用户名: 密码: 验证码:
靖宇国家级自然保护区天然矿泉水形成机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文依托于吉林省科技厅重点攻关项目“长白山天然矿泉水形成机理分析(编号:20100452)”,对靖宇国家级自然保护区的天然矿泉水形成机理展开专题研究。在收集研究区已有地质、水文地质、水文气象、泉水动态、遥感等资料的基础上,采用野外调查与室内实验、定性定量分析与计算机模拟相结合的方法,从矿泉水形成环境、地下水循环和水岩作用机制等3个方面对区内天然矿泉水的形成机理进行系统性的研究。
     (1)矿泉水形成环境
     联合GIS和RS技术对保护区地形地貌进行了分析。保护区玄武岩台地平均坡度为3.02°,地势平缓,主要的土地覆盖类型为林地、季节性沼泽,两者总面积为190.9km2,占研究区总面积的91.1%,其中沼泽面积为38.5km2,占研究区总面积的18.4%。选择了12个生态环境评价指标,利用投影寻踪方法对保护区生态环境进行评价。评价结果表明,研究区生态环境等级为1级。特殊的台地地形、茂盛的森林、大面积的沼泽,这些为矿泉水形成提供了很好的水源涵养和补给条件,良好的生态环境为矿泉水优良的水质提供了可靠的生态环境保障。
     对保护区内玄武岩进行了取样分析。研究区主要的矿物为橄榄石、斜长石和辉石,SiO2的平均含量为50.20%,特殊的岩石地球化学背景是矿泉水溶质组分形成的基础。同时,玄武岩具有多层性特征,层顶、层底的气孔带、火山渣层(熔渣)、成岩裂隙、构造裂隙等构成了复杂的储水和导水系统,在区内形成了独特的熔岩孔洞裂隙地下水系统。由科学试验井分层抽水实验得到的玄武岩气孔带渗透系数在0.23~0.50m/d间。受特殊的地球化学条件和水文地质条件的影响,区内泉(井)水化学类型为重碳酸钙镁型和重碳酸镁钙型,水化学较稳定。矿泉水特征组分偏硅酸的浓度表现出了空间变异特征,随着深度的增加,偏硅酸浓度增加趋势明显,同时中部各泉(神龙泉-莱雅泉一带,含白浆泉)的偏硅酸平均浓度要略高于东北部各泉。地下水水化学特征表明,研究区地下水径流以浅中层为主。
     (2)地下水循环
     先后在区内取地下水同位素样21个,分别进行了稳定同位素18O、D和放射性同位素3H测试。研究区内大部分样品的氢氧稳定同位素都落在了长白山区大气降水线下方,沿当地蒸发线分布,这说明矿泉水的来源是大气降水,但经过了不同程度的蒸发作用。从西南往东北蒸发作用逐渐增强,不同深度的地下水的18O、 D值有明显差异,这反映出不同的补给环境。区内大部分泉井补给的主要来源是玄武岩台地上空的大气降水。3H测年结果表明,抗联泉和北山泉同位素年龄最小,研究区中部各泉(含白浆泉)的3H同位素年龄均在40a以上,区内最高;研究区东北部各泉(不含雪龙泉)同位素年龄最大不超过35a。同位素年龄呈现出“新-老-新”U形空间分布规律,这反映出各泉域地下水系统的相对独立性。
     以区内及邻近的77个火山和野外调查过程中确定的4个构造点为基础,运用Fuzzy c-lines算法和L_MSCMO算法对玄武岩台地的基底断裂进行了推测重构,推测出10条基底断裂。多期喷发的玄武岩覆盖在古老的盆地上,在区内形成盆地型的蓄水构造,同时受新构造运动的影响,沿古老断裂,玄武岩构造裂隙发育,岩石破碎,形成良好的导水通道,区内泉的分布反映了断裂构造的影响,以泉群和线性条带形式出露。本文提出基于断裂和地表集水域的泉域划分方法,并运用该方法对巨龙-飞龙泉群和神龙-九龙泉群进行了泉域划分,得到了2个泉域的范围和面积。神龙-九龙泉群的泉域面积为26.9km2,巨龙-飞龙泉域面积为45.5km2。在不考虑泉域其它排泄项的条件下计算得到2个泉群的降水入渗系数分别为0.317和0.330。同位素研究和泉域划分的结果表明,区内地下水循环具有局部性和相对独立性。区内泉水动态为降水-径流型,泉水的即时流量与前期一定时间尺度的累积降水量有关。泉流量动态对降水存在滞后,滞后的时间与泉域的补给环境有关。
     (3)水岩作用机制
     本文设计了静态浸泡实验和动态淋滤实验来研究水与玄武岩、火山渣和土壤相互作用过程。水与土壤、玄武岩和火山渣的作用主要表现在硅酸盐与铝硅酸盐矿物的水解,偏硅酸浓度随时间不断增加,后期趋于稳定,偏硅酸浓度土壤浸泡液>火山渣浸泡液>玄武岩浸泡液。虽然土壤浸泡液初期的pH小于7,但总体上来说,土壤、玄武岩和火山渣浸泡液pH值都呈现上升趋势,在后期稳定。除Cl-外,其它离子浓度变化趋势基本满足初期快速增加,后期趋缓至稳定。玄武岩和火山渣浸泡液Cl-表现为一次性溶出的特点,土壤浸泡液中Cl-浓度因为受到-NH2基的吸附影响而表现为随pH值的增加而逐渐增加。火山渣浸泡液偏硅酸溶出量相对较高,但是电导率、K+浓度、Na+浓度和HCO-3浓度为三种浸泡液最低,这与火山锥的降水淋溶环境有关。区内的土层呈酸性至微酸性反应,pH在5.0~5.5间。它不仅是区内矿泉水特征组分的重要物质来源,同时为地下水提供了低pH值的环境,是区内地下水CO2的重要来源,这就促进地下水与玄武岩的相互作用。淋滤实验结果表明,在流动的水体中玄武岩和火山渣矿物的水解速度更快。运动的水体不仅加速了溶液中组分的对流和弥散,而且对水岩反应所产生的中间层有淋蚀作用。
     为了进一步了解玄武岩地下水水岩作用矿物溶解趋势和规律,本文分别运用PHREEQC和TOUGHREACT软件进行了玄武岩地下水的反向和正向水文地球化学模拟。模拟结果表明,研究区玄武岩地下水径流过程中水岩作用主要表现为钙长石、镁橄榄石和辉石的水解,其中以钙长石的水解最多,矿泉水特征组分偏硅酸正是由这些矿物的水解所产生。铝硅酸盐的沉淀以钙蒙脱石为主,钠蒙脱石、高岭石沉淀较少。阳离子交换主要表现为水中的Ca2+置换出玄武岩中的Na+。TOUGHREACT模拟结果同时表明,断裂改变了地下水流场的形态,加速了地下水循环,客观上形成汇水和导水通道,从而影响地下水系统的水岩作用过程,对玄武岩地下水的水岩作用及各溶解组分的浓度和空间分布有重要的影响。
The thesis is supported by the key scientific and technological project of JilinProvince which is “Analysis of the formation mechanism of Changbai Mountainnatural mineral water”(No.20100452). Based on the basic data collected, includinggeological, hydrogeological, meteorological, springs discharge and remote sensing, asystematic study was conducted on the formation mechanism of natural mineralwater in Jingyu national nature reserve from three aspects, which are regionalenvironment, groundwater circulation and water-rock interaction mechanism, with thethe method of combining qualitative and quantitative analysis and the means ofmutual authentication between field survey and laboratory analysis.
     (1) Analysis of regional environment
     GIS and RS were applied to analyze the topography and land cover types of thestudy area. Basalt plateau in the study area has a flat terrain with average slope of3.02°and the major types of land are forest and swamp, with total area of190.9km2,accounting for91.1%of the study area. Swamps cover an area of38.5km2,accounting for18.4%of the study area, which are mainly located in the northeasternand southwestern of the study area. Projection pursuit cluster model was applied toassess the eco-environmental quality with12indicators. The result shows that theeco-environment of Jingyu national nature reserve is grade1. Special terraced terrain,lush forests and a large area of swamp, are all favorable conditions which providegood water conservation and supply conditions for mineral water and excellent andstable eco-environment is reliable ecological barrier which guarantees excellent waterquality.
     Basalt of the study area is classified as olivine basalt, mainly composed ofolivine, plagioclase and pyroxene, with50.20%average content of SiO2. Specialgeochemical background is the foundation of the chemical compositions of mineralwater. Basalt can be divided into many layers from up to down. Stomatal layers,Scoria layers, fissures and tectonic fractures constitute a complex storage anddrainage system for groundwater, forming a unique lava pore-fissures groundwatersystem. Permeability coefficient moves between0.23and0.50m/d, obtained from thepumping test for the test wells.
     Chemical types in the study area are mostly of HCO3-Ca-Mg or HCO3-Ca-Mgand keep stable, controlled by special geochemical and hydrogeological conditions.The concentration of silicic acid has s significant spatial variance structure in thestudy area. With increasing depth, concentration of silicic acid increases significantly,and the average concentration of silicic acid of springs in the central is slightly higherthan in the northeast, which indicates that groundwater runoff occurs mainly inshallow and central, while deep groundwater moves slowly.
     (2) Groundwater circulation
     Isotopic analysis of water samples from springs and test wells were carried out,including stable isotope D and18O and radioactive isotope3H. Most of the samplesscatter fall below the LMWL (local meteoric water line) of Changbai mountains andalong the local evaporation line, which shows that groundwater in the study areaoriginates from precipitation, even though little or a little evaporation occurs.Evaporation increases gradually from the southwest to the northeast, meanwhilevalues of18Oand Dat different depths have large difference, which reflectsdifferent recharge conditions. According to the calculation result of3H, the isotopicages of Kanglian and Beishang are the youngest and of ones of the central includingBaijiang are the oldest with3H isotopic age older than40a, while in the northeastisotopic ages are the lowest, younger than35a. Isotopic ages show a"Young-old-Young" U-shaped spatial distribution, which reflects the relativeindependence of groundwater system of each spring catchment.
     Based on77volcanoes in and adjacent to the study area and four construct pointsfound during the field investigation,10faults of under overburden were inferred using the methods of Fuzzy c-lines and L_MSCMO. Basalt formed by nulti-stage magmaticeruption covers the ancient basin forming a basin-shaped storage structure. Affectedby neotectonic movement, many tectonic fissures and rock broken rocks occurredalong old fractures, based on which some water-conducted paths were formed. It iswhy springs outcrop with shapes of clusters or lines. In this paper, acatchment-divided method considering synchronously the impacts of faults andsurface catchment basin was presented which was applied to the Shenglong-Jiulongspring-clusters and Julong-Feilong spring-clusters. The results show that, the areas ofcatchments of the two spring-clusters are26.9km2and45.5km2respectively, andcoefficients of rainfall infiltration rate calculated without considering other dischargeitems are0.317and0.332respectively. The dynamic changes of springs are mainlyaffected by precipitation and groundwater runoff. The daily flow is related with thecumulative rainfall. The fluctuation of average monthly flow has a lag time comparedto the rain, which is depended on the recharge environment.
     (3) The mechanism of water-rock interaction
     In order to study the interactions between groundwater and water-bearing mediaincluding basalt, volcanic slag and soil interactions, static immersion and dynamicleaching experiments were designed. The interactions between groundwater and thethree media are mainly characteristic of the hydrolysis of the silicate and aluminumsilicate minerals.
     Concentrations of silicic acid increased with time in the early and graduallystabilized. The concentration of silicic acid in soil soaking is the highest, the second inthe scoria soaking and the lowest in the basalt soaking. Overall, pH values were beingon the rise throughout the experiment in the three soakuings, and respectivelystabilized in the final stage. Concentrations of ions except Cl-increased quickly in theearly and stabilized in the final stage. Concentration of Cl-in soil soaking is positivelycorrelated with pH values, because-NH2of soil has adsorption behavior to Cl-. Theamount of dissolved silicic acid in scoria soaking is higher, but the values of otheritems are the lowest of the three soakings, which is related to the precipitation-leaching environment. The unique soil environment of the study area hasan important influence on the formation of mineral solute components.The value ofpH of soil layer in the study area is about5.0~5.5. It not only is a important source ofsolute components and CO2, but also provides an environment with low pH, whichpromotes interaction between groundwater and basalt. Leaching experiments showedthat hydrolysises of vasalt and scoria have faster rate in flowing water than in stillwater. Water’s motion not only accelerates the convection and diffusion ofcomponents in solution, but also erodes the middle layer consist of secondaryminerals.
     Reverse and forward hydro-geochemical models were established based onPHREEQC and TOUGHREACT respectively. The main chemical reactions ofwater-rock interaction are hydrolysis of feldspar, pyroxene and forsterite along thegroundwater flow path, while feldspar is the dominate, from which silicic acid inaqueous solution derives. Ca-montmorillonite is the key aluminum silicate precipitate,while na-montmorillonite and kaolinite precipitate a little. Cation exchange occursstrongly which is characterized with that Ca2+of groundwater substitutes Na+ofbasalt.A conclusion can be easily drawn from the results of TOUGHREACT model,that fractures change the form of the groundwater flow field and acceleratedgroundwater circulation, which will correspondingly change water-rock interactionprocesses of groundwater systems and the concentrations and spatial distributions ofdissolved components eventually.
引文
[1]中华人民共和国国家质量监督检验检疫总局.GB8537-2008,饮用天然矿泉水[S].北京:中国标准出版社,2008.
    [2]刘彦臣,张宇石.研析长白山天然矿泉水资源基本特征及其价值[J].通化师范学院学报,2009,30(2):52-54.
    [3]滕继奎.试论吉林省天然矿泉水资源极其价值[J].吉林地质,2001,20(3):50-53.
    [4]肖德峰.模糊环境质量评价的数学模型[J].环境工程,1986,4:59-64.
    [5]曾广权,李宏文.农村生态环境质量指标体系的初步探讨——云南省元谋县生态环境质量评价[J].生态经济,1987,2:003.
    [6]应龙根.试论环境质量评价中的赋权问题—Pij因子分析[J].系统工程,1987,2:55-64.
    [7]李晓秀.北京山区生态环境质量评价体系初探[J].自然资源,1997,5:32-35.
    [8]叶亚平,刘鲁君.中国省域生态环境质量评价指标体系研究[J].环境科学研究,2000,13(3):33-36.
    [9]李远华.生态环境流量流向评价方法及其在西藏生态环境评价中的应用[D].吉林大学,2008.
    [10]王金叶,程道品,胡新添,等.广西生态环境评价指标体系及模糊评价[J].西北林学院学报,2006,21(4):5-8.
    [11]马荣华,胡孟春.基于RS与GIS的自然生态环境评价--以海南岛为例[J].热带地理,2001,21(3):198-201.
    [12]周华荣,潘伯荣.新疆生态环境现状综合评价研究[J].干旱区地理,2001,24(1):23-29.
    [13]李晓印.济南市南部山区生态环境遥感监测与分析评价[D].北京:中国矿业大学,2009.
    [14]刘利.北京典型山地森林生态脆弱性的研究[D].北京林业大学,2011.
    [15]王学雷.江汉平原湿地生态脆弱性评估与生态恢复[J].华中师范大学学报:自然科学版,2001,35(2):237-240.
    [16]张福群.卧龙湖湿地生态系统稳定性分析与评价研究[D].沈阳:东北大学,2010.
    [17]郑宗清.广州城市生态环境质量评价[J].陕西师范大学学报:自然科学版,1995,23(s):134-137.
    [18]万本太,王文杰,崔书红,等.城市生态环境质量评价方法[J].生态学报,2009,29(3):1068-1073.
    [19]李月芬.吉林西部草原生态环境评价及其专家系统研究[D].长春:吉林大学,2004.
    [20]李明阳.浙江临安市森林景观生态环境评价研究[D].南京:南京林业大学,2000.
    [21]龙勤.基于熵的森林生态系统类型自然保护区协同与可持续研究[D].昆明:昆明理工大学,2012.
    [22]徐燕,周华荣.初论我国生态环境质量评价研究进展[J].干旱区地理,2003,26(2):166-172.
    [23]陈宏观.沿海地区生态环境评价及生态建设研究[D].南京林业大学,2012.
    [24]王根绪,钱鞠.区域生态环境评价(REA)的方法与应用——以黑河流域为例[J].兰州大学学报:自然科学版,2001,37(2):131-140.
    [25]苏艳娜,柴春岭,杨亚梅,等.常熟市农业生态环境质量的可变模糊评价[J].农业工程学报,2008,23(11):245-248.
    [26]李祚泳,邓新民.综合环境质量的B—P网络二级评价[J].环境科学研究,1995,8(3):32-35.
    [27]吴开亚,李如忠,陈晓剑.区域生态环境评价的灰色关联投影模型[J].长江流域资源与环境,2003,12(5):473-478.
    [28]段沛霞,倪长健.投影寻踪动态聚类方法及其在四川省生态环境质量评价中的应用[J].成都信息工程学院学报,2007,22(1):113-115.
    [29]王顺久,李跃清.投影寻踪模型在区域生态环境质量评价中的应用[J].生态学杂志,2006,25(7).:869-872.
    [30]马荣华,胡孟春.基于RS与GIS的自然生态环境评价—以海南岛为例[J].热带地理,2001,21(3):198-201.
    [31]张艳丽,蒲欣冬,陈怀录,等.基于遥感和GIS的石羊河流域生态安全评价[J].中国沙漠,2011,31(6):1493-1500.
    [32]蒙吉军,申文明,吴秀芹.基于RS/GIS的三峡库区景观生态综合评价[J].北京大学学报:自然科学版,2005,41(2):295-302.
    [33]郑新奇,王爱萍.基于RS与GIS的区域生态环境质量综合评价研究——以山东省为例[J].环境科学学报,2000,20(4):489-493.
    [34] William AT. Indicators of environmental quality[M]. NewYork: Plenum Press,1972.
    [35] Edwards G P. Cultural Landscape and Ecology: Regions, Retrospect, Revials. AustralEcology,2001,20(1):93-101.
    [36] Tong C. Review on environmental indicator research [J]. Research on environmentalscience,2000,13(4):53-55.
    [37] O'Neill R V, Hunsaker C T, Jones K B, et al. Monitoring environmental quality at thelandscape scale[J]. BioScience,1997,47(8):513-519.
    [38] Arrow K, Bolin B, Costanza R, et al. Economic growth, carrying capacity, and theenvironment[J]. Ecological economics,1995,15(2):91-95.
    [39] Lyons J. Using the index of biotic integrity (IBI) to measure environmental quality in warmwater streams of Wisconsin[R]. Washington, United States Department of Agriculture,1992.
    [40] Moreno M, Semprucci F, Vezzulli L, et al. The use of nematodes in assessing ecologicalquality status in the Mediterranean coastal ecosystems[J]. Ecological Indicators,2011,11(2):328-336.
    [41] Veríssimo H, Neto J M, Teixeira H, et al. Ability of benthic indicators to assess ecologicalquality in estuaries following management[J]. Ecological Indicators,2012,19:130-143.
    [42] Hellou J. Behavioural ecotoxicology, an “early warning” signal to assess environmentalquality[J]. Environmental Science and Pollution Research,2011,18(1):1-11.
    [43]贾福海.中国玄武岩地下水[M].北京:地质出版社,1993.
    [44]贾福海,秦志学,韩子夜.对我国新生代玄武岩地下水的初步认识[J].中国地质,1988,3:20-22.
    [45]郑继民,曹钦臣,赵广涛,等.青岛地区玄武岩蓄水条件探讨[J].青岛海洋大学学报,1992,2:61-71.
    [46]陈希祥.玄武岩区地下水的富集特征[J].工程勘察,1983,1:78-79.
    [47]陈振东,张宝柱.长白山地区玄武岩地下水基本特征[J].阜新矿业学院学报,1994,13(4):26-29.
    [48]李慧杰,朱庆俊,李伟,等.山东临朐新生代玄武岩地下水赋存规律及电性特征[J].南水北调与水利科技,2012,10(6):65-69.
    [49]贾福海,秦志学.我国玄武岩地下水的基本特征[J].水文地质工程地质,1993,20(4):30-32.
    [50]陈志新,李云峰.大同市万泉河流域玄武岩地下水开发研究[J].西安工程学院学报,2002,24(3):23-27.
    [51]温汉辉.雷州半岛地下水循环规律及合理开发利用研究[D].武汉:中国地质大学,2013.
    [52]孙蓉琳.玄武岩渗透系数尺度效应及顺序指示模拟[D].武汉:中国地质大学,2006.
    [53]吴世利.靖宇水源保护区环境监测系统的设计与实现[D].长春:吉林大学,2011.
    [54]张楠.靖宇矿泉水自然保护区天然矿泉水补给机理研究[D].长春:吉林大学,2013.
    [55]张勃夫.长白山靖宇矿泉水矿田形成分布特征及开发战略建议[J].吉林地质,2001,20(2):29-63.
    [56]庞俊华,周兴阳,庞香多,等.靖宇县饮用天然矿泉水分布规律及其开发利用[J].吉林地质,2008,27(2):106-108.
    [57] Lau L S, Mink J F. Groundwater modeling in Hawaii: A historical perspective[J].Groundwater Models for Resources Analysis and Management,1995:253-274.
    [58]落合敏郎. Study on Fissure Water in Mishima Lava Flow-Estimation of Flow VelocityDistribution of Groundwater, Porosity and Amount of Groundwater Flow in the Section ofLava Flow[J]. THE JOURNAL OF THE JAPANESE ASSOCIATION OFGROUNDWATER HYDROLOGY,1969,11(1):7-16.
    [59] Lau L K S, Mink J F. Hydrology of the Hawaiian Islands[M]. Honolulu: University ofHawaii Press,2006.
    [60] Anderson S R, Kuntz M A, Davis L C. Geologic controls of hydraulic conductivity in theSnake River Plain aquifer at and near the Idaho National Engineering and EnvironmentalLaboratory, Idaho[R]. US Geological Survey, Idaho Falls,1999.
    [61] Larson K R, Keller C K, Larson P B, et al. Water resource implications of18O and2Hdistributions in a basalt aquifer system[J]. Ground Water,2000,38(6):947-953.
    [62] Kulkarni H, Deolankar S B, Lalwani A, et al. Hydrogeological framework of the Deccanbasalt groundwater systems, west-central India[J]. Hydrogeology Journal,2000,8(4):368-378.
    [63] Dafny E, Burg A, Gvirtzman H. Deduction of groundwater flow regime in a basaltic aquiferusing geochemical and isotopic data: The Golan Heights, Israel case study[J]. Journal ofhydrology,2006,330(3):506-524.
    [64] Locsey K L, Cox M E. Statistical and hydrochemical methods to compare basalt-andbasement rock-hosted groundwaters: Atherton Tablelands, north-eastern Australia[J].Environmental Geology,2003,43(6):698-713.
    [65] Demlie M, Wohnlich S, Wisotzky F, et al. Groundwater recharge, flow andhydrogeochemical evolution in a complex volcanic aquifer system, central Ethiopia[J].Hydrogeology Journal,2007,15(6):1169-1181.
    [66]艾瑶,高明.玄武岩地区水—岩作用的数值模拟[J].水文地质工程地质,1998,25(3):9-13.
    [67]王建平,陆海凌.白鹤滩水电站坝址区玄武岩水一岩作用模拟及应用研究[J].地下水,2009,31(1):44-47.
    [68]党志,侯瑛.玄武岩—水相互作用的溶解机理研究[J].岩石学报,1995,11(1):9-15.
    [69]赵广涛,曹钦臣.青岛西北地区矿泉水的水化学特征与形成机理[J].青岛海洋大学学报:自然科学版,1998,28(1):135-141.
    [70]高明,陈芸.封闭体系中水与玄武岩作用的研究[J].南京大学学报:自然科学版,1995,31(3):476-486.
    [71]张荣华,张雪彤,胡书敏,等.中地壳温度压力条件下的水-岩作用化学动力学实验[J].岩石学报,2007,23(11):2933-2942.
    [72]胡书敏,张荣华.张雪彤,等.火山盆地玄武岩与流体相互作用[J].岩石学报,2010,26(9):2681-2693.
    [73]严金叙.浙北地区偏硅酸型矿泉水分布与成因分析[J].中国煤田地质,1993,54(4):47-57.
    [74]方建华.郑州市饮用天然矿泉水成因探讨[J].河南国土资源,1993,11(2):127-132.
    [75]肖平新.陕西省饮用天然矿泉水成因分析及找矿方向[J].陕西地质,1993,11(2):45-49.
    [76]马开俊,张坦.沧州地区饮用天然矿泉水赋存规律及成因探讨[J].勘察科学技术,1994,3:3-7.
    [77]张念龙,李剑平.山西省饮用天然矿泉水有益元素分析[J].资源开发与市场,1999,15(3):177-179.
    [78]朱琰,赵宗举.浙江省火山岩地区温泉、矿泉水成因及综合开发利用[J].地质论评,1999,45(7):779-783.
    [79]陈长明,李景保.湖南省矿泉水资源及其开发[J].经济地理,1989,2:10-13.
    [80]赵力.燕山东部天然矿泉水化学特征及成因分析[J].水科学与工程技术,2005,1:24-28.
    [81]闫玉玲,王力英.五大连池药泉山区域矿泉水成因浅析[J].黑河科技,2001,2:38-38.
    [82]张兴奇.广东省封开县麒麟山饮用天然矿泉水资源特征及成因[J].新疆有色金属,2008,31(3):19-21.
    [83]王继华.河南省饮用天然矿泉水资源及开发利用与保护[J].河南科学,2009,27(11):1445-1448.
    [84]刘立军,徐海振,崔秋苹,等.石家庄市东部深层地下天然饮用矿泉水田评价[J].南水北调与水利科技,2010,8(006):106-109.
    [85]卢予北,郭友琴,王现国.地热矿泉水资源勘查手册[M].郑州:黄河水利出版社,2007.
    [86]李树.靖宇玄武岩矿泉水中特征元素组分(HSiO-3、Sr2+)成因的实验研究[D].吉林大学,2012.
    [87]贺军.吉林省靖宇县天然矿泉水及其周围环境微量元素含量的现状调查[D].吉林大学,2013.
    [88] Arnórsson S, Sveinbj rnsdóttir á E. Age and chemical evolution of groundwaters inSkagafj rdur, Iceland[J]. Journal of Geochemical Exploration,2000,69:459-463.
    [89] Edmunds W M, Carrillo-Rivera J J, Cardona A. Geochemical evolution of groundwaterbeneath Mexico City[J]. Journal of Hydrology,2002,258(1):1-24.
    [90] Dessert C, Dupré B, Gaillardet J, et al. Basalt weathering laws and the impact of basaltweathering on the global carbon cycle[J]. Chemical Geology,2003,202(3):257-273.
    [91] Todd Schaef H, Peter McGrail B. Dissolution of Columbia River Basalt under mildly acidicconditions as a function of temperature: Experimental results relevant to the geologicalsequestration of carbon dioxide[J]. Applied Geochemistry,2009,24(5):980-987.
    [92] Koh D C, Chae G T, Yoon Y Y, et al. Baseline geochemical characteristics of groundwaterin the mountainous area of Jeju Island, South Korea: Implications for degree ofmineralization and nitrate contamination[J]. Journal of Hydrology,2009,376(1):81-93.
    [93] Gudbrandsson S, Wolff-Boenisch D, Gislason S R, et al. An experimental study ofcrystalline basalt dissolution from2≤pH≤11and temperatures from5to75℃[J].Geochimica et Cosmochimica Acta,2011,75(19):5496-5509.
    [94] Gysi A P, Stefánsson A. CO2–water–basalt interaction. Numerical simulation of lowtemperature CO2sequestration into basalts[J]. Geochimica&Cosmochimica Acta,2011,75(17):4728-4751.
    [95] Gysi A P, Stefánsson A. Experiments and geochemical modeling of CO2sequestrationduring hydrothermal basalt alteration[J]. Chemical Geology,2012,306(307):10-28.
    [96] Gysi A P, Stefánsson A. CO2-water–basalt interaction. Low temperature experiments andimplications for CO2sequestration into basalts[J]. Geochimica&Cosmochimica Acta,2012,81:129-152.
    [97] Parisia S., Paternosterb M., Perrc F. et al, Source and mobility of minor and trace elementsin a volcanic aquifer system: Mt. Vulture (southern Italy)[J]. Journal of GeochemicalExploration,2011,110(3):233-244.
    [98] Locsey K L, Grigorescu M, Cox M E. Water–Rock Interactions: An Investigation of theRelationships Between Mineralogy and Groundwater Composition and Flow in aSubtropical Basalt Aquifer[J].Aquatic Geochemistry,2012,18(1):45-75.
    [99] Garrels R M, Thompson M E. A chemical model for sea water at25degrees C and oneatmosphere total pressure[J]. American Journal of Science,1962,260(1):57-66.
    [100] Merkel B J, Planer-Friedrich B. Grundwasserchemie: praxisorientierter Leitfaden zurnumerischen Modellierung von Beschaffenheit, Kontamination und Sanierung aquatischerSysteme; mit56Tabellen[M]. NewYork: Springer DE,2002.
    [101]王丽,王金生,林学钰.水文地球化学模型研究进展[J].水文地质工程地质,2003,6:105-109.
    [102] Plummer L N. Defining reactions and mass transfer in part of the Floridan aquifer[J]. WaterResources Research,1977,13(5):801-812.
    [103] Chapelle F H. Groundwater geochemistry and calcite cementation of the Aquia aquifer insouthern Maryland[J]. Water Resources Research,1983,19(2):545-558.
    [104] Hidalgo M C, Cruz-Sanjulián J. Groundwater composition, hydrochemical evolution andmass transfer in a regional detrital aquifer (Baza basin, southern Spain)[J]. AppliedGeochemistry,2001,16(7):745-758.
    [105] Parkhurst D L. Geochemical mole‐balance modeling with uncertain data[J]. WaterResources Research,1997,33(8):1957-1970.
    [106] Sekhar M, Braun J J, Rao K V H, et al. Hydrogeochemical modeling of organo-metalliccolloids in the Nsimi experimental watershed, South Cameroon[J]. Environmental geology,2008,54(4):831-841.
    [107] Wolfgang van Berk W, Schulz H M, Fu Y. Controls on CO2fate and behavior in theGullfaks oil field (Norway): How hydrogeochemical modeling can help decipherorganic-inorganic interactions[J]. AAPG Bulletin,2013,97(12):2233-2255.
    [108]杜超.下辽河平原地下水水质实时预报模型研究[D].长春:吉林大学,2011.
    [109] Kenoyer G J, Bowser C J. Groundwater chemical evolution in a sandy silicate aquifer innorthern Wisconsin:1. Patterns and rates of change[J]. Water Resources Research,1992,28(2):579-589.
    [110] Wicks C M, Herman J S. The effect of a confining unit on the geochemical evolution ofground water in the Upper Floridan aquifer system[J]. Journal of Hydrology,1994,153(1):139-155.
    [111] RALPH D. LINDBERG and DONALD D. RUNNELLS. Ground Water Redox Reactions:An Analysis of Equilibrium State Applied to Eh Measurements and Geochemical Modeling[J]. Science,1984,225(4665):925-927.
    [112] Kenoyer G J, Bowser C J. Groundwater chemical evolution in a sandy silicate aquifer innorthern Wisconsin:2. Reaction modeling[J]. Water Resources Research,1992,28(2):591-600.
    [113] Matthew M U, Sharp Jr J M. Tracing regional flow paths to major springs in Trans-PecosTexas using geochemical data and geochemical models[J]. Chemical Geology,2001,179(1):53-72.
    [114] El Naqa A, Al Kuisi M. Hydrogeochemical modeling of the water seepages through TannurDam, southern Jordan[J]. Environmental Geology,2004,45(8):1087-1100.
    [115] Xu T, Pruess K. Modeling multiphase non-isothermal fluid flow and reactive geochemicaltransport in variably saturated fractured rocks:1. Methodology[J]. American Journal ofScience,2001,301(1):16-33.
    [116] Xu T, Sonnenthal E, Spycher N, et al. Modeling multiphase non-isothermal fluid flow andreactive geochemical transport in variably saturated fractured rocks:2. Applications tosupergene copper enrichment and hydrothermal flows[J]. American Journal of Science,2001,301(1):34-59.
    [117] Metz V, Kienzler B, Schüssler W. Geochemical evaluation of different groundwater–hostrock systems for radioactive waste disposal[J]. Journal of Contaminant Hydrology,2003,61(1):265-279.
    [118] Islam J, Singhal N. A one-dimensional reactive multi-component landfill leachate transportmodel[J]. Environmental Modelling&Software,2002,17(6):531-543.
    [119] Audigane P, Gaus I, Czernichowski-Lauriol I, et al. Two-dimensional reactive transportmodeling of CO2injection in a saline aquifer at the Sleipner site, North Sea[J]. AmericanJournal of Science,2007,307(7):974-1008.
    [120] Kowalsky M B, Gasperikova E, Finsterle S, et al. Coupled modeling of hydrogeochemicaland electrical resistivity data for exploring the impact of recharge on subsurfacecontamination[J]. Water Resources Research,2011,47(2):509-530.
    [121] Indraratna B, Pathirage P U, Rowe R K, et al. Coupled hydro-geochemical modelling of apermeable reactive barrier for treating acidic groundwater[J]. Computers and Geotechnics,2014,55:429-439.
    [122]李雨新.地下水水质分析中水中元素存在形式的研究[J].水文地质工程地质,1984,11(1):56-58.
    [123]钱会.水溶液中各组分存在形式的含量及溶液Eh值的计算方法[J].西安地质学院学报,1987,9(3):69-79.
    [124]李雨新,钱会.地下水化学组分存在形式计算方法[J].水文地质工程地质,1991,18(6):25-28.
    [125]王广才,沈照理.平顶山矿区岩溶水水文地球化学模拟及其应用[J].中国科学: D辑,1998,28(3):245-249.
    [126]王文才,沈照理.平顶山矿区岩溶水系统水—岩相互作用的随机水文地球化学模拟[J].水文地质工程地质,2000,27(3):9-11.
    [127] Zhang GX, Zheng ZP, Wan JM. Modeling reactive geochemical transport of concentratedaqueous solutions [J]. WATER RESOURCES RESEARCH,2005:41(2).
    [128]李广贺.含油气沉积盆地深部地下水水化学场分布特征研究[J].长春科技大学学报,1995,1:52-58.
    [129]郭龙海,沈照理,钟佐燊.河北平原地下水化学环境演化的地球化学模拟[J].中国科学(D辑),1997,27(4):360-365.
    [130]王焰新,李永敏.山西柳林泉域水—岩相互作用地球化学模拟[J].地球科学:中国地质大学学报,1998,23(5):519-523.
    [131]张宗祜,沈照理.人类活动影响下华北平原地下水环境的演化与发展[J].地球学报:中国地质科学院院报,1997,18(4):337-344.
    [132]董维红.反向水文地球化学模拟技术在鄂尔多斯白垩系自流水盆地深层地下水14C年龄校正中的应用[D].吉林大学,2005
    [133]李义连,张江华.娘子关泉域岩溶水硫酸盐污染的地球化学模拟分析[J].地球科学:中国地质大学学报,2000,25(5):467-471.
    [134]卞建民,查恩爽,汤洁,等.吉林西部砷中毒区高砷地下水反向地球化学模拟[J].吉林大学学报:地球科学版,2010(5):1098-1103.
    [135]曹玉清,胡宽瑢,李振拴.地下水化学动力学与生态环境区划分[M].北京:科学出版社,2009.
    [136] Ball J W, Jenne E A, and Cantrell M W. WATEQ3–a geochemical model with uraniumadded [R]. U. S. Geol. Surv. Open File Report,1981.
    [137]韩冬梅.忻州盆地第四系地下水流动系统分析与水化学场演化模拟[D].中国地质大学,2007.
    [138] Parkhurst D L, Plummer L N and Thorstenson D C. BALANCE-A computer program forgeochemical calculations [J]. Water Resources Invest,1982,14:33.
    [139] Plummer L N, Prestenrnon E C and Parkhurst D L. An interactive code (NETPATH) formodeling NET geochemical reactions along a flow path [R]. U.S.G.S. Water ResourcesInvestigations,1991.
    [140] Parkhurst D L. User’s guide to PHREEQC, A computer model for speciation, reaction path,advective transport and inverse geochemical calculations [R]. U.S.G.S. Water ResourcesInvestigations,1992.
    [141] Dobson P F, Salah S, Spycher N, et al. Simulation of water–rock interaction in theYellowstone geothermal system using TOUGHREACT[J]. Geothermics,2004,33(4):493-502.
    [142]刘嘉麒.中国火山[M].北京:科学出版社,1999.
    [143]魏海泉,刘若新,樊祺诚.龙岗火山群单成因火山作用[J].地质论评,1999,45(s):325-331.
    [144]白志达,徐德斌,张秉良,等.龙岗火山群第四纪爆破式火山作用类型与期次研究[J].岩石学报,2006,22(6):1473-1480.
    [145]刘尔义.吉林省龙岗火山群地质构造特征研究[J].中国区域地质,1990,2:157-165.
    [146]王彦生,靳克.吉林省新生代龙岗火山群期次划分及火山喷发类型特点[J].地质论评,1999,45(7):332-338.
    [147]刘俊清,丁广,张晨侠,等.吉林省龙岗火山群现今活动性研究[J].华北地震科学,2013,31(1):31-33.
    [148]欧祥喜,傅靖戈.龙岗火山群的形成与构造的关系[J].吉林地质,1984,1:76-81.
    [149]罗照华.吉林辉南大椅山碱性玄武岩及其成因[J].地球科学-中国地质大学学报,1984,1:81-86.
    [150]隋建立,樊祺诚,曹杰.龙岗火山喷发特征与火山岩岩石化学初步研究[J].地质论评,1999,45:319-324.
    [151]樊祺诚,刘若新,魏海泉,等.龙岗金垅顶子近代活动火山的岩石学与地球化学[J].岩石学报,1999,15(4):584-589.
    [152]于红梅,许建东,林传勇,等.吉林省龙岗火山群南龙湾第四纪火山碎屑颗粒特征研究[J].岩石学报,2008,24(11):2621-2630.
    [153]于红梅,许建东,吴建平,等.龙岗金龙顶子火山空降碎屑物数值模拟及概率性灾害评估[J].震灾防御技术,2013,8(1):62-71.
    [154]刘祥,张成梁.龙岗火山群四海火山渣层—来自金龙顶子火山亚普林尼式火山爆发[J].吉林地质,1997,16(3):1-8.
    [155]刘强,魏海泉,许建东,等.吉林龙岗四海火山碎屑物粒度分析与地质意义[J].地震地质,2009,31(1):112-121.
    [156]刘嘉麒.中国东北地区新生代火山岩的年代学研究[J].岩石学报,1987,4:21-31.
    [157]吉林省土壤肥料总站.吉林土种志[M].长春:吉林科学技术出版社,1997.
    [158]李欣平.三岔子林业局天然林保护工程生态环境影响跟踪评价[D].东北林业大学,2012.
    [159] Fu Q, Lu T, Fu H. Applying PPE model based on RAGA to classify and evaluate soilgrade[J]. Chinese Geographical Science,2002,12(2):136-141.
    [160]付强,赵小勇.投影寻踪模型原理及其应用[M].北京:科学出版社,2006.
    [161] Craig H. Isotopic variations in meteoric waters[J]. Science,1961,133(3465):1702-1703.
    [162] Craig H. Standard for reporting concentrations of deuterium and oxygen-18in naturalwaters[J]. Science,1961,133(3467):1833-1834.
    [163]王凤生.吉林省大气降水氢氧同位素浓度场时空展布及环境效应[J.水文地质工程地质,1995,4:28-30.
    [164] Zimmermann U, Münnich K O, Roether W. Downward movement of soil moisture tracedby means of hydrogen isotopes[J]. Geophysical Monograph Series,1967,11:28-36.
    [165] Cerling T E. The stable isotopic composition of modern soil carbonate and its relationshipto climate[J]. Earth and Planetary science letters,1984,71(2):229-240.
    [166] Hoppner F, Klawonn F, Kruse R, Runkler T. Fuzzy cluster analysis: methods forclassification, data analysis and image recognition[M]. NewYurk: J. Wiley&S. Ltd,1999.
    [167]汪闽,周成虎,裴韬,等. MSCMO:基于数学形态学算子的尺度空间聚类方法[J].遥感学报,2004,8(1):45-50.
    [168]汪闽,周成虎,裴韬,等.一种基于数学形态学尺度空间的线性条带挖掘方法[J].高技术通讯,2003,10:20-24.
    [169] Wang M, Leung Y, Zhou C, et al. A mathematical morphology based scale space method forthe mining of linear features in geographic data[J]. Data Mining and Knowledge Discovery,2006,12(1):97-118.
    [170] M Ester, H-P Kriegel, J Sander and X Xu. A Density-Based Algorithmfor DiscoveringClusters in Large Spatial Databases with Noise[A]. Proc. of the Second InternationalConference on KnowledgeDiscovery and DataMining[C],Portland, Oregon,1996:324-331.
    [171] Box G E P, Jenkins G M, Reinsel G C. Time series analysis: forecasting and control[M].Hoboken: John Wiley&Sons,2008.
    [172] Drever J I. The geochemistry of natural waters: surface and groundwaterenvironments[M].London: Prentice Hall,1997.
    [173]徐中华,李云峰,侯光才.鄂尔多斯盆地洛河组地下水地球化学模拟[J].干旱区资源与环境,2009,23(10):143-148.
    [174]艾瑶,高明.地下水与玄武岩反应趋势分析[J].高校地质学报,1998,4(2):220-228.
    [175] Xu T, Sonnenthal E, Spycher N, Pruess K.TOUGHREACT User’s Guide: A SimulationProgram for Non-isothermal Multiphase Reactive Geochemical Transport in VariablySaturated Geological Media[R]. Berkeley: Lawrence Berkeley National Laboratory,2004.
    [176]姜玲. CO2地质储存对地下水的环境影响研究[D].武汉:中国地质大学,2010.
    [177]孙蓉琳,梁杏,靳孟贵.基于野外水力试验的玄武岩渗透性及尺度效应[J].岩土力学,2006,27(9):1490-1494.
    [178] Borgia A, Cattaneo L, Marconi D, et al. Using a MODFLOW grid, generated with GMS, tosolve a transport problem with TOUGH2in complex geological environments: Theintertidal deposits of the Venetian Lagoon[J]. Computers&Geosciences,2011,37(6):783-790.
    [179]闫志为,韦复才.地下水中CO2的成因综述[J].中国岩溶,2003,22(2):118-123.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700