwave power of400W, microwave irradiation time of more than60s and higher initial pH value. The bicarbonate in low concentration could accelerate the oxidation process and reaction rate. The98%of removal efficiency was reached in reaction time of2min when pH value was11with extremely strong catalytic activity. The inhibition of TBA to03/MW/Mn/Al2O3process was apparent, which indicated that this oxidation process followed the reaction mechanism of free radical.
     TOC removal in both catalytic ozonation process of Ru/Al2O3and microwave induced catalytic ozonation process of O3/MW/Mn/Al2O3were all high. It was shown from the analysis results of intermediate product that there might be two attacking positions to DBP by hydroxyl radical, which were aliphatic chain and aromatic nucleus in DBP structure. Some aromatic products were formed after the aliphatic chain was attacked by hydroxyl radical, and then were broken up into fatty compounds through the benzene ring, such as formic acid, acetic acid and acetaldehyde. In another way, the aromatic nucleuses, except the5C and6C were attacked by hydroxyl radical and resulted in the formation of hydroxyl and hydroxyl intermediate products on aromatic nucleuses, which were further hydroxylated by hydroxyl radical. In addition, the two carbon atoms on the5C and6C could be attacked by the hydroxyl radical to form the carboxyl, a kind of intermediate with long chain. In the heterogeneous catalytic ozonation process, either the direct or the indirect oxidation of DBP by ozone accorded with the first-order kinetics model.
     It was found in this study that both catalytic ozonation process of Ru/Al2O3and microwave induced catalytic ozonation process of03/MW/Mn/Al2O3were simple and fast methods to form the hydroxyl radical orderly, which is a positive and environmental friendly oxidant and will play an important role in green chemistry, environmental protection and other related fields. This study has a vital significance in the research of advanced oxidation processes oriented by the hydroxyl radical.
引文
[1]Halling-Sorensen B., Nielsen S.N., Lanzky P.F., et al. Occurrence, fate and effects of pharmaceutical substances in the environment-A review.[J]. Chemosphere,1998,36 (2): 357-394.
    [2]Lindsey M.E., Meyer M. and E.M. Thurman. Analysis of trace levels of sulfonamide and tetracycline antimicrobials, in groundwater and surface water using solid-phase extraction and liquid chromatography/mass spectrometry." [J]. Analytical Chemistry, 2001,73(19):4640-4646.
    [3]Heberer, T., Reddersen, K. and A. Mechlinski. From municipal sewage to drinking water: fate and removal of pharmaceutical residues in the aquatic environment in urban areas.Water Science and Technology [J].2002,46 (3):81-88.
    [4]Kolpin, D.W., Furlong, E.T., Meyer, M.T., et al. Pharmaceuticals, hormones, and other organic wastewater contaminants in US streams,1999-2000:A national reconnaissance.[J]. Environmental Science & Technology,2002,36 (6):1202-1211.
    [5]C. Sonnenschein, A.M. Soto..An updated review of environmental estrogen and androgen mimics and antagonists [J], J. Steroid Biochem.,1998,65:143-150.
    [6]S.D. Kim, J. Cho, I.S. Kim, et al. Occurrence and removal of pharmaceuticals and endocrine disruptors in South Korean surface, drinking, and waste waters [J]. Water Res. 2007,41:1013-1021.
    [7]A. Mendes. The endocrine disrupters:a major medical challenge, Food Chem. Toxicol. 2002,40:781-788.
    [8]M. Auriol, Y. Filali Meknassi, R.D. Tyagi, et al. Endocrine disrupting compounds removal from waste water, a new challenge [J]. Process Biochem.2006,41:525-539.
    [9]周鸿,张晓健,王占生.水中内分泌于扰物在我国的研究进展[J].中国给水排水,2002,18(9):26-28.
    [10]Huang Kang-Fan, Lin Hsin-Tang, Shyu Shyi-Liang.Investigation of phthalate esters in commercial foods and the optimal releasing conditions of phthalate esters from food packaging materials and containers[J]. Taiwanese Journal of Agricultural Chemistry and Food Science,2010,48(4):155-165.
    [11]Stringer R., Labunska I.; Santillo D., et al. Concentrations of phthalate esters and identification of other additives in PVC children's toys [J]. Environmental Science and Popllution Research,2000,7(1):27-36.
    [12]陈济安,邱志群,舒为群,等.我国水环境中邻苯二甲酸酯污染现状及其生物降解研究进展[J].癌变畸变突变,2007,19(3):212-214.
    [13]TAN, G. H. Residue levels of phthalate-esters in water and sediment samples from the klang river basin [J]. Bulletin of Environmental Contamination and Toxicology,1995, 54(2):171-176.
    [14]Peijnenburg WJGM., Struijs J. Occurrence of phthalate esters in the environment of the Netherlands [J]. Ecotoxicolgy and Environmental Safety,2006,63(2):204-215.
    [15]Otake, T; Yoshinaga, J; Yanagisawa, Y. Exposure to phthalate esters from indoor environment [J]. Journal of Exposure Analysis and Environmental Epidemiology,2004, 14(7):524-528.
    [16]Parkerton, TF; Konkel, WJ. Application of quantitative structure-activity relationships for assessing the aquatic toxicity of phthalate esters [J]. Ecotoxicology and Environmental,2000,45(1):61-78.
    [17]Staples, Charles A.; Adams, William J.; Parkerton, Thomas F., et al. Aquatic toxicity of eighteen phthalate esters[J]. Environmental Toxicology and Chemistry,1997,16(5): 875-891.
    [18]Adams, WJ; Biddinger, GR; Robillard, KA, et al. A summary of the scute toxicity of phthalate-eaters to representative aquatic organisms[J], Environmental Toxicology and Chemistry,1995,14(9):1569-1574.
    [19]Staples, CA; Parkerton, TF; Peterson, DR. A risk assessment of selected phthalate esters in North American and Western European surface waters [J]. Chemosphere,2000, 40(8):885-891.
    [20]吴琼,刘慧,张丹,等.邻苯二甲酸酯对浅层含水层沉积物微生物多样性的影响[J].中国环境科学2010,30(5):671-676.
    [21]Wang L., Luo QF..Biodegradation characteristics of environmental endocrine disruptor di-n-butyl phthalatel [J]. Biomedical and Environmental Sciences,2005,18(3):187-191.
    [22]Yan, H; Ye, CM; Yin, CQ. Kinetics of phthalate ester biodegradation by chlorella-pyrenoidosa [J]. Environmental Toxicology and Chemistry,1995,14(6):931-938.
    [23]Fang HHP, Lau IWC, Chung DWC. Inhibition of methanogenic activity of starch-degrading granules by aromatic pollutants [J]. Water Science and Technology,1997,35(8):247-253.
    [24]Zhao, DY;Sengupta, AK; Zhu,YW. Trace contaminant sorption through polymeric ligand-exchange [J]. Industrial & Engineering Chemistry Research,1995,34(8): 2676-2684.
    [25]Wang, F; Yao, J; Sun, K, et al. Adsorption of dialkyl phthalate esters on carbon nanotubes [J]. Environmental Science & Technology,2010,44(18):6985-6991.
    [26]Salim, CJ; Liu, H; Kennedy. JF. Comparative study of the adsorption on chitosan beads of phthalate esters and their degradation products [J]. Carbohydrate Polymery,2010, 81(3):640-644.
    [27]Venkatadri, R; Peters, RW. Chemical oxidation technologies -ultraviolet -light hydrogen -peroxide, fenton reagent, and titanium dioxide-assisted photocatalysis[J]. Hazardous Waste & Hazardous Materials.1993,10(2):107-149.
    [28]Chang, CC; Chiu, CY; Chang, CY, et al. Combined photolysis and catalytic ozonation of dimethyl phthalate in a high-gravity rotating packed bed [J]. Journal of Hazardous Materials,2009,161(1):287-293.
    [29]Liao, WC; Wang, P. Microwave-assisted photocatalytic degradation of dimethyl phthalate using a microwave discharged electrodeless lamp [J]. Journal of the Brazilian Chemical Society,2009,20(5):866-872.
    [30]Wang, JB; Zhou, YR; Zhu, WP, et al. Catalytic ozonation of dimethyl phthalate and chlorination disinfection by-product precursors over Ru/AC [J]. Journal of Hazardous Materials,2009,166(1):502-507.
    [31]Zhou, YR; Zhu, WP; Liu, FD, et al. Catalytic activity of Ru/A12O3 for ozonation of dimethyl phthalate in aqueous solution [J]. Chemosphere,2007,66(1):145-150.
    [32]N Al Hayek. Fe(Ⅲ)/Al2O3-Catalysed ozonation of phenol and its ozonation by products[J]. Environ Technol Let t ers,1989,10(6):415-420.
    [33]Laisheng Li,Weiying Ye, Qiuyun Zhang,et al.. Catalytic ozonation of dimethyl phthalate over cerium supported on activated carbon[J]. Journal of Hazardous Materials 2009,170:411-416.
    [34]ChiaChi Chang, ChunYu Chiu, ChingYuan Chang,et al.. Combined photolysis and catalytic ozonation of dimethyl phthalate in a high-gravity rotating packed bed. Journal of Hazardous Materials 2009,161:287-293.
    [35]Laessig SA, McCarthy MM, Silbergeld EK. Neurotoxic effects of endocrine disruptors [J]. Current Opinion in Neurology,1999,12(6):745-751.
    [36]Andersen H R. Anderson Anna-Maria, et al. Comparison of short-term estrogenicity tests for identification of hormone-disrupting chemicals[J]. Environmental Health Perspectives,1999,107(1):89-100.
    [37]Hopert, A.C., Beyer, A., Frank, K., et al., Characterization of estrogenicity of phytoestrogens in an endometrial-derived experimental model. Environmental Health Perspectives,1998.106(9):581-586.
    [38]Lau, Tim Kwan. Endocrine disruptors elimination by UV aided oxidation processes in water via kinetics study and reaction mechanisms [D]. Hong Kong Polytechnic University (Hong Kong).2007.
    [39]任仁.环境激素的种类和污染途径[J].大学化学,2001 16(5):28-32.
    [40]刘先,利刘彬,邓南圣.环境内分泌干扰物研究进展[J].上海环境科学,2003,22(1):57-63,69.
    [41]赵利霞,林金明.环境内分泌干扰物分析方法的研究与进展[J].分析试验室2006,25(2):110-122.
    [42]Ceh, K.; Majdic, G.. Pesticides as endocrine disruptors[J]. Slovenian Veterinary Research,2010,47(4):163-166.
    [43]鄂勇,张晓琳,宋秋霞.环境内分泌干扰物及其潜在威胁[J].东北农业大学学报,2008,39(11):135-139.
    [44]J.M. Bergeron, E. Willingham and C.T. Osborn et al., Developmental synergism of steroidal estrogens in sex determination [J], Environmental Health Perspectives 1999,107: 93-97.
    [45]R.W. Gale, J.M. Bergeron, E.J. Willingham et al. Turtle sex determination assay:mass balance and responses to 2,3,7,8-tetrachlorodibenzo-p-dioxin and 3,3,4,4,5-pentachlorobiphenyl [J]. Environmental Toxicology and Chemistry.2002, 21(11):2477-2482.
    [46]T.B. Hayes, A. Collins and M. Lee et al.. Hermaphroditic, demasculinized frogs after exposure to the herbicide atrazine at low ecologically relevant doses [J].Proceedings of the National Academy of Sciences USA,2002,99(8):5476-5480.
    [47]康君行,Barry Ali.垃圾焚烧飞灰中的氯化二苯并二噁英和氯化二苯并呋喃的分析[J].环境料学,9(3):2-6
    [48]付丽佳,林海,王玉华.大豆异黄酮雌激素样作用的研究进展[J].中国伤残医学,2008,16(6):134-135.
    [49]王佩华.环境激素及其危害,北方环境.2005,30(2):33-361.
    [50]Colborn T., Saal F.S.V., Soto A.M.. Developmental effects of endocrine-disrupting chemicals in wildlife and humans [J]. Environmental Health Perspectives,1993,101(5): 378-384.
    [51]Olea, N; Olea-Serrano, F; Lardelli-Claret, P, et al. Inadvertent exposure to xenoestrogens in children [J]. Toxicology and Industrial Health,1999,15(1-2):151-158.
    [52]Fisch, H; Hyun, G; Golden, R. The possible effects of environmental estrogen disrupters on reproductive health [J]. Curr Urol Rep,2000,1(4):253-261.
    [53]Carlsen, E; Giwercman, A; Keiding, N, et al. Evidence for decreasing quality of semen during past 50 years [J]. British Medical Journal,1992,305 (6854):609-613.
    [54]Carlsen E, Giwercman A, Keiding N, et al. Declining semen quality and increasing incidence of testicularcancer- is there a common -cause [J]. Environmental Health Perspectives,1995,103(S7):37-139.
    [55]Jensen, TK; Toppari, J; Keiding, N, et al. Do environmental estrogens contribute ontribute to the decline in male reproductive health[C].2nd Arnold O Beckman/IFCC European Conference on Biomarkers in Environmental Toxicology CANNES, FRANCE, JUN 01-03,1995. Clinical Chemistry,1995,41(12B):1896-1901.
    [56]Sharpe RM, Skakkebaek NE. Are estrogens involved in falling sperm counts and disorders of the male reproductive-tract [J]. Lancet,1993,341(8857):1392-1395.
    [57]Tyler, CR.; Jobling, S. Roach, sex, and gender-bending chemicals:the feminization of wild fish in english rivers [J]. Bioscience,2008,58(11):1051-1059.
    [58]Barrett, Julia R. The Yin and Yang of exposure:chemical combinations may explain feminization of wild fish [J]. Environ Health Perspect,2009,117(5):A211.
    [59]J.P. Sumpter; A.C. Johnson. Lessons from endocrine disruption and their application to other issues concerning trace organics in the aquatic environment [J]. Environmental Science & Technology,2005,39 (12):4321-4332.
    [60]Gross-Sorokin, MY; Roast, SD; Brighty, GC. Assessment of feminization of male fish in English rivers by the environment agency of England and wales [C]. International Workshop on Ecological Relevance of Chemical-Induced Endocrine Disruption in Wildlife,2004 Univ Exeter Exeter ENGLAND. Environment Health Perspectives,2006,114(S 1):147-151.
    [61]王宏,沈英娃,烷基酚聚氧乙烯醚类物质的环境雌激素效应,中国环境科学,1999,19(5):427-431.
    [62]Toppari, J; Larsen, JC; Christiansen, P, et al. Male reproductive health and environmental xenoestrogens [J]. Environment Health Perspectives,1996,104(S4): 741-803.
    [63]J.K. Hess-Wilson, K.E. Knudsen. Endocrine disrupting compounds and prostate cancer [J]. Cancer Letters,2006, (1):1-12.
    [64]A. Jemal; T. Murray; E. Ward; et al., Cancer statistics,2005, CA Cancer J. Clin.2005, 55(l):pp.10-30.
    [65]Starek, Andrzej. Estrogens and organochlorine xenoestrogens and breast cancer risk [J]. Int J Occup Med Environ Health,2003,16(2):113-24.
    [66]Charlier, C; Albert, A; Herman, P, et al. Breast cancer and serum organochlorine residues[J]. Occupational and Environmental Medicine,2003,60(5):348-351.
    [67]李佳圆,栾荣生,吴德生,等.我国生殖内分泌肿瘤的时间及地理分布研究[J].中国公共卫生,2003,19(9):1038-1040.
    [68]Gerhard. I; Runnebaum, B. The limits of hormone substitution in pollutant exposure and fertility disorders[J]. Zentralbl Gynakol,1992,114(12):593-602.
    [69]Gandolfi, F; Pocar, P; Brevini, TAL, et al. Impact of endocrine disrupters on ovarian function and embryonic development [C].4th International Conference on Farm Animal Endocriology,2001, Parma Italy. Domestic Animal Endocrinology,2002,23(1-2): 189-201.
    [70]Nicolopoulou-Stamati P; Pitsos MA..The impact of endocrine disrupters on the female reproductive system [J]. Human Reproduction Update,2001,7(3):323-330.
    [71]郑刚,环境雌激素对机体的影响.国外医学(卫生学分册),2001,28(4):197-201.
    [72]张文众,李宁.大豆异黄酮内分泌干扰毒性研究进展[J].中国食品卫生杂志,2010,22(1):81-83.
    [73]Takagi, H; Shibutani, M; Lee, KY, et al. Lack of modifying effects of genistein on disruption of the reproductive system by perinatal dietary exposure to ethinylestradiol in rats [J]. Reproductive Toxicology,2004,18(5):687-700.
    [74]Jefferson, WN; Padilla-Banks, E; Newbold, RR. Disruption of the developing female reproductive system by phytoestrogens:genistein as an example [J]. Molecular Nutrition & Food Research,2007,51 (7):832-844.
    [75]Brouwer A,Longnecker M P;Birnbaum LS. Characterization of potential endocrine. related health elects at low-dose levels of exposure to PCBs. Environmental Health Perspectives,1999,107 (s4):639-649.
    [76]Bushnell, PJ; Rice, DC. Behavioral assessments of learning and attention in rats exposed perinatally to 3,3',4,4',5-pentachlorobiphenyl (PCB 126) [J]. Neurotoxicology and Teratology,1999,21 (4):381-392.
    [77]吕毅,赵淑华,杨湘山,等.双酚A对妊娠小鼠仔鼠免疫功能影响[J].中国公共卫生,2006,22(12):1534.
    [78]Cutolo, M; Wilder, RL. Different roles for androgens and estrogens in the susceptibility to autoimmune rheumatic diseases[J]. Rheumatic Disease Clinique of North America, 2000,26(4):825-839.
    [79]Ahmed, SA; Hissong, BD; Verthelyi, D, et al. Gender and risk of autoimmune diseases: Possible role of estrogenic compounds [C]. Workshop on Linking Environmental Agents to Autoimmune Diseases,1998 Res Triangle PK North Carolina. Environmental Health Perspectiy, 1999,107(s5):681-686.
    [80]Mayes, MD. Epidemiologic studies of environmental agents and systemic autoimmune diseases [C]. Workshop on Linking Environmental Agents to Autoimmune Diseases, 1998 Res Triangle PK North Carolina. Environmental Health Perspectivity,1999, 107(s5):743-748.
    [81]彭俊华,糜漫天,朱俊东.环境雌激素列大鼠乳腺癌VEGF和CXCR4影响[J].中国公共卫生,2007,23(8):900-901.
    [82]Bertin, A; Inostroza, PA; Quinones, RA. A theoretical estimation of the concentration of steroid estrogens in effluents released from municipal sewage treatment plants into aquatic ecosystems of central-southern Chile [J]. Science of the Total Environment,2009, 407(17):4965-4971.
    [83]Ternes, TA; Stumpf, M; Mueller, J, et al. Behavior and occurrence of estrogens in municipal sewage treatment plants-I. Investigations in Germany, Canada and Brazil [J]. Science of the Total Environment,1999,225(1-2):81-90.
    [84]Petrovic, M; Gonzalez, S; Barcelo, D. Analysis and removal of emerging contaminants in wastewater and drinking water [J]. Trac-trends in Analytical Chemistry,2003,22(10): 685-696.
    [85]Snyder, SA; Benotti, MJ. Endocrine disruptors and pharmaceuticals:implications for water sustainability [J]. Water Science and Thechnology,2010,61(1):145-154.
    [86]Kim, SD; Cho, J; Kim, IS, et al. Occurrence and removal of pharmaceuticals and endocrine disruptors in South Korean surface, drinking, and waste waters [J]. Water Research,2007,41(5):1013-1021.
    [87]Chen, M; Ohman, K; Met alalfe, C; et al. Pharmaceuticals and endocrine disruptors in wastewater treatment effluents and in the water supply system of Calgary, Alberta, Canada [J]. Water Quality Research Journal of Canada,2006,41(4):351-364.
    [88]Svenson, A; Allard, AS; Ek, M. Removal of estrogenicity in Swedish municipal sewage treatment plants [J]. Water Research,2003,37(18):4433-4443.
    [89]Cargouet, M; Perdiz, D; Mouatassim-Souali, A, et al. Assessment of river contamination by estrogenic compounds in Paris area (France) [J]. Science of the Total Environment, 2004,324(1-3):55-66.
    [90]Rudder, J de; Wiele, T Van de; Dhooge, Willem, et al. Advanced water treatment with manganese oxide for the removal of 17alpha-ethynylestradiol (EE2) [J]. Water Research, 2004,38(1):184-192.
    [91]Vulliet. E; Cren-Olive, C; Grenier-Loustalot, MF. Occurrence of pharmaceuticals and hormones in drinking water treated from surface waters [J]. Environmental Chemistry Letters,2011,9(1):103-114.
    [92]武睿.活性炭和膜技术去除水中内分泌干扰物的研究进展[J].工业水处理,2007,30(7):11-14,53
    [93]Khaliq, MA; Alam, MS; Srivastava, SP. Implicative of physicochemical factors on the migration of phthalate -esters from tubing commonly used for oral nasal feeding[J]. Bulletin of Environmental Contamination and Toxicology,199248(4):572-578.
    [94]Peters, JM; Taubeneck, MW; Keen, CL, et al. Di(2-ethylhexyl) phthalate induces a functional zinc deficiency during pregnancy and teratogenesis that is independent of peroxisome proliferator-activated receptor-alpha [J].Teratology,1997,56(5):311-316.
    [95]KOO H J, LEE B M. Estimated exposure to phthalates incosmetics and risk assessment. J Toxicol Environ Health A,2004,67 (23-24):19012-19141.
    [96]Knudsen, FR; Pottinger, TG. Interaction of endocrine disrupting chemicals, singly and in combination, with estrogen-, androgen-, and corticosteroid-binding sites in rainbow trout.[J]. Aquatic Toxicology,1999,44(3):159-170.
    [97]Hoyer, P.B. Reproductive toxicology:current and future directions. Biochemical Pharmacology,2001,62(12):1557-1564.
    [98]Scholz, N.. Ecotoxicity and biodegradation of phthalate monoesters [J].Chemosphere 2003,53(8):921-926.
    [99]张蕴晖,林玲,阚海东,等.邻苯二甲酸二丁酯的人群综合暴露评估[J].中国环境科学2007,27(5):651~656.
    [100]周万灏,贾孟春.环境内分泌干扰物对男性生殖的影响[J].国外医学计划生育/生殖健康分册,2006,25(3):16-20.
    [101]Hashizume, K; Nanya, J; Toda, C, et al. Phthalate esters detected in various water samples and biodegradation of the phthalates by microbes isolated from river water [J]. Biological & Pharmaceutical Bulletin,2002,25(2):209-214.
    [102]常红、胡建英.固相萃取-LC-MS法检测水中痕量雌激素[J].环境化学,2003,22(4):400-403.
    [103]吴平谷,韩关根.饮用水中邻苯二甲酸脂类的调查[J].环境与健康杂志,1999,16(6):338-339.
    [104]沙玉娟,夏星辉,肖翔群.黄河中下游水体中邻苯二甲酸酯的分布特征[J].中国环境科学,2006,26(1):120-124.
    [105]张付海,张敏,朱余等.合肥市饮用水和水源水中邻苯二甲酸酯的污染现状调查[J].环境监测管理与技术,2008,20(2):22-24.
    [106]陆洋,袁东星,邓永智.九龙江水源水及其出厂水邻苯二甲酸酯污染调查[J].环境与健康杂志2007,24(9):703-705.
    [107]陆继龙,郝立波,王春珍等.第二松花江中下游水体邻苯二甲酸酯分布特征[J].环境科学与技术,2007,30(12):35-37.
    [108]Dargnat, C; Blanchard, M; Chevreuil, M, et al. Occurrence of phthalate esters in the Seine River estuary (France) [J]. Hydrological Processes,2009,23(8):1192-1201.
    [109]Peijnenburg, WJGM; Struijs, J. Occurrence of phthalate esters in the environment of the Netherlands [J]. Ecotoxicology and Environmental Safety,2006,63(2):204-215.
    [110]Vitali, M; Guidotti, M; Macilenti, G, et al. Phthalate esters in freshwaters as markers of contamination sources-A site study in Italy [J]. Environment International,1997,23(3): 337-347.
    [111]Yuan, SY; Liu, C; Liao, CS, et al. Occurrence and microbial degradation of phthalate esters in Taiwan river sediments [J]. Chemosphere,2002,49(10):1295-1299.
    [112]C.A. Staples, R.D. Peterson, T.F. Parkerton, W.J.et al. The environmental fate of phthalate esters:A literrature review.Chemosphere.1997,35(4):667-749.
    [113]Chyow-San Chiou, Je-Lueng Shie,Ching-Yuan Chang et al.Degradation of di-n-butyl phthalate using photoreactorpacked with TiO2 immobilized on glass beads. Journal of Hazardous Materials,2006, B137:1123-1129.
    [114]Ohyama, T. Effects of phthalate esters on the latent ATPase and swelling of mitochondria [J]. Journal of Biochemistry,1977,82(1):9-15.
    [115]Ohyama, T. Effects of phthalate esters on the respiration of rat liver mitochondria [J]. Journal of Biochemistry,1976,79(1):153-158.
    [116]Rao, MS; Yeldandi, AV; Subbarao, V. Quantitative-analysis of hepatocellular lesions induced by di(2-ethylhexyl)phthalate in F344 rats [J]. Journal of Toxicology and Environmental Health,1990,30(2):85-89.
    [117]Fukuoka, M; Kobayashi, T; Zhou, Y, et al. Mechanism of testicular atrophy induced by di-n-butyl phthalate in rats 4. Changs in the activity of succinate-dehydrogenase and the levels of transferrin and ferritin in the sertoli and germ-cells [J]. Journal of Applied Toxicology,1993,13(4):241-246.
    [118]Fukuoka, M; Kobayashi, T; Hayakawa, T. Mechanism of testicular atrophy induced by di-n-butyl phthalate in rats 5. Testicular iron depletion and levels of ferritin, hemoglobin and transferrin in the bone-marrow,liver and spleen [J]. Journal of Applied Toxicology, 1995,15(5):379-386.
    [119]Watanabe, N; Shimizu, M; Matsumoto, Y, et al. Possible origin of rat testicular atrophy induced by di-n-butyl phthalate:Changes in the activities of some enzymes during rat testis perfusion under a hypoxic condition and with mono-n-butyl phthalate [J]. Journal of Health Science,2002,48(6):503-513.
    [120]Ema, M; Miyawaki, E; Kawashima, K. Effects of dibutyl phthalate on reproductive function in pregnant and pseudopregnant rats [J]. Reproductive Toxicology,2000,14 (1):13-19.
    [121]Ema, M; Harazono, A; Miyawaki, E, et al. Developmental effects of di-n-butyl phthalate after a single administration in rats [J]. Journal of Applied Toxicology, 1997,17 (4):223-229.
    [122]Ema, M; Amano, H; Ogawa, Y. Characterization of the developmental toxicity of Di-n-butyl phthalate in rats [J]. Toxicology,1994,86(3):163-174.
    [123]Kim, TS; Jung, KK; Kim, SS, et al. Effects of in Utero Exposure to Di-(n-Butyl) Phthalate on Development of Male Reproductive Tracts in Sprague-Dawley Rats [J]. Journal of Toxicology and Environmental Health-Part A-current Issues,2010,73 (21-22):1544-1559.
    [124]Dueck, TA; Van Dijk, CJ; David, F, et al. Chronic effects of vapour phase di-n-butyl phthalate (DBP) on six plant species [J]. Chemosphere,2003,53(8):911-920.
    [125]Herring, R; Bering, CL. Effects of phthalate -ester on plant seedings and reversal by a soil microorganism[J]. Bulletin of Environmental Contamination and Toxicology,1988, 40(4):626-632.
    [126]Woodward, KN. Phthalate -esters, cystic kidney-disease in animals and possible effects on human health-a review [J]. Human & Experimental Toxicology,1990,9(6): 397-401.
    [127]Thompson, CJ; Ross, SM; Gaido, KW. Di(n-butyl) phthalate impairs cholesterol transport and steroidogenesis in the fetal rat testis through a rapid and reversible mechanism[J]. Endocrinology,2004,145(3):1227-1237.
    [128]Ternes, TA; Meisenheimer, M; Mcdowell, D, et al. Removal of pharmaceuticals during drinking water treatment [J]. Environmental Science & Technology,2002,36(17): 3855-3863.
    [129]Vieno, N; Tuhkanen, T; Kronberg, L. Removal of pharmaceuticals in drinking water treatment:Effect of chemical coagulation [J]. Environmental Technology,2006,27(2): 183-192.
    [130]Stackelberg, PE; Gibs, J; Furlong, ET, et al. Efficiency of conventional drinking-water-treatment processes in removal of pharmaceuticals and other organic compounds [J]. Science of the total Environment,2007,377(2-3):255-272.
    [131]Kim, SD; Cho, J; Kim, IS, et al. Occurrence and removal of pharmaceuticals and endocrine disruptors in South Korean surface, drinking, and waste waters [J]. Water Research,2007,41(5):1013-1021.
    [132]Kim, TU; Amy, G; Drewes, JE. Rejection of trace organic compounds by high-pressure membranes [C]. Conference on Water Environment-Membrane Technology, Jun 07-10, 2004 Seoul South Korea, Water Science an Technology,2005,51(6-7):335-344.
    [133]Kimura, K; Toshima, S; Amy, G, et al. Rejection of neutral endocrine disrupting compounds (EDCs) and pharmaceutical active compounds (PhACs) by RO membranes [J]. Journal of Membrane Science,2004,245(1-2):71-78.
    [134]Yangali-Quintanilla, V; Sadmani, A; McConville, M, et al. Rejection of pharmaceutically active compounds and endocrine disrupting compounds by clean and fouled nanofiltration membranes [J]. Water Research,2009,43(9):2349-2362.
    [135]Siddiqui, M; Amy, G; Ryan, J, et al. Membranes for the control of natural organic matter from surface waters [J]. Water Research,2000,34(13):3355-3370.
    [136]Jacangelo, JG; Laine, JM; Cummings, EW, et al. UF with Pretreatment for Removing DBP Precursors [J]. Journal American Water Works Association,1995,87(3):100-112.
    [137]Kim, MH; Yu, MJ. Characterization of NOM in the Han River and evaluation of treatability using UF-NF membrane [J]. Environmental Research,2005,97(1):116-123.
    [138]Berg P, Hagmeyer G, Gimbel R. Removal of pesticides and other micropollutants by nanofiltration [J]. Desalination,1997,113, (2-3):205-208.
    [139]Jung, YJ; Kiso, Y; Othman, RAAB, et al. Rejection properties of aromatic pesticides with a hollow-fiber NF membrane [J]. Desalination,2005,180(1-3):63-71.
    [140]Eriksson, P; Kyburz, M; Pergande, W. NF membrane characteristics and evaluation for sea water processing applications [C]. European Conference on Desalination and the Environment, MAY 22-26,2005 St Margherita Italy. Desalination,184(1-3):281-294.
    [141]S. Chang, T.D. Waite and A.G. Fane, A simplified model for trace organics removal by continuous flow PAC adsorption/submerged membrane processes[J]. Journal of Membrane Science,2005,253(1-2):81-87.
    [142]Chang, SJ; Jang, NJ; Yeo, YH, et al. Fate and transport of endocrine-disrupting compounds (oestrone and 17 beta-oestradiol) in a membrane bio-reactor used for water re-use [C]. A International Conference on Future Urban Wastewater Systems, MAY 18-20.2005 Xian PEOPLES R CHINA. Water Science and Technology,2006,53(9): 123-130.
    [143]J.H. Kim, P.K. Park, C.H. Lee, H.H. Kwon and S. Lee, A novel hybrid system for the removal of endocrine disrupting chemicals:nanofiltration and homogeneous catalytic oxidation[J]. Journal of Membrane Science,2008,312 (1-2):.66-75.
    [144]Ryu, J; Choi, W; Choo, KH. A pilot-scale photocatalyst-membrane hybrid reactor: performance and characterization [C]. Conference on Water Environment-Membrane Technology, JUN 07-10,2004, Seoul South Korea. Water Science and Technology, 2005,51(6-7):491-497.
    [145]郭栋生,李艳霞,赵艳红,等.活性炭吸附黄河水中邻苯二甲酸二丁酯、壬基酚和双酚A的研究[J].给水排水,2007,33(1):30-33.
    [146]Mohan, SV; Shailaja, S; Krishna, MR, et al. Adsorptive removal of phthalate ester (Di-ethyl phthalate) from aqueous phase by activated carbon:A kinetic study [J]. Journal of Hazardous Materials,2007,146 (1-2):278-282.
    [147]Yoon, YM; Westerhoff, P; Snyder, SA, et al. HPLC-fluorescence detection and adsorption of bisphenol A,17 beta-estradiol, and 17 alpha-ethynyl estradiol on powdered activated carbon [J]. Water Research,2003,37(14):3530-3537.
    [148]Yu, Z; Peldszus, S; Huck, PM. Adsorption of Selected Pharmaceuticals and an Endocrine Disrupting Compound by Granular Activated Carbon.1. Adsorption Capacity and Kinetics [J]. Environmental Science&Technology,2009,43(5):1467-1473.
    [149]Staples, CA; Peterson, DR; Parkerton, TF, et al. The environmental fate of phthalate esters:A literature review [J]. Chemosphere,1997,35(4):667-749.
    [150]Glaze W. H. et al. Destruction of pollutants in water with ozone incombinationw ithu ltravioletra diation.O zone:Sci.En g.,1987,9:335-350.
    [151]高乃云,,严敏,赵建夫等.水中内分泌干扰物处理技术与原理[M].中国建筑工业出版社.
    [152]Nadtochenko, V.; Kiwi, J. Photoinduced mineralization of xylidine by the fenton reagent.2. Implications of the precursors formed in the dark [J]. Environmental Science and Technology,1998,32(21):3282-3285
    [153]Beltran, F.J.; Garcia-Araya, J.F.; Acedo, B. Advanced oxidation of atrazine in water-1: Ozonation[J]. Water Research,1994,28, (10):2153-2164.
    [154]Weavers LK; Malmstadt N; Hoffmann MR. Kinetics and mechanism of pentachlorophenol degradation by sonication, ozonation, and sonolytic ozonation[J]. Environmental Science & Technology,2000,34(7):1280-1285.
    [155]Qiang Zhimin; Liu Chao; Dong Bingzhi; et al. Degradation mechanism of alachlor during direct ozonation and O3/H2O2 advanced oxidation process [J]. Chemosphere, 2010,78(5):517-526.
    [156]徐冰冰,陈忠林,齐飞等.UV/03对亚硝基二甲胺降解产物的控制研究[J].2008,29(12):3421-3427.
    [157]Xu Bingbing; Chen Zhonglin; Qi Fei; et al. Comparison of N-nitrosodiethylamine degradation in water by UV irradiation and UV/O3:Efficiency, product and mechanism [J]. Journal of Hazardous Materials,2010,179(1-3):976-982.
    [158]Rao Y. F.; Chu W. A new approach to quantify the degradation kinetics of linuron with UV, ozonation and UV/O3 processes [J]. Chemosphere,2009,74(11):1444-1449.
    [159]Acero Juan L.; Real Francisco J.; Benitez E. Javier; et al. Oxidation of chlorfenvinphos in ultrapure and natural waters by ozonation and photochemical processes [J]. Water Research,2008,42(12):3198-3206.
    [160]Koh I.O.; Thiemann W. Study of photochemical oxidation of standard chlorinated paraffins and identification of degradation products [J]. Journal of Photochemistry and Photochemistry A-Chemistry,2001,139(2-3):205-215.
    [161]Lucas, Marco S.; Peres, Jose A.; Li Puma, Gianluca. Treatment of winery wastewater by ozone-based advanced oxidation processes (O3, O3/UV and O3/UV/H2O2) in a pilot-scale bubble column reactor and process economics [J]. Separation and Purification Technology,2010,72(3):235-241.
    [162]Kasprzyk-Hordern B; Ziolek M; Nawrocki J. Alytic ozonation and methods of enhancing molecular ozone reactions in water treatment [J]. Applied Catalysis B-Environmental,2003,46(4):639-669.
    [163]Chen Yi-Hung; Hsieh Da-Cheng; Shang Neng-Chou. Efficient mineralization of dimethyl phthalate by catalytic ozonation using TiO2/Al2O3 catalyst [J]. Journal of Hazardous Materials,2011,192(3):1017-1025.
    [164]周云瑞,祝万鹏.A1203催化臭氧化处理邻苯二甲二甲酯[J].环境化学,2006,27(1):51-56.
    [165]Beltran, Fernando J.; Gonzalez, Manuel; Rivas, Francisco J.;et al. Fenton reagent advanced oxidation of polynuclear aromatic hydrocarbons in water [J]. Water, Air, and Soil Pollution,1998,105(3-4):685-700.
    [166]Yoon SH; Lee JH. Oxidation mechanism of As(Ⅲ) in the UV/TiO2 system:Evidence for a direct hole oxidation mechanism [J]. Environmental Science & Technology,2005, 39(24):9695-9701.
    [167]Saquib M.; Abu Tariq M.; Haque M. M.; et al. Photocatalytic degradation of disperse blue 1 using UV/TiO2/H2O2 process [J]. Journal of Environmental Management,2008, 88(2):300-306.
    [168]Garcia J. C.; Oliveira U.; Silva A. E. C.; ea al. Comparative study of the degradation of real textile effluents by photocatalytic reactions involving UV/TiO2/H2O2 and UV/Fe2+/H2O2 systems [J]. Journal of Hzaardous Materials,2007,147(1-2):105-110.
    [169]金钦汉,戴树珊,黄卡玛.微波化学[M].北京:科学出版社,1999.10.
    [170]Serpone Nick; Horikoshi Satoshi; Emeline Alexei V. Microwaves in advanced oxidation processes for environmental applications. A brief review [J]. Journal of Photochemistry and Photobiology C-Photochemistry Reviews,2010,11(2-3):114-131.
    [171]赵浩,董文龙,刘志英,等.活性炭吸附苯酚及其微波辐照再生效果[J].南京工业大学学报(自然科学版),2010,,3(1):28-32.
    [172]潘能婷,苏展军,莫家乐,等.新型微波适应型复合活性炭的研制及其微波再生性能[J].化工学报,2011,62(1):111-118.
    [173]孙维义,宋宝增.微波法水处理技术研究进展[J].环境科学与管理,2007,32(8):93-96.
    [174]张国宇,王鹏,姜思朋,等.微波诱导氧化处理雅格素红BF-3B 150%染料废水的研究[J].环境科学,2004,25(增刊):52-55.
    [175]Zhihui Ai; Peng Yang; Xiaohua Lu. Degradation of 4-chlorophenol by microwave irradiation enhanced advanced oxidation processes [J]. Chemosphere,2005, 60(6):824-827.
    [176]Ma, Jun. and Graham, N.J.D. Degradation of atrazine by manganese-catalysed ozonation:Influence of humic substances. Water Research,1999,33(3):785-793.
    [177]Ma, Jun. and Graham, N J D. Degradation of atrazine by manganese catalysed ozonation-Influence of radical scavengers. Water Research,2000,34(15):3822-3828.
    [178]Ma, Jun. and Sui, Minghao. Degradation of refractory organic pollutants by catalytic ozonation Mn-modified activated carbon as catalyst[C]. Advances in Ozone Science and Engineering:Environmental Processes and Technological Applications.15-16 April, 2002.
    [179]洪光,王鹏,张国宇,等.改性氧化铝微波诱导氧化处理雅格素蓝BF-BR染料废水的研究.环境科学学报,2005,25(2):254-258.
    [180]Fernando J. Beltran.水和废水的臭氧反应动力学[M].北京:中国建筑工业出版社,2007.
    [181]李海燕.催化奥氧氧化降解饮用水中内分泌干扰物研究[D].北京,中国科学院生态环境研究中心,2004.
    [182]Reisz, E; Schmidt, W; Schuchmann, HP; von Sonntag, C. photolysis of ozone in aqueous solutions in the presence of tertiary butanol [J]. Environmental Science& Technology,2003,37(9):1941-1948.
    [183]钟理,郭江海.叔丁醇水溶液臭氧氧化的降解过程及反应机理研究[J].现代化工,1999,19(2):25-27.
    [184]于颖慧,侯艳君,高金胜,等.水中本底成分对03/H202氧化降解2,4-D的影响[J].环境科学学报,2007,27(8):1311-1316.
    [185]陈忠林,徐贞贞,贲岳,等ZnOOH/O3催化臭氧化体系去除水中痕量对氯硝基苯[J].环境科学,2007,28(11):2550-2556.
    [186]Legube B; Leitner NKV. Catalytic ozonation:a promising advanced oxidation technology for water treatment [J]. Catalysis Today 1999,53(1):61-71.
    [187]Kasprzyk-Hordern B; Ziolek M; Nawrocki J. Catalytic ozonation and methods of enhancing molecular ozone reactions in water treatment [J]. Applied Catalysis B-Environmental,2003,46(4):639-669.
    [188]Gracia, R; Cortes, S; Sarasa, J; et al. TiO2-catalysed ozonation of raw Ebro river water [J]. Weter Research,2000,34(5):1525-1532.
    [189]Andreozzi R; Insola A; Caprio V; et al. The use of manganese dioxide as a heterogeneous catalyst for oxalic acid ozonation in aqueous solution [J]. Applied Catalysis A-General,1996,138(1):75-81.
    [190]Beltran FJ; Rivas FJ; Montero-De-Espinosa R. Ozone-enhanced oxidation of oxalic acid in water with cobalt catalysts.2. Heterogeneous catalytic ozonation [J]. Industrial& Engineering G Chemistry Research,2003,42(14):3218-3224.
    [191]Beltran FJ; Rivas FJ; Montero-de-Espinosa R. A TiO2/Al2O3 catalyst to improve the ozonation of oxalic acid in water [J]. Applied Catalysis B-Environmental, 2004,47(2):101-109.
    [192]万山红,李欣,覃昊,等NiO-MnO2/Al2O3催化臭氧化催化剂的制备及性能[J].材料科学与工艺,2008,16(3):415-418.
    [193]李欣,边疆,朱学多,等CuO-MnO2/Al2O3催化臭氧化催化剂的制备、结构表征及性能[J].高效化学学报,2007.28(6):1155-1159.
    [194]Qin JY; Aika K. Catalytic wet air oxidation of ammonia over alumina supported metals [J]. Applied Catalysis B-Environmental,1998,16(3):261-268
    [195]Zhou Yunrui, Zhu Wanpeng, Liu Fudong, et al. Catalytic activity of Ru/Al2O3 for ozonation of dimethyl phthalate in aqueous solution [J]. Chemosphere,2007, 66:145-150.
    [196]梁新义,张黎明,丁宏远,等.超声促进浸渍法制备催化剂LaCoO3/Al2O3[J]物理化学学报,2003,19(7):666-669.
    [197]刘学芬,张乐,石亚华,等.超声波-微波法制备NiW/Al2O3加氢脱硫催化剂[J].催化学报,2004,25(9):748-752.
    [198]祝万鹏,周云瑞Ru/Al2O3催化臭氧氧化催化剂及其微波合成方法[P].中国专利:1785511,2006-06-14.
    [199]Satoshi Kaneco, Hideyuki Katsumata,Tohru Suzuki. Titanium dioxide mediated photocatalytic degradation of dibutyl phthalate in aqueous solution-kinetics, mineralization and reaction mechanism. Chemical Engineering Journal,125,59-66, 2006.
    [200]Gurol MD; Akata A. Kinetics of ozone photolysis in aqueous solution [J]. Aiche Journal,1996,42(11):3283-3292.
    [201]Al-Tawabini, Bassam Shafiq. Treatment of water contaminated with dimethyl phthalate by Fenton, photo-Fenton and ultraviolet/hydrogen peroxide processes [D]. King Fahd University of Petroleum and Minerals,2002.
    [202]Ma J; Graham NJD. Degradation of atrazine by manganese-catalysed ozonation Influence of radical scavengers [J]. Water Research,2000,34(15):3822-3828.
    [203]Zhao Lei; Sun Zhizhong; Ma Jun; et al. Influencing mechanism of bicarbonate on the catalytic ozonation of nitrobenzene in aqueous solution by ceramic honeycomb supported manganese [J]. Journal of Molecular Catalysis A-chemical,2010, 322(1-2):26-32.
    [204]Zhao, L., J. Ma, et al. (2008). Oxidation products and pathway of ceramic honeycomb-catalyzed ozonation for the degradation of nitrobenzene in aqueous solution. Applied Catalysis B-Environmental 79(3):244-253.
    [205]Cravotto G; Di Carlo S; Tumiatti V; et al. Degradation of persistent organic pollutants by Fenton's reagent facilitated by microwave or high-intensity ultrasound [J]. Environmental Technology,2005,26(7):721-724.
    [206]Airton Kunz, Patricio Peralta-Zamora, Nelson Duran. Hydrogen peroxide assisted photochemical degradation of ethylenediaminetetraacetic acid [J]. Advances in Environmental Research,2002,7(1):197-202.
    [207]Kim Sun-Jae; Kim Sang-Chai; Seo Seong-Gyu; et al. Photocatalyzed destruction of organic dyes using microwave/UV/O3/H2O2/TiO2 oxidation system [J]. Catalysis Today, 2011,164(1):384-390.
    [208]张图宇,王鹏,姜思朋,等.微波辐射处理酯化废水的工艺技术研究[J].给水排水,2004,30(8):61-64.
    [209]姜思朋,王鹏,张国宇,等.微波诱导氧化法处理BF-BR染料废水[J].中国给水排水,2004,20(4):13-15.
    [210]Jung S. C. The microwave-assisted photo-catalytic degradation of organic dyes [J]. Water Science and Technology,2011,63(7):1491-1498.
    [211]王金成,薛大明,熊力,等.微波辐射处理活性艳蓝KN-R染料溶液的研究[J].环境科学学报,2001,21(5):628-630.
    [212]Ernst M; Lurot F; Schrotter JC. Catalytic ozonation of refractory organic model compounds in aqueous solution by aluminum oxide [J]. Applied Catalysis B-environmental,2004,47(1):15-25.
    [213]肖新荣,杨江柳,黄增勇,等.微波辐射Fenton试剂-活性炭催化氧化体系降解水中苯酚[J].南华大学学报(自然科学版),2004,18(4):22-25.
    [214]王金成.微波辐射处理染料活性艳蓝KN-R的研究[D].大连:大连理工大学,2000.
    [215]孔祥吉.微波与催化氧化组合技术在水处理中的应用[D].哈尔滨:黑龙江大学,2004.
    [216]Zhao, L., J. Ma, et al. (2008). Oxidation products and pathway of ceramic honeycomb b-catalyzed ozonation for the degradation of nitrobenzene in aqueous solution. Applied Catalysis B-Environmental 79(3):244-253.
    [217]Quan Xie; Zhang Yaobin; Chen Shuo; et al.. Generation of hydroxyl radical in aqueous solution by microwave energy using activated carbon as catalyst and its potential in removal of persistent organic substances [J]. Journal of Molecular Catalysis A-chemical, 2007,263(1-2):216-222.
    [218]Kaneco Satoshi; Katsumata Hideyuki; Suzuki Tohru; et al. Titanium dioxide mediated photocatalytic degradation of dibutyl phthalate in aqueous solution-kinetics, mineralization and reaction mechanism [J]. Chemical Engineering Journal,2006,125(1): 59-66.
    [219]Bajt O; Mailhot G; Bolte M. Degradation of dibutyl phthalate by homogeneous photocatalysis with Fe(Ⅲ) in aqueous solution [J]. Applied Catalysis B-environmental, 2001,33(3):239-248.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700