用户名: 密码: 验证码:
青藏铁路及沿线生态地质环境研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
青藏高原是我国长江、黄河、和亚洲诸多重要江河水系的发源地,对我国和亚洲众多国家的生态安全具有重要的影响力,青藏铁路是我国重要的战略性工程,因此从宏观角度系统分析青藏高原生态地质环境的稳定性及影响因素具有重要的意义,不仅是前沿的基础科学研究,更具有重要的应用前景。
     本文基于遥感和地理信息技术,在遥感软件ERDAS、ENVI,IDL、GIS软件ARCGIS的支持下基于美国NOAA卫星的植被指数产品GIMMS-NDVI和EOS的MODIS-NDVI以及MODIS-LST数据、合成孔径雷达卫星数据对青藏高原及青藏铁路沿线宏观植被生态环境及沉降形变进行了相关研究。
     论文研究内容包括两大核心部分,一是青藏高原及青藏铁路沿线植被生态的空间分布及演变的定量描述以及控制性因素研究,二是定量计算青藏铁路的沉降形变。第一部分利用GIMMS-NDVI数据、MODIS卫星的陆面温度产品数据和植被指数产品数据分析了青藏高原及青藏铁路及沿线植被生态演变及表层土壤水分布规律,并分析其相互关系。第二部分,青藏铁路作为青藏高原重要的线状工程,冻融沉降对其有着重要的危害,首次使用宽幅合成孔径雷达数据计算了青藏铁路的沉降形变量。
     研究表明青藏铁路及沿线植被生态的演变主要受表层土壤水控制,且表现稳定,气温降水无论从空间还是时间周期上不对植被生态演变起控制性作用。青藏铁路在垂向上受高原冻融环境的影响具有沉降形变的危害。
The Tibetan Plateau is the birthplace of the Yangtze River, the Yellow River, andmany important rivers in Asia, which has major impact on the ecological security ofmany countries in Asia including China, and the Qinghai-Tibet railway is animportant strategic project in China, so it is significant for macroanalysis in stabilityand influence factors of eco-geological environment in the Tibetan Plateau, which isnot only the new scientific research, but also has an important application prospect.
     The research is based on remote sensing and GIS technology, such as the remotesensing software ERDAS, ENVI, IDL, GIMMS-NDVI, MODIS-NDVI andMODIS-LST and wide synthetic aperture radar data of the vegetation ecologicalevolution, subsidence and deformation along the Qinghai-Tibet railway in theTibetan Plateau.
     This paper includes two parts, one is the quantitative description on spatialdistribution and evolution of vegetation ecosystem along the Tibetan Plateau and theQinghai-Tibet railway, including studying the major factors, two is the quantitativecalculation on subsidence and deformation of the Qinghai-Tibet railway. The firstpart, the author used GIMMS-NDVI data, MODIS products of temperature data andvegetation index data analyze the vegetation ecological evolution and distribution ofsurface soil water in the Tibetan Plateau and the Qinghai-Tibet railway, and analyzethe relationship between them. The second part, the author first used wide syntheticaperture radar data calculate subsidence and deformation in the Qinghai-Tibetrailway which is an important linear engineering of the Tibetan Plateau, sufferingfrom frozen freeze and subsidence.
     It shows that the ecological evolution of vegetation along the Qinghai-Tibetrailway is mainly controlled by the surface soil water in the steady state, temperatureand precipitation don’t play an important role of vegetation ecological evolutioneither space or time cycle. The Qinghai-Tibet railway has subsidence anddeformation because of influence on Plateau frozen freeze.
引文
Barbier E B.The economic linkages between rural poverty and land degradation:some evidence from Africa. Agriculture, Ecosystems and Environment,2000,(82):355-370
    Barredo J,et al.Modeling dynamic spatial processes: simulation of urbanfuture scenarios through cellular automata.Landscape Urban Plann,2003,64:145-160
    Fairbanks D H K,MeGwire K C.Patterns of floristic riehness in vegetationcommunites of California: regional scale ananlysis with multi-temporal NDVI.Global Eeology and Biogeography,2004,13,221-235
    Grepperud S. Population pressure and land degradation: the case of Ethiopia.Journal of Environmental Economics and Management,1996,(30)18-33
    Hobbs RJ, Mooney HA.Remote Sensing of Biosphere Functioning. NewYork:Springer-Verlag,1990.
    Huigen M G A. First principles of the Mameluke multi-actor modelling frameworkfor land use change, illustrated with a Philippine case study. Journal ofEnvironmental Management,2004,72:5-21
    Hunt Jr E R, Piper S C, Nemani R, et al.Global net carbon exchange andintra-annual atmospheric CO2concentrations predicted by and ecosystem processmodel and three-dimensional atmospheric model, Global Biogeochemical Cycles,1996,10(3):431-456
    J. T. Al-Bakri, J.C. Taylor. Application of NOAA AVHRR for monitoringvegetation conditions and biomass in Jordan.Journal of Arid Environments (2003)54:579593
    Küchler AW, Zonneveld IS.Vegetation Mapping. Dordrecht: Kluwer AcademicPublishers,1988.
    Lambin E F,et al.Are agricultural land-use models able to predict changes inland-use internsity.Agriculture, Ecosystems and Environment,2000,(82)321-331
    Lambin E F,et al.The causes of land-use and land-cover change: moving beyondthe myths. Global Environmental Change,2001,(11):261-269
    Lieth H.Primary Productivity of the Biosphere.1975, New York: Springer-verlag
    Ligtenberg A,et al.A design and application of a multi-agent system forsimulation of multi-actor spatial planning.Journal of Environmental Management,2004,(72):4355
    Liu J, Chen J M, Cihlar, et al.A process-based boreal ecosystem simulator Usingremote sensing inputs. Remote Sens Environ,1997,62:158-175
    Liu J, Chen J M, Cihlar, et al.Net primary productivity distribution in theBOREAS region from a process model using satellite and surface data. J Geophys Res,1999,104(22):27735-27754
    Monteith J L.Solar radiation and productivity in tropical ecosystems.Journalof Applied Ecology,1972,7:747-766
    Potter C S, Randerson J T, Field C B, et al. Terrestrial ecosystem production-aprocess model-based on global satellite and surface data. Global BiogeochemicalCycles,1993,7(4):811-841
    Rounservell M A D,et al.Modeling the spatial distribution of agricultural landuse at the regional scale.Agriculture, Ecosystems and Environment,2003,(95):465-479
    Running S W, Coughlan J C.A General model of forest ecosystem processes forregional applications I.Hydrologic balance, canopy gas exchange and primaryproduction processes. Ecological Modelling,1988,42:125-154
    Schoorl J M,et al.Linking land use and landscape process modeling: a case studyfor the Alora region (south Spain).Agriculture, Ecosystems and Environment,2001,(85):281-292
    Sellers P J, Randall D A, Collatz G J, et al.A revised land surfaceparameterization (SiB2) for atmospheric GCMs Part I: Modelformulation.J of Climate,1996a,9:676-705
    Sellers P J, Randall D A, Collatz G J, et al.A revised land surfaceparameterization (SiB2) for atmospheric GCMs Part II: The generation of globalfields of terrestrial biophysical parameters from satellite data.J of Climate,1996b,9:706-737
    Shimoda H,Fukue K,Hosomura T,et al. Global vegetation monitoring using NOAAvegetation index data.In International SymPosium on Space Technological and SeieneProeeedings.AGNE Publishing,Ine.,Tokyo,Japan,1986,1625-1630.
    Syphard A D, Clarke K C, Franklin J.Using a cellular automaton model to forecastthe effects of urban growth on habitat pattern in southern California.EcologicalComplexity,2005,2(2):185-203
    Tucker C.J, er al. African land-cover classification using satellite data.Science,1985,227:369-375
    Tucker C.J, Brownme, Mahoneyr, et al.The global inventory mapping and monitoring1981-2003AVHRR8-km dataset.Photogrammetric Engineering and Remote Sensing,2003(inRevision).
    Uchijima Z, Seino H. Agroclimatic evaluation of net primary: productivity ofnatural vegetation.(1)Chikugo model for evaluating net primary productivity, JAg Mer,1985,40(4):343-352
    Veldkamp A,et al.CLUE: a conceptual model to study the conversion of land useand its effects.Ecologicla Modelling,1996b,(85):253-270
    Verburg P H,et al.A spatial explicit allocation procedure for modelling thepattern of land use change based upon actual land use.Ecological Modelling,1999a,(116):45-61
    Verburg P H,et al.Land use change under conditions of high population pressure:the case of Java.Global Environment Change,1999b,(9):303-312
    Verburg P H,et al.Moddling the spatial dynamics of regional land use: the CLUS-Smodel.Environmental Management,2002,30(3):391-405
    WilliamsonH D,Eldridge DJ.Pasture statusina semi-aridgrassland.International Journal of Remote Sensing,1993,14(13):2535-2546
    Wu F.Simulating.Urban encroachment on rural land with fuzzy-logic-controlledcellular automata in a geographical information system.Journal of EnvironmentalManagement,1998,(53):293-308
    Wassen M J, Groutjans A P. Ecohydrology: an interdisciplinary approach forwetland management and rescoration[J]. Vegetation,1996,126:1-4.
    Baird A J, Wilby R I. Ecohydrology:Plants and water in terrestrial and aquaticenvironments[M].London: Routledge,1998.346-373.
    Kerr, J.T, Ostrovsky, M. From space to species: ecological applications forremote sensing. Trends in Ecology and Evolution.2003,18:299305
    Turner, W. et al. Remote sensing for biodiversity science and conservation[J].Trends in Ecology and Evolution.2003,18:306314
    Running, S.W. Estimating primary productivity by combining remote sensing withecosystem simulation[A].In: Remote Sensing of Biosphere Functioning[C](Hobbs, R.J.and Mooney, H.A., eds), Springer-Verlag,New York,1990:6586.
    Myneni, R.B. et al. The interpretation of spectral vegetation indexes[J]. IEEETransaction on Geoscience and Remote Sensing.1995,33:481486
    Christopher S.R. N., Compton J. T., John R.G. T.. North American vegetationdynamics observed with multi-resolution satellite data[J]. Remote Sensing ofEnvironment,2008,112:17491772
    Tucker C.J.,Newcomb W W, Dregne H E. AVHRR data sets for determination of desertspatial extent[J].International Journal of Remote Sensing,1994,17:3547-3565.
    Anyamba A,Tucker C J.Analysis of Sahelian vegetation dynamics using NOAA/AVHRRNDVI data from1981-2003[J].Journal of Arid Environments,2005,63:596-614.
    Weiss J.L.,Gutzler D S, et al. Long-term vegetation monitoring with NDVI in adiverse semi-arid setting, central New Mexico USA[J]. Journal of aridenvironments,2004,58:249-272.
    Moses A. C., Andrew S., Fabio C. Estimation of greengrass/herb biomass fromairborne hyperspectral imagery using spectral indices and partial least squaresregression[J]. International Journal of Applied Earth Observation andGeoinformation,2007,9(4):414-424
    G.L. Anderson, J.D. Hanson and R.H. Haas, Evaluating Landsat Thematic Mapperderived vegetation indices for estimating above-ground biomass on semiaridrangelands [J]. Remote Sensing Environment.1993,45(2):165175.
    Stella W.T.,R.r M. Hoffer, Responses Of Spectral Indices To Variations InVegetation Cover And Soil Background[J], Photogrammetric Engineering and RemoteSensing,1998,64(9):915-921.
    Gitelson, A., Kogan, F., Spivak, L et al. Estimation of seasonal dynamics ofpasture and crop productivity in Kazakhstan using NOAA/AVHRR data[J]. In:1996International Geosciences and Remote Sensing Symposium,1996,1:209211.
    Reed, B.C. Brown J.F., Vander Z. D. et al. Measuring phenological variabilityfrom satellite imagery[J]. Journal of Vegetation Science.1994,5(5):703714
    Vourlitis, G.L. Verfaillie J., Oechel W.C et al. Spatial variation in regionalCO2exchange for the Kuparuk River Basin, Alaska over the summer growing season[J].Global Change Biology,2003,9:930941
    Wylie, B.K. Johnson D.A.,Saliendra N.Z.et al. Calibration of remotely sensed,coarse resolution NDVI to CO2fluxes in a sagebrush steppe ecosystem[J]. RemoteSensing Environment2003,85:243255
    Griffith, B. Douglas D.C., Walsh N.E. et al. The Porcupine caribou herd. InArctic Refuge Coastal Plain Terrestrial Wildlife Research Summaries (Douglas,D.C.et al., eds),2002:837, US Geological Survey, Biological Resources Division,Biological Science Report USGS/BRD/BSR-2002-0001
    张仁华.遥感作物缺水状况的研究_张仁华[J].遥感技术动态,1987(1):25-30.
    田国良.1992冬小麦旱情遥感监测模型研究_田国良[J].环境遥感,1992,7(2):83-89.
    齐述华,王长耀,牛铮.利用温度植被旱情指数(TVDI)进行全国旱情监测研究[J].遥感学报,2003,05:420-427+436.
    江野,赵杰明,姚小强,颜胜安,赵礼铮.土壤水分与作物旱情监测研究[J].陕西气象,1993,02:13-15.
    邓孺孺.土壤水份垂向分布的平衡状态分析[J].中山大学学报(自然科学版),1997,02:101-105.
    余涛,田国良,吕永红,隋洪智.一种简单的土壤热惯量野外实测方法[J].土壤学报,1998,04:560-568.
    隋洪智,田国良,李付琴.农田蒸散双层模型及其在干旱遥感监测中的应用[J].遥感学报,1997,03:220-224.
    江东,王乃斌,Rosema A.中国能量与水平衡遥感监测系统[J].遥感信息,2002,02:7-10.
    孙睿,刘昌明,朱启疆.黄河流域植被覆盖度动态变化与降水的关系[J].地理学报,2001,06:667-672.
    辛景峰,宇振荣,P.M.Driessen.利用NOAA NDVI数据集监测冬小麦生育期的研究[J].遥感学报,2001,06:442-447+483.
    潘志强,刘高焕.黄河三角洲蒸散的遥感研究[J].地球信息科学,2003,03:91-96.
    刘安麟,李星敏,何延波,邓凤东.作物缺水指数法的简化及在干旱遥感监测中的应用[J].应用生态学报,2004,02:210-214.
    杨胜天,刘昌明.黄河流域土壤水分遥感计算及水循环过程分析[J].中国科学E辑:技术科学,2004,S1:1-12.
    刘振华,赵英时.遥感热惯量反演表层土壤水的方法研究[J].中国科学.D辑:地球科学,2006,06:552-558.
    张红卫,陈怀亮,申双和,周官辉,余卫东.基于表层水分含量指数(SWCI)的土壤干旱遥感监测[J].遥感技术与应用,2008,06:624-628+600.
    贺中华,陈晓翔.基于土壤因素耦合的喀斯特流域水文干旱模拟——以贵州省为例[J].地理科学,2013,06:724-734.
    罗浩,王红,施长惠.黄河三角洲地区地下水埋深遥感反演[J].国土资源遥感,2013,03:145-152.
    李大治,晋锐,车涛,Jeffrey Walker,高莹,耶楠,王树果.联合机载PLMR微波辐射计和MODIS产品反演黑河中游张掖绿洲土壤水分研究[J].地球科学进展,2014,02:295-305.
    田国良.土壤水分的遥感监测方法[J].环境遥感,1991,02:89-98+161.
    邵芸,吕远,董庆,韩春明.含水含盐土壤的微波介电特性分析研究[J].遥感学报,2002,06:416-423.
    高峰,王介民,孙成权,文军.微波遥感土壤湿度研究进展[J].遥感技术与应用,2001,02:97-102.
    刘良云,张兵,郑兰芬,童庆禧,刘银年,薛永祺,杨敏华,赵春江.利用温度和植被指数进行地物分类和土壤水分反演[J].红外与毫米波学报,2002,04:269-273.
    王鹏新,龚健雅,李小文,王锦地.基于植被指数和土地表面温度的干旱监测模型[J].地球科学进展,2003,04:527-533.
    钟若飞,郭华东,王为民.被动微波遥感反演土壤水分进展研究[J].遥感技术与应用,2005,01:49-57.
    李震,毛秀香,房俊旭.对土壤普查采样工作的探讨[J].科协论坛(下半月),2008,09:51-52.
    卢麾,施建成.基于遥感观测的21世纪初中国区域地表土壤水及其变化趋势分析[J].科学通报,2012,16:1412-1422.
    田辉,王澄海,文军,王欣,陆登荣,吕少宁.基于简化参数方法的蒙古干旱区土壤湿度被动微波遥感[J].地球物理学报,2012,02:415-427.
    丁志,童庆禧,郑兰芬,等.应用气象卫星图象资料进行草场生物量测量方法的初步研究_丁志[J].干旱区研究,1986(2):8-13.
    徐希孺.利用NOAA_CCT估算内蒙古草场产草量的原理和方法[J].地理学报,1985:333-344.
    邹尚辉.植被资源调查中最佳时相遥感图象的选择研究_邹尚辉[J].Journal ofIntegrative Plant Biology,1985(5):525-531.
    黄签.NOAA影像在宏观植被季相动态遥感中的应用[J].遥感信息,1986(4):34-36+54.
    王铮,梅安新,刘树人,等.利用计算机从遥感图象识别植被类型的理论研究[J].植物生态学与地植物学学报,1989(2):90-95.
    李岩.塔里木河两岸甘草遥感信息的分析与提取[J].遥感信息,1989(2):18-21.
    陈桂琛,彭敏,赵京.青海湖地区沙生植被遥感解译及其保护[J].中国沙漠,1991(3):47-52.
    郑海青,陈丽璇,陈爱光.利用气象卫星AVHRR资料监测闽东南双季晚稻产量[J].遥感信息,1991(2):7-10.
    覃文汉.遥感植被双向反射光谱的理论研究与应用展望[J].环境遥感,1992(4):52-61.
    黄敬峰.NOAA气象卫星植被遥感研究动态[J].遥感技术与应用,1992(1):59-63.
    陈桂琛,周立华,彭敏,等.青海省隆务河流域森林、灌丛植被遥感分析[J].植物生态学报,1994(4):385-391.
    李良序,赵兵科,汪景春,等.植被光谱与植被遥感参数综述[J].新疆气象,1995(1):1-5.
    肖进原.乌江流域自然植被遥感解译分析研究[J].贵州地质,1996(4):357-362.
    牛铮.植被二向反射特性研究新进展[J].遥感技术与应用,1997(3):50-58.
    刘纪远,庄大方,凌扬荣.基于GIS的中国东北植被综合分类研究[J].遥感学报,1998(4):285-291.
    齐晔.北半球高纬度地区气候变化对植被的影响途径和机制[J].生态学报,1999(4):36-39.
    袁金国.森林植被遥感分类研究[J].河北师范大学学报,1999(2):135-138.
    刘振民,李四海.HY-1卫星资料植被信息提取应用系统的研制[J].海洋技术,2003(2):8-12.
    宋开山,张柏,赵云升.东北主要高大落叶乔木单叶的偏振特性研究[J].东北师大学报(自然科学版),2004(1):89-95.
    李俊祥,达良俊,王玉洁,等.基于NOAA-AVHRR数据的中国东部地区植被遥感分类研究[J].植物生态学报,2005(3):91-98.
    任红艳,潘剑君,张佳宝.高光谱遥感技术的铅污染监测应用研究[J].遥感信息,2005(3):36-40.
    杨可明,郭达志,陈云浩.高光谱植被遥感数据光谱特征分析[J].计算机工程与应用,2006(31):217-219+226.
    张友静,黄浩,马雪梅.基于KPCA和SAM的城市植被遥感分类研究[J].地理与地理信息科学,2006(3):39-42.
    龙晶.植被遥感研究的新思路——走出传统光谱理论应用的误区[J].林业资源管理,2006(1):33-39+100.
    徐斌,杨秀春,侯向阳,等.草原植被遥感监测方法研究进展[J].科技导报,2007(9):7-10.
    宋巍巍,管东生.五种TM影像大气校正模型在植被遥感中的应用[J].应用生态学报,2008(4):77-82.
    李登科,郭铌.基于植被生长规律的陕西省植被遥感分类[J].高原气象,2008(1):217-223.
    陈曦.塔里木河干流植被遥感监测时空多尺度协同分析方法[J].干旱区地理,2008(1):5-13.
    刘成林,樊任华,武建军,等.锡林郭勒草原植被生长对降水响应的滞后性研究[J].干旱区地理,2009(4):34-40.
    雷天赐,黄圭成,雷义均.基于高程模型的鄱阳湖湿地植被遥感信息识别与分类提取[J].资源环境与工程,2009(6):82-85.
    徐怡波,赖锡军,周春国.基于ENVISAT ASAR数据的东洞庭湖湿地植被遥感监测研究[J].长江流域资源与环境,2010(4):111-118.
    崔耀平,王让会,刘彤,等.基于光谱混合分析的干旱荒漠区植被遥感信息提取研究——以古尔班通古特沙漠西缘为例[J].中国沙漠,2010(2):121-128.
    李昊,蔡运龙,陈睿山,等.基于植被遥感的西南喀斯特退耕还林工程效果评价——以贵州省毕节地区为例[J].生态学报,2011(12):5-14.
    柳艺博,居为民,朱高龙,等.内蒙古不同类型草地叶面积指数遥感估算[J].生态学报,2011(18):55-66.
    叶成名,韩岭,苗放.5.12汶川震区植被遥感动态监测与分析[J].地球物理学进展,2012(5):92-98.
    罗海江.基于卫星遥感的北京城乡植物物候差异[J].地理科学进展,2013(10):33-39.
    侯美亭,赵海燕,王筝,等.基于GIMMS、VGT和MODIS的中国东部植被指数对比分析[J].遥感技术与应用,2013(2):132-141.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700