用户名: 密码: 验证码:
玉米抗弯孢菌叶斑病QTL的定位及遗传分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
弯孢叶斑病是20世纪90年代在我国华北地区发生的一种新的玉米病害,主要侵染叶片,如遇适温高湿气候,病斑会迅速蔓延至整个植株,造成干枯,影响产量。研究表明,玉米对弯孢病的抗性属数量性状遗传,同时受基因加性、显性和上位性效应控制。开展玉米弯孢菌叶斑病的抗性遗传研究,获得与抗性相关的候选基因,发掘与抗病基因位点连锁的分子标记,有助于抗病机理研究和分子标记辅助抗性改良,从遗传上解决玉米弯孢叶斑病的危害。
     本文围绕玉米弯孢叶斑病抗性QTL的定位及遗传分析开展研究,结果如下:
     1.以玉米抗弯孢叶斑病自交系沈137和感弯孢叶斑病自交系黄早4组配成F2:3分离群体,选取117个家系进行基因型测定和表型分析。从514对SSR引物中选取稳定性好的150个多态标记构建连锁图。利用Mapmaker3.0作图软件,构建了一张玉米分子标记连锁图,与已发表的玉米分子遗传图谱基本一致。图谱总长度为1824.5cM,相邻标记间的平均距离为12.2cM。
     采用复合区间作图法,结合2008年和2009的表型鉴定结果(均设二次重复),定位玉米抗弯孢叶斑病的QTL。2008年的数据分析显示,两重复间共检测到3个QTL,其中bin6.05上的QTL在两重复间都能检测到,且具有相同的置信区间,可解释的表型变异为7.6~12.5%。2009年的数据分析显示,两重复间共检测到6个QTL,其中bin10.04上的QTL在两重复间均被检测到,位于标记umc1061和标记umc1239之间,可解释表型变异的12.1-28.9%。
     2.利用抗病自交系沈137和感病自交系黄早4组配的822株F2分离群体,选取62个高抗和59个高感单株组成极端个体的亚群体,检测抗病QTL。选取亲本间稳定性好的145个多态标记,利用Mapmaker3.0作图软件构建分子标记连锁图谱,总长度为1545.8cM,相邻标记的平均间距为10.7cM。结合表型数据,采用复合区间作图法共检测到5个QTL,其中位于bin10.04上的QTL可解释表型变异的19.5%,位于标记umc1061和标记umc1239之间,这一QTL位置与2009年检测到的结果一致。
     3.利用感病亲本黄早4作为轮回亲本构建一个F3BC4回交群体,采用全基因组背景分析和AFLP标记相结合的方法,发掘与弯孢叶斑病抗病相关的区段。选取群体中的40个单株进行全基因组扫描,检测到的杂合染色体区段主要集中于bin2.08、bin3.04~3.05、bin4.0~4.02、bin5.01、 bin7.05, bin8.03~8.05和bin9.07。利用群体中3个高抗和3个高感植株及相应的亲本自交系筛选多态的AFLP标记,从64对AFLP引物中共检测到8个在抗感单株间表现出多态的AFLP条带。经测序和分析后发现,其中的5个多态AFLP片段,E51M14-331、E52M14-470、E52M20-273、 E53M30-678和E59M41-263,均来自反转录转座子,E59M14-331与S受体激酶高度同源,E52M11-254和E59M30-221为两个未知功能的蛋白序列。E52M11-254位于bin4.01,与F3BC4家系背景检测中杂合染色体区段bin4.0-4.02相一致,推测可能与弯孢叶斑病抗性相关。
Curvularia leaf spot, caused by the casual fungal pathogen Curvularia lunata, is a disease of corn firstly identified in Northern region of China in1980s. The leaf spot fungus mainly infects leaves. The infection could rapidly spread to the whole plant under favorable hot-wet weather, and causes severe yield loss. Resistance to the disease was reported to be quantitative in nature, and jointly controlled by additive, dominant, and epitastic genetic effects. The solution to genetically contain curvularia leaf spot could be normally accomplished by studying disease resistance mechanism, screening candidate resistance genes, identifying markers linked to disease-resistance genes, and applying molecular markers to assist breeding to improve disease resistance.
     The thesis mainly focuses on identification and chracterization of quantitative trait loci for resistance to curvularia leaf spot in maize, and the results were listed as follows:
     1. A segregating F2:3population was developed from a cross between the resistant inbred line Shen137and the susceptible inbred line Huangzao4, in which a selective F2:3population consisting of117F2:3families were subjected to both genotyping and phenotyping. Of the514SSR markers,150of them which were reliable and polymorphic between two parents were selected to construct a genetic linkage map. The map was1824.5cM in length with an average of12.2cM every two adjacent markers and in agreement with the published reference genetic linkage map.
     QTL analysis was conducted in years2008and2009(each year with two replicates) with Composite interval mapping (CIM) method. In2008, three QTL have been detected, and one of them, located on bin6.05, was consistently detected in two replicates. The QTL shared the common confidence interval and explained variance ranging from7.6~12.5%. In2008, six QTL were detected, and one QTL located on bin10.04was common in two replicates, flanked by two markers umc1061and umc1239. This resistance QTL accounted for12.1-28.9%of the total phenotypic variation.
     2. Four F1plants derived from the cross of Shen137×Huangzao4was self-pollinated to produce822F2plants. A selective genotyping population was formed by selecting the62extremely resistant and59completely susceptible F2plants. Totally,145SSR markers were used to genotype each selective F2plant. The genetic linkage map, constructed by Mapmaker3.0, was1545.8cM in length with an average distance of10.7cM every two adjacent markers. QTL analysis was performed using CIM to reveal five QTLs. One of these five QTL, located on chromosome bin10.04, accounted for19.5%of the total phenotypic variation, flanked by two markers umc1061and umc1239. Interestingly, this QTL was also detected in the previous F2:3population in2009.
     3. The F3BC4population was obtained by continuously backcrossing to the susceptible inbred line, Huangzao4. A combined whole-genome background screening method and AFLP technology was applied to dig those genome segments involved in maize resistance to curvularia leaf spot. A total of40individuals were used to investigate whole-genome background, and found that several chromosome segments were introduced from the donor parent. The donor fragments were scattered in bin2.08, bin3.04-3.05, bin4.0-4.02, bin5.01, bin7.05, bin8.03-8.05and bin9.07. The three extremely resistant and three completely susceptible individuals, together with two parents, were subjected to AFLP analysis. Totally,64AFLP primer combinations were used to search for polymorphic AFLP bands, resulting in eight AFLP bands polymorphic between resistant and susceptible individuals. Sequence analysis revealed that five polymorphic AFLP fragments, E51M14-331, E52M14-470, E52M20-273, E53M30-678and E59M41-263, were amplified from retrotransposons. Another three polymorphic AFLP bands were related to segments of coding sequences of three proteins. Among them, the AFLP fragment E59M14-331on bin2.02belongs to an S-locus receptor-like kinase. The other two AFLP fragments, E52M11-254(bin4.01) and E59M30-221(bin4.04), were amplified from two unknown proteins. Intriguely, E52M11-254overlapped with polymorphic region reveled by the whole genome screening. It was speculated that the AFLP band, E52M11-254, may be associated with maize resistance to curvularia leaf spot.
引文
[1]王晓鸣,戴法超,朱振东.玉米弯孢菌叶斑病的发生与防治.植保技术与推广,2003:37-39.
    [2]戴法超,高卫东,吴仁杰,等.一种值得注意的玉米病害——弯孢菌叶斑病.植物病理学报,1995,330.
    [3]暴增海,马桂珍,杨文兰,等.玉米弯孢霉叶斑病的初侵染来源及几种杀菌剂的室内毒力测定.吉林农业大学学报,2002:53-57.
    [4]吕国忠,刘志恒,何富刚,等.辽宁省爆发一种新病害-玉米弯孢菌叶斑病.沈阳农业大学学报,1997:80-81.
    [5]McKeen W E. A hitherto unreported corn disease. Plant Disease Reporter,1952,36:143.
    [6]Nelson R R. A new disease of Corn caused by Curvularia maculans. Plant Disease Reporter, 1956,40:210-211.
    [7]Franco E. Ocorrencia de Curvularia maculans no Milho em Sergipe. Revista Agric. (Piracicaba), 1960,35:265-268.
    [8]Jain B L. Two new species of Curvularia. Transactions of the British Mycological Society,1962, 45:539-544.
    [9]Mabadeje S A. Curvularia leaf spot of maize. Transactions of the British Mycological Society, 1969,52:267-271.
    [10]Mandokhot A M, Basu Chaudhary K C. A new leaf spot incited by Curvularia clavata. Netherlands Journal of Plant Pathology,1972,78:65-68.
    [11]Horst R. Westcott's Plant Disease Handbook, van Nostrand,1979, New York.
    [12]金敏忠.弯孢菌引起的变色米初步研究.植物病理学报,1989:21-26.
    [13]Somani R B, Ingle R W, Wanjari S S. Variability in Curvularia lunata (Wakker) Boed causing grain mold in sorghum. Sorghum and Millets Newsletter,1994,35:106-107.
    [14]曹以勤,彭金火,陆家云.几种禾本科植物上的弯孢菌.南京农业大学学报,1990:12-16.
    [15]刘金平,张新全,刘朝辉.几种禾本科草抗玉米弯孢菌叶斑病能力的研究.西南农业学报,2005:295-298.
    [16]Monterio F T, Vieira B S, Barreto R W. Curvularia lunata and Phyllachora sp.:two fungal pathogens of the grassy weed Hymenachne amplexicaulis from Brazil. Australasian Plant Pathology, 2003,32,449-453
    [17]Motlagh M R S. Evaluation of Curvularia lunata as an Biological Control Agent in Major Weeds of Rice Paddies. Life Science Journal,2011,8 (2).
    [18]赵来顺,田学军,孔宪君,等.玉米黄斑病研究Ⅱ.症状类型.河北农业大学学报,1995:36-38.
    [19]戴法超,王晓鸣,朱振东,等.玉米弯孢菌叶斑病研究.植物病理学报,1998:28-34.
    [20]林红,潘丽艳,文景芝.吉林省部分玉米种质资源抗玉米弯孢菌叶斑病鉴定研究.植物遗传资源学报,2006:3292-3296.
    [21]王晓鸣,戴法超,焦志亮,等.玉米种质资源抗弯孢菌叶斑病特性研究.植物遗传资源科学,2001:22-27.
    [22]蔺瑞明,高增贵,崔明珠,等.玉米弯孢菌叶斑病苗期抗病性鉴定及遗传初步分析.植物保护,1999:4-6.
    [23]白元俊,陈彦,李柏宏,等.辽宁省常用玉米自交系及杂交种对弯孢菌叶斑病的抗性鉴定.国外农学-杂粮作物,1999:42-44.
    [24]李贺年,齐巧丽,赵来顺,等.玉米黄斑病研究Ⅳ.品种抗病性鉴定.河北农业大学学报,1998:64-68.
    [25]赵君,王国英,胡剑,等.玉米弯孢菌叶斑病抗性的ADAA遗传模型的分析.作物学报,2002:127-130.
    [26]黎裕,戴法超,景蕊莲,等.玉米弯孢菌叶斑病抗性的QTL分析.中国农业科学,2002:1221-1227.
    [27]Botstein D, White R L, Skolnick M, et al. Construction of a genetic-linkage map in man using restriction fragment length polymorphisms. American Journal of Human Genetics,1980,32:314-331.
    [28]Sax K. The association of size differences with seed-coat pattern and pigmentation in Phaseolus vulgaris. Genetics,1923,8:552-560.
    [29]孔繁玲主编.植物数量遗传学.北京:中国农业大学出版社,2006,p358.
    [30]Mather K. Variation and selection of polygenic characters. Journal of Genetics,1941,41: 159-193.
    [31]Shrimpton A E, Robertson A. The isolation of polygenic factors controlling bristle score in drosophila-melanogaster.2. distribution of 3rd chromosome bristle effects within chromosome sections. Genetics,1988,118:445-459.
    [32]Paterson A H, Damon S, Hewitt J D, et al. Mendelian factors underlying quantitative traits in tomato-comparison across species, generations, and environments. Genetics,1991,127:181-197.
    [33]Edwards M D, Helentjaris T, Wright S, et al. Molecular-marker-facilitated investigations of quantitative trait loci in maize.4. Analysis based on genome saturation with isozyme and restriction-fragment-length-polymorphism markers. Theoretical and Applied Genetics,1992,83: 765-774.
    [34]Tanksley S.D. Mapping polygenes. Annual Review of Genetics,1993,27:205-233.
    [35]Paterson A H, Lin Y R, Li Z K, et al. Convergent domestication of cereal crops by independent mutations at corresponding genetic-loci. Science,1995,269:1714-1718.
    [36]Bradshaw H D, Otto K G, Frewen B E. et al. Quantitative trait loci affecting differences in floral morphology between two species of monkey flower (Mimulus). Genetics,1998,149:367-382.
    [37]Robertson A. The nature of quantitative genetic variation Drosophila melanogaster. In heritage from Mendel (ed. A. Brink),1967, pp.265~280. Madison, WI: The University of Wisconsin Press.
    [38]Eshed Y, Zamir D. Less-than-additive epistatic interactions of quantitative trait loci in tomato. Genetics,1996,143:1807-1817.
    [39]Lukens L N, Doebley J. Epistatic and environmental interactions for quantitative trait loci involved in maize evolution. Genetical Research,1999,74:291-302.
    [40]Cockerham C C, Zeng Z B. Design Ⅲ with marker loci. Genetics,1996,143:1437-1456.
    [41]刘春吉,王明理RFLP分析过程中应注意的几个问题.遗传,1994:37-40.
    [42]Helentjaris T, Slocum M, Wright S, et al. Construction of genetic-linkage maps in maize and tomato using restriction-fragment-length-polymorphisms. Theoretical and Applied Genetics,1986,72: 761-769.
    [43]杨小红,严建兵,郑艳萍,等.植物数量性状关联分析研究进展.作物学报,2007:523-530.
    [44]徐云碧.QTL作图效率的影响因素—群体大小.浙江农业大学学报,1994:573-578.
    [45]赵洪波,李明丽,鲁绍雄,等.群体规模和性状遗传力对F2设计下QTL定位效果的影响.云南农业大学学报,2007:159-163.
    [46]Hyne V, Kearsey M J, Pike D J, et al. QTL analysis-unreliability and bias in estimation procedures. Molecular Breeding,1995,1:273-282.
    [47]Alpert K B, Tanksley S D. High-resolution mapping and isolation of a yeast artificial chromosome contig containing fw2.2:A major fruit weight quantitative trait locus in tomato. Proc Natl Acad Sci USA,1996,93:15503-15507.
    [48]Yano M, Harushima Y, Nagamura Y, et al. Identification of quantitative trait loci controlling heading date in rice using a high-density linkage map. Theoretical and Applied Genetics,1997,95: 1025-1032.
    [49]徐云碧.分子标记在数量基因定位中的应用.遗传,1992:45-48.
    [50]Weber D, Helentjaris T. Mapping RFLP loci in maize using BA translocations. Genetics,1989, 121:583-590.
    [51]Welsh J, McClelland M. Fingerprinting genomes using PCR with arbitrary primers. Nucleic Acids Research,1990,18:7213-7218.
    [52]Williams J G K, Kubelik A R, Livak K J, et al. DNA polymorphisms amplified by arbitrary primers are useful as genetic-markers. Nucleic Acids Research,1990,18:6531-6535.
    [53]Lyamichev V, Brow M A D, Dahlberg J E. Structure-specific endonucleolytic cleavage of nucleic-acids by eubacterial DNA-polymerases. Science,1993,260:778-783.
    [54]Vos P, Hogers R, Bleeker M, et al. AFLP - a new technique for DNA-fingerprinting. Nucleic Acids Research,1995,23:4407-4414.
    [55]Litt M, Luty J A. A hypervariable microsatellite revealed by invitro amplification of a dinucleotide repeat within the cardiac-muscle actin gene. American Journal of Human Genetics,1989, 44:397-401.
    [56]Condit R, Hubbell S P. Abundance and DNA-sequence of 2-base repeat regions in tropical tree genomes. Genome,1991,34:66-71.
    [57]McCouch S R, Teytelman L, Xu Y B, et al. Development and mapping of 2240 new SSR markers for rice (Oryza sativa L.). DNA Research,2002,9:199-207.
    [58]Sharopova N, McMullen M D, Schultz L, et al. Development and mapping of SSR markers for maize. Plant Molecular Biology,2002,48:463-481.
    [59]Song Q J, Shi J R, Singh S, et al. Development and mapping of microsatellite (SSR) markers in wheat. Theoretical and Applied Genetics,2005,110:550-560.
    [60]Lander E.S. The new genomics:Global views of biology. Science,1996,274:536-539.
    [61]Syvanen A C. Accessing genetic variation:Genotyping single nucleotide polymorphisms. Nature Reviews Genetics,2001,2:930-942.
    [62]Edwards K J, Mogg R. Plant genotyping by analysis of single nucleotide polymorphisms. Henry R J (ed.), Plant Genotyping:The DNA Fingerprinting of Plants, CABI Publishing, Wallingford, 2001, pp.1-13.
    [63]Darvasi A, Weinreb A, Minke V, et al. Detecting marker-qtl linkage and estimating QTL gene effect and map location using a saturated genetic-map. Genetics,1993,134:943-951.
    [64]Parlevliet J E. Components of resistance that reduce the rate of epidemic development. Annual Review of Phytopathology,1979,17:203-222.
    [65]Lander E S, Botstein D. Mapping mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics,1989,121:185-199.
    [66]Zhang L P, Lin G Y, Nino-Liu D, et al. Mapping QTLs conferring early blight (Alternaria solani) resistance in a Lycopersicon esculentum x L. hirsutum cross by selective genotyping. Molecular Breeding,2003,12:3-19.
    [67]Wingbermuehle W J, Gustus C, Smith K P. Exploiting selective genotyping to study genetic diversity of resistance to Fusarium head blight in barley. Theoretical and Applied Genetics,2004,109: 1160-1168.
    [68]Micic Z, Hahn V, Bauer E, et al. Identification and validation of QTL for Sclerotinia midstalk rot resistance in sunflower by selective genotyping. Theoretical and Applied Genetics,2005, 111: 233-242.
    [69]Vales M I, Schon C C, Capettini F, et al. Effect of population size on the estimation of QTL:a test using resistance to barley stripe rust. Theoretical and Applied Genetics,2005,111:1260-1270.
    [70]Linde M, Hattendorf A, Kaufmann H, et al. Powdery mildew resistance in roses:QTL mapping in different environments using selective genotyping. Theoretical and Applied Genetics,2006, 113:1081-1092.
    [71]Soufflet-Freslon V, Gianfranceschi L, Patocchi A, et al. Inheritance studies of apple scab resistance and identification of Rvi14, a new major gene that acts together with other broad-spectrum QTL. Genome,2008,51:657-667.
    [72]Lander E S, Green P, Abrahamson J, et al. MAPMAKER an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics,1987,1: 174-181.
    [73]Lincoln S, Daly M, Lander E. Constructing genetic linkage maps with Mapmaker/EXP. Version 3.0. Whitehead Institute for Biomedical Research Technical Report,1993,3rd Ed.
    [74]Stam P. Construction of integrated genetic-linkage maps by means of a new computer package-Joinmap. Plant Journal,1993,3:739-744.
    [75]Van Ooijen J W, Voorrips R E. JoinMap4.0, Software for the calculation of genetic linkage maps. Plant Research International,2006, Wageningen, the Netherlands.
    [76]Zeng Z B. Precision mapping of quantitative trait loci. Genetics,1994,136:1457-1468.
    [77]Lincoln S, Daly M, Lander E. Mapping genes controlling quantitative traits using Mapmaker /QTL Version 1.1. White-head Institute for Biomedical Research Technical Report,1993,2nd Ed.
    [78]Basten C, Weir BS, Zeng Z B. QTL Cartographer:A Reference Manual and Tutorial for QTL Mapping. Raleigh,1997, N.C.:Department of Statistics, North Carolina State University.
    [79]Manly K. F. Map Manager QT, software for mapping quantitative trait loci. Abstracts of the 11th International Mouse Genome Confer-ence,1997, St. Petersburg, Fla, pp.75.
    [80]Van Ooijen J W, Maliepaard C. Map QTL version 3.0:software for the calculation of QTL positions on genetic maps.1996, Plant Genome IV.
    [81]Nelson J C. QGENE:Software for marker-based genomic analysis and breeding. Molecular Breeding,1997,3:239-245.
    [82]Utz H F, Melchinger A E. PLABQTL:a program for composite interval mapping of QTL. Journal of Agricultural Genomics,1996,2:1-6.
    [83]Tinker N A, Mather D E. MQTL:software for simplified composite interval mapping of QTL in multiple environments. Journal of Agricultural Genomics,1995,1:1-5.
    [84]Kearsey M J, Farquhar A G L. QTL analysis in plants; where are we now? Heredity,1998,80: 137-142.
    [85]章元明.作物QTL定位方法研究进展.科学通报,2006:2223-2231.
    [86]Bodmer W F. Human-genetics-the molecular challenge. Cold Spring Harbor Symposia on Quantitative Biology,1986,51:1-13.
    [87]Buckler E S, Thornsberry J M. Plant molecular diversity and applications to genomics. Current Opinion in Plant Biology,2002,5:107-111.
    [88]Flint-Garcia S A, Thuillet A C, Yu J M, et al. Maize association population:a high-resolution platform for quantitative trait locus dissection. Plant Journal,2005,44:1054-1064.
    [89]Thornsberry J M, Goodman M M, Doebley J, et al. Dwarf8 polymorphisms associate with variation in flowering time. Nature Genetics,2001,28:286-289.
    [90]Darvasi A., Soller M. Advanced intercross lines, an experimental population for fine genetic-mapping. Genetics,1995,141:1199-1207.
    [91]Tanksley S D, Nelson J C. Advanced backcross QTL analysis:A method for the simultaneous discovery and transfer of valuable QTLs from unadapted germplasm into elite breeding lines. Theoretical and Applied Genetics,1996,92:191-203.
    [92]Hill W G. Selection with recurrent backcrossing to develop congenic lines for quantitative trait loci analysis. Genetics,1998,148:1341-1352.
    [93]Luo Z W, Wu C I, Kearsey M J. Precision and high-resolution mapping of quantitative trait loci by use of recurrent selection, backcross or intercross schemes. Genetics,2002,161:915-929.
    [94]张丽霞,刘丕庆,刘学义.染色体单片段代换系的构建及应用于QTL精细定位.分子植物育种,2004:743-746.
    [95]李希锋,董娜.小麦近等基因系的构建及应用进展.安徽农业科学,2012:2577-2579
    [96]石红良,姜艳喜,王振华,等.玉米抗丝黑穗病QTL分析.作物学报,2005:65-70.
    [97]Chen Y S, Chao Q, Tan G Q, et al. Identification and fine-mapping of a major QTL conferring resistance against head smut in maize. Theoretical and Applied Genetics,2008,117:1241-1252.
    [98]Zhao X R, Tan G Q, Xing Y X, et al. Marker-assisted introgression of qHSR to improve maize resistance to head smut. Molecular Breeding:2012,on line.
    [99]周洪昌,宋伟,王凤格,等.玉米丝黑穗病分子标记辅助选择育种中前景引物与背景引物的筛选.分子植物育种,2011:450-456.
    [100]李常保,宋建成,姜丽君,等.玉米抗粗缩病病毒(MRDV)基因的RAPD标记及其辅助选择效果研究.作物学报,2002:564-568.
    [101]马侠,崔德周,刘怀华,等.玉米抗粗缩病基因STS分子标记的筛选.玉米科学,2010:61-64.
    [102]史利玉,李新海,谢传晓,等.玉米抗粗缩病毒SCAR分子标记的开发.中国农业科学,2011:1763-1774.
    [103]Shi L Y, Hao Z F, Weng J F, et al. Identification of a major quantitative trait locus for resistance to maize rough dwarf virus in a Chinese maize inbred line X178 using a linkage map based on 514 gene-derived single nucleotide polymorphisms. Molecular breeding,2011, Oct:1-11.
    [104]王飞.玉米粗缩病抗病位点的分子标记定位,山东大学,2007.
    [105]李斌.玉米粗缩病7号染色体抗病位点的精细定位,山东大学,2009.
    [106]Bubeck D M, Goodman M M, Beavis W D, et al. Quantitative trait loci controlling resistance to gray leaf-spot in maize. Crop Science,1993,33:838-847.
    [107]Saghai Maroof M A, Yue Y G, Xiang Z X, et al. Identification of quantitative trait loci controlling resistance to gray leaf spot disease in maize. Theoretical and Applied Genetics,1996, 93:539-546.
    [108]Lehmensiek A, Esterhuizen A M, van Staden D, et al. Genetic mapping of gray leaf spot (GLS) resistance genes in maize. Theoretical and Applied Genetics,2001,103:797-803.
    [109]Shi L Y, Li X H, Hao Z F, et al. Comparative QTL mapping of resistance to gray leaf spot in maize based on bioinformatics. Agricultural Sciences in China,2007,6:1411-1419.
    [110]杨继良,王斌.玉米大斑病抗性遗传的研究进展.遗传,2002:501-506.
    [111]Van Staden D, Lambert C A, Lehmensiek A. SCAR markers for the Htl, Ht2, Ht3 and HtN1 resistance genes in maize. Maize Genet. Conf. Abst.,2001,43:134-134.
    [112]Freymark P J, Lee M, Woodman W L, et al. Quantitative and qualitative trait loci affecting host-plant response to exserohilum-turcicum in maize (zea-mays L). Theoretical and Applied Genetics, 1993,87:537-544.
    [113]Dingerdissen A L, Geiger H H, Lee M, et al. Interval mapping of genes for quantitative resistance of maize to Setosphaeria turcica, cause of northern leaf blight, in a tropical environment. Molecular Breeding,1996,2:143-156.
    [114]Welz H G, Xia X C, Bassetti P, et al. QTLs for resistance to Setosphaeria turcica in an early maturing Dent X Flint maize population. Theoretical and Applied Genetics,1999,99:649-655.
    [115]Welz H G, Schechert A W, Geiger H H. Dynamic gene action at QTLs for resistance to Setosphaeria turcica in maize. Theoretical and Applied Genetics,1999,98:1036-1045.
    [116]Welz H G, Geiger H H. Genes for resistance to northern corn leaf blight in diverse maize populations. Plant Breeding,2000,119:1-14.
    [117]黄烈健,向道权,杨俊品,等.玉米RFLP连锁图谱构建及大斑病QTL定位.遗传学报,2002:1100-1104.
    [118]郑祖平,刘小红,黄玉碧,等.玉米大斑病抗性基因的QTL定位.西南农业学报,2007:634-637.
    [119]Chang R Y, Peterson P A. Resistance to Helminthosporium maydis:one gene or two genes? Maize Genetics Cooperation Newsletter,1994:5-6.
    [120]Zaitlin D, Demars S, Ma Y. Linkage of rhm, a recessive gene for resistance to southern corn leaf-blight, to RFLP marker loci in maize (zea-mays) seedlings. Genome,1993,36:555-564.
    [121]Gao Z S, Cai H W, Liang G H. Field assay of seedling and adult-plant resistance to southern leaf blight in maize. Plant Breeding,2005,124:356-360.
    [122]刘章雄,王守才.玉米锈病研究进展.玉米科学,2003:76-79.
    [123]Saxena K M S, Hooker A L. On structure of a gene for disease resistance in maize. Proceedings of the National Academy of Sciences of the United States of America,1968, 61:1300-1305.
    [124]Wilkinso D, Hooker A L. Genetics of reaction to puccinia sorghi in 10 corn inbred lines from africa and Europe. Phytopathology,1968,58:605-608.
    [125]Hagan W L, Hooker A L. Genetics of reaction to puccinia sorghi in 11 corn inbred lines from central and South America. Phytopathology,1965,55:193-197.
    [126]Hulbert S, Drake J. Additional loci for rust resistance. Maize Genetics Cooperation Newsletter,1995:98-99.
    [127]Sanzalferez S, Richter T E, Hulbert S H, et al. The rp3 disease resistance gene of maize-mapping and characterization of introgressed alleles. Theoretical and Applied Genetics,1995, 91:25-32.
    [128]Delaney D E, Webb C A, Hulbert S H. A novel rust resistance gene in maize showing overdominance. Molecular Plant-Microbe Interactions,1998,11:242-245.
    [129]Ullstrup A J. Inheritance and linkage of a gene determining resistance in maize to an american race of puccinia polysora. Phytopathology,1965,55:425-428.
    [130]Holland J B, Uhr D V, Jeffers D, et al. Inheritance of resistance to southern corn rust in tropical by corn-belt maize populations. Theoretical and Applied Genetics,1998,96:232-241.
    [131]陈翠霞,杨典洱,王振林,等.齐319携带的南方玉米锈病抗性基因的遗传初析.遗传学报,2002:903-906.
    [132]刘章雄,王守才,戴景瑞,等.玉米P25自交系抗锈病基因的遗传分析及SSR分子标记定位.遗传学报,2003:706-710.
    [133]程晔,陈炯,陈剑平The complete sequence of a sugarcane mosaic virus isolate causing maize dwarf mosaic disease in China. Science in China(Series C:Life Sciences),2002:322-330.
    [134]Simcox K D, McMullen M D, Louie R. Mapping of multiple disease resistance genes on the short arm of chromosome six. Maize Genetics Cooperation Newsletter,1993:117-118.
    [135]Wu J Y, Ding J Q, Du Y X, et al. Identification and molecular tagging of two complementary dominant resistance genes to maize dwarf mosaic virus. Acta Genetica Sinica,2002,29:1095-1099.
    [136]Wu J Y, Tang J H, Xia J L, et al. Molecular tagging of a new resistance gene to maize dwarf mosaic virus using microsatellite markers. Acta Botanica Sinica,2002,44:177-180.
    [137]Xu M L, Melchinger A E, Xia X C, et al. High-resolution mapping of loci conferring resistance to sugarcane mosaic virus in maize using RFLP, SSR, and AFLP markers. Molecular and General Genetics,1999,261:574-581.
    [138]郭晓明.玉米茎腐病及其抗病育种.黑龙江农业科学,1998:35-36.
    [139]张培坤.玉米青枯病研究进展概述.广西植保,2001:19-20.
    [140]Pe M E, Gianfranceschi L, Taramino G, et al. Mapping quantitative trait loci (QTLs) for resistance to gibberella-zeae infection in maize. Molecular and General Genetics,1993,241:11-16.
    [141]Jung M, Weldekidan T, Schaff D, et al. Generation-means analysis and quantitative trait locus mapping of anthracnose stalk rot genes in maize. Theoretical and Applied Genetics,1994, 89:413-418.
    [142]Frey T J. Fine-mapping, cloning, verification, and fitness evaluation of a QTL, Rcgl, which confers resistance to Colletotrichum graminicola in maize. PhD Dissertation, University of Delaware, 2006.
    [143]Yang D E, Zhang C L, Zhang D S, et al. Genetic analysis and molecular mapping of maize (Zeamays L.) stalk rot resistant gene Rfgl. Theoretical and Applied Genetics,2004,108:706-711.
    [144]Yang D E, Jin D M, Wang B, et al. Characterization and mapping of Rpi1, a gene that confers dominant resistance to stalk rot in maize. Molecular Genetics and Genomics,2005, 274:229-234.
    [145]Yang Q, Yin G M, Guo Y L, et al. A major QTL for resistance to Gibberella stalk rot in maize. Theoretical and Applied Genetics,2010,121:673-687.
    [146]Zhang D F, Liu Y J, Guo Y L, et al. Fine-mapping of qRfg2, a QTL for resistance to Gibberella stalk rot in maize. Theoretical and Applied Genetics,2012,124:585-596.
    [147]Kolattukudy P E. Enzymatic penetration of the plant cuticle by fungal pathgens. Annual Review Phytopathololgy,1995,23:223-250.
    [148]Hoch H C, Staples R C, Whitehead B, et al. Signaling for growth orientation and cell differentiation by surface topology in Uromyces. Science,1987,235:1659-1662.
    [149]Panstruga R, Dodds P N. Terrific protein traffic:the mystery of effector protein delivery by filamentous plant pathogens. Science,2009,324:748-750.
    [150]Khang C H, Berruyer R, Giraldo M C, et al. Tanslocation of Magnaporthe oryzae effectors into rice cells and their subsequent cell to cell movement. Plant Cell,2010,22:1388-1403.
    [151]Weltring K M, Turgenon B G, Yoder O C, et al. Isolation of a phytoalexin detoxifications gene from the plant pathogenic fungus Nectria Harmatococca by detecting its expression in Asperillus nidulans. Gene,1989,68:335-344.
    [152]Schafer W. Molecular mechanisms of fungal pathogenicity to plants. Annual Review Phytopathololgy,1994,32:461-477.
    [153]Kaku H, Nishizawa Y, Ishii-Minami N, et al. Plant cells recognize chitin fragments for defense signaling through a plasma membrane receptor. Proc Natl Acad Sci USA,2006, 103:11086-11091
    [154]Shimizu T, Nakano T, Akamizawa D, et al. Two LysM receptor molecules, EBiP and OsCERKl, cooperatively regulate chitin elicitor signaling in rice. Plant journal,2010,64:204-214.
    [155]Boller T, Felix G. A renaissance of elicitors:perception of microbe-associated molecular patterns and danger signals by pattern-recognition receptors. Annual Review Plant Biology,2009, 60:379-406.
    [156]芦丽亚,杨宁,赵凌侠.番茄叶霉病及番茄抗性基因分子生物学研究进展.园艺学报,2009,36(6):911-922.
    [157]蓝海燕,陈正华.植物与病原真菌互作的分子生物学及其研究进展.生物工程进展,2000,20(4):16-22.
    [158]耿锐梅,曹长代,董世峰,等.植物寄主与病原真菌互作研究进展.植物保护,2011,4:23-26.
    [159]何锋,王长春,王锋青,等.植物抗病基因(R)与病原物无毒基因(Avr)相互作用机制的研究进展.中国细胞生物学学报,2011,33(9):1037-1044.
    [160]Jia Y, MaAdams S A, Bryan G T, et al. Direct interaction of resistance gene and avirulence gene products confers rice blast resistance. EMBO Journal,2000,19(15):4004-4014.
    [161]Rooney H C, Van't Klooster J W, van der Hoorn R A, et al. Cladosporium Avr2 inhibits tomao Rcr3 protease required for Cf-2-dependent disease resistance. Science,2005,308(5729): 1783-1786.
    [162]Hammond-Kosack K E, Parker J E. Deciphering plant-pathogen communication; fresh perspectives for molecular resistance breeding. Current Opinion in Biotechnology,2003,14:177-183.
    [163]阙友雄,宋弦弦,许莉萍,等.植物与病原真菌互作机制研究进展.生物技术通讯,2009,20(2):282-285.
    [164]董汉松.植物抗病防卫基因表达调控与诱导抗性遗传的机制.植物病理学报,1996,26(4):289-293.
    [165]张振平.优良玉米自交系沈137选育及其特点.沈阳农业大学学报,2000:526.
    [166]甄广田.热带玉米种质沈137优良抗性及其在抗病育种中的应用.辽宁农业科学, 2011:57-59.
    [167]于明彦,刘兴贰,郭秀芹,等.黄改系在吉林省玉米育种与生产中的利用前景分析.吉林农业科学,2007:17-20
    [168]刘玉瑛,石洁,邵艳军.玉米弯孢菌叶斑病接种技术研究.华北农学报,1999:96-100.
    [169]王晓鸣.玉米病虫害知识系列讲座(Ⅲ)玉米抗病虫性鉴定与调查技术.作物杂志,2005:53-55.
    [170]Dellaporta S, Wood J, Hicks J. A plant DNA minipreparation:Version II. Plant Molecular Biology Reporter,1983,1:19-21.
    [171]Creste S, Neto A T, Figueira A. Detection of single sequence repeat polymorphisms in denaturing polyacrylamide sequencing gels by silver staining. Plant Molecular Biology Reporter,2001, 19:299-306.
    [172]Wang S, Basten C J, Zeng Z B. Windows QTL Cartographer 2.5. Department of Statistics, North Carolina State University, Raleigh, NC,2011.
    [173]Churchill G A, Doerge R W. Empirical threshold values for quantitative trait mapping. Genetics,1994,138:963-971.
    [174]Flint-Garcia S A, Jampatong C, Darrah L L. et al. Quantitative trait locus analysis of stalk strength in four maize populations. Crop Science,2003,43:13-22.
    [175]Edwards M D, Stuber C W, Wendel J F. Molecular-marker-facilitated investigations of quantitative-trait loci in maize.1. numbers, genomic distribution and types of gene-action. Genetics, 1987,116:113-125.
    [176]George M L, Regalado E, Warburton M, et al. Genetic diversity of maize inbred lines in relation to downy mildew. Euphytica,2004,135:145-155.
    [177]Schon C C, Lee M, Melchinger A E, et al. Mapping and characterization of quantitative trait loci affecting resistance against 2nd-generation European corn-borer in maize with the aid of RFLPs. Heredity,1993,70:648-659.
    [178]Yang Q, Yin G M, Guo Y L, et al. A major QTL for resistance to Gibberella stalk rot in maize. Theoretical and Applied Genetics,2010,121:673-687.
    [179]McMullen M D, Simcox K D. Genomic organization of disease and insect resistance genes in maize. Molecular Plant-Microbe Interactions,1995,8(6):811-815.
    [180]Sanze-Alferez S, Richter T E, Hulbert S H, et al. The Rp3 disease resistance gene of maize:mapping and characterization of introgressed alleles.,1995,91:25-32.
    [181]McMullen M D, Jones M W, Simcox K D, et al. Three genetic loci control resistance to wheat streak mosaic virus in the maize inbred Pa405. Molecular Plant-Microbe Interactions,1994, 7:708-712.
    [182]Ming R, Brewbaker J L, Pratt R C, et al. Molecular mapping of a major gene conferring resistance to maize mosaic virus. Theoretical and Applied Genetics,1997,95:271-275.
    [183]Melchinger A E, Kuntze L, Gumber R K, et al. Genetic basis of resistance to sugarcane mosaic virus in European maize germplasm. Theoretical and Applied Genetics,1998,96:1151-1161.
    [184]Bennetzen J L, Blevins W E, Ellingboe A H. Cell autonomous recognition of the rust pathogen determines Rpl-specified resistance in maize. Science,1988,241:208-209.
    [185]Guthrie W D, Wilson R L, Coats J R, et al. European corn borer (Lepidoptera Pyralidae) leaf-feeding resistance and DIMBOA content in inbred lines of dent maize grown under field verus greenhouse conditions. Journal of Economic Entomology,1986,79:1492-1496.
    [186]Coulture R M, Routley D G, Dunn G M. Role of cyclic hydroxamic acids in monogenic resistance of maize to Helminthosporium turcicum. Physiological Plant Pathology,1971,1:515-521.
    [187]Simcox K. D, Weber D F. Location of the benzoxazinless (bx) locus in maize by monosomic and B-A translocational analyses. Crop science,1985,25:827-830.
    [188]Bubeck D M, Goodman M M, Beavis W D, et al. Quantitative trait loci controlling resistance to gray leaf spot in maize. Crop science,1993,33:838-847.
    [189]Lebowitz R J, Soller M, Beckmann J S. Trait-based analyses for the detection of linkage between marker loci and quantitative trait loci in crosses between inbred lines. Theoretical and Applied Genetics,1987,73:556-562.
    [190]Darvasi A, Soller M. Selective genotyping for determination of linkage between a marker locus and a quantitative trait locus. Theoretical and Applied Genetics,1992,85:353-359.
    [191]Sun Y P, Wang J K, Crouch J H, et al. Efficiency of selective genotyping for genetic analysis of complex traits and potential applications in crop improvement. Molecular Breeding,2010, 26:493-511.
    [192]李慧慧,张鲁燕,王建康.数量性状基因定位研究中若干常见问题的分析与解答.作物学报,2010,36(6):918-931.
    [193]SanMiguel P, Tikhonov A, Jin Y K, et al. Nested retrotransposons in the intergenic regions of the maize genome. Science,1996,274:765-768.
    [194]Song K, Slocum M K, Osborn T C. Molecular marker analysis of genes encoding morphological variation in Brassica rapa(syn. campestris). Theoretical and Applied Genetics,1995, 90:1-10.
    [195]Scott G E, Guthrie W D, Pesho G R. Effect of second-brood European corn borer infestation on 45 single-cross corn hybrids. Crop Science,1967,7:229-231.
    [196]Kumar A, Bennetzen J L. Plant retrotransposons. Annual Review of Genetics,1999, 33:479-532
    [197]Johal G S, Briggs S P. Reductase activity encoded by the Hml disease resistance gene in maize. Science,1992,258:985-987.
    [198]Multani D S, Meeley R B, Paterson A H, et al. Plant-pathogen microevolution:molecular basis for the origin of fungal disease in maize. ProcNatl Acad Sci USA,1998,95:1686-1691.
    [199]Lawrence G J, Finnegan E J, Ayliffe M A, et al. Arabidopsis bacterial resistance gene RPS2 and the tobacco viral resistance gene N. Plant Cell,1995,7:1195-1206.
    [200]Bureau T, Roneld P, Wessler S. A computer-based systematic survey reveals the predominance of small inverted-repeat elements in wild-type rice genes. Proc Natl Acad Sci USA,1996, 93:8524-8529.
    [201]Song W Y, Pi L Y, Bureau T, et al. Identification and characterization of 14 transposable-like elements in the noncoding regions of the rice Xa21 disease resistance gene family member. Molecular and General Genetics,1998,258:449-456.
    [202]Stone J M, Colinge M A, Smith R D, et al. Interaction of a protein phosphatase with an Arabidopsis serine-threonine receptor kinase. Science,1994,66:793-795.
    [203]Takasaki T, Hatakeyama K, Suzuki G, et al. The S receptor kinase determines self-incompatibility in Brassica Stigma. Nature,2000,403(6772):913-916.
    [204]Pastuglia M, Roby D, Dumas C, et al. Rapid induction by wounding and bacterial infection of an S gene family receptor-like kinase gene in Brassica oleracea. Plant Cell,1997,9(1):49-60.
    [205]Thomas C M, Dixon M S, Parniske M, et al. Genetic and molecular analysis of tomato Cf genes for resistance to Cladosporium fulvum. Philos Trans R Soc Lond B Biol Sci,1998, 353:1413-1424.
    [206]Gomez-Gomez L, Bauer Z, Boller T. Both the extracellular leucine-rich repeat domain and the kinase activity of FSL2 are required for flagllin binding and signaling in Arabidopsis. Plant Cell, 2001,13:1155-1163.
    [207]Song W Y, Wang G L, Chen L L, et al. Acceptor kinase-like protein encoded by the rice disease resistance gene, Xa21. Science,1995,270:1804-1806.
    [208]马媛媛,甘睿,王宁宁.植物富含亮氨酸重复序列型类受体蛋白激酶的生物学功能.植物生理与分子生物学学报,2005,31(4):331-339.
    [209]Becraft P W, Stinard P S, McCarty D R. CRINKLY4:A TNFR-like receptor kinase involved in maize epidermal differentiation. Science,1996,273(5280):1406-1409.
    [210]张素巧,孙颖,郭毅,等.细胞壁连接的类受体激酶(WAK):植物细胞壁与细胞质联系的重要蛋白.科学通报,2006,51(1):1-7.
    [211]He Z H, He D, Kohorn B D. Requirement for the induced expression of a cell wall associzted receptor kinase for survival during the pathogen response. Plant Journal,1998,14(1):55-63.
    [212]Wang X, Zafian P, Choudhary M, et al. The PR5K receptor protein kinase from Arabidopsis thaliana is structurally related to a family of plant defense proteins. Proc Natl Acad Sci USA,1996, 93(6):2598-2602.
    [213]Herve C, Serres J, Dabos P, et al. Characterization of the Arabidopsis lecRK-a genes: members of a superfamily encoding putative receptors with an extracellular domain homologous to legume lectins. Plant Molecular Biology,1999,39(4):671-682.
    [214]Pastuglia M, Swarup R, Rocher A, et al. Comparison of the expression patterns of two small gene families of S gene family receptor kinase genes during the defense response in Brassica oleracea and Arabdopsis thaliana. Gene,2002,282:215-225.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700