用户名: 密码: 验证码:
华北克拉通东北缘与东北造山带陆下岩石圈地幔性质对比研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
华北东部在奥陶纪存有厚达200km、以方辉橄榄岩为主的岩石圈根。到了新生代,前奥陶纪冷的、厚的岩石圈已被厚度为100km、新鲜而饱满的大洋型地幔所替代,岩石圈的去根、减薄这一事实已得到广泛认同,但在减薄机制等问题上仍存有很大争议。华北克拉通东北缘龙岗—长白山—宽甸地区及东北造山带阿尔山—柴河地区的新生代玄武岩中存有大量的地幔橄榄岩捕掳体,通过对这些捕掳体进行详细的岩相学、岩石地球化学特征的研究,可以揭示不同构造环境的陆下岩石圈地幔性质,通过对不同研究区地幔性质的对比讨论可以反演其陆下岩石圈地幔的不同演化历史与形成机制,这对探讨华北克拉通东部地区陆下岩石圈地幔性质转变的相关机制有重要的借鉴意义。
     本文选用了相关的先进实验测试技术对华北克拉通东北缘和东北造山带橄榄岩捕掳体全岩的主、微量元素以及矿物主、微量元素进行了分析测试,对分析结果进行了详细的岩石学及地球化学研究,并运用研究区陆下岩石圈地幔的氧化—还原状态参与讨论。研究结果表明,华北克拉通东北缘陆下岩石圈地幔以新生的大洋型地幔为主,其岩石圈地幔的氧逸度值与受软流圈影响的地幔相似,岩石圈地幔形成机制很可能是中生代以来,西太平洋板块和蒙古—鄂霍茨克洋板块分别向东和向南的复合俯冲作用,使得华北克拉通东北缘古老的岩石圈失衡、拆沉,取而代之的是下面热而饱满的软流圈物质的底劈、上涌,且太平洋板块自东向西的俯冲作用是岩石圈地幔拆沉的根本性因素。而东北造山带阿尔山—柴河地区保有相当量的古老地幔残余,表明其不存在类似华北克拉通东北缘地区对原生岩石圈地幔强烈的破坏和改造过程。
It is one of the important scientific problems of deep Earth dynamicsto conduct inversion for the evolutionary history of the continentallithosphere. The changes have occurred in the nature, thickness andthermal state of the eastern lithosphere of North China Craton sincePaleozoic. Compared with the cratons in other areas of the world, NorthChina Craton reflects its own differences, and many geologists have fewcontroversies for the cognizance of this geological event. However,different points of view still exist in the time, mechanism and deepprocess of the occurrence of the great change. The previous studiesusually took the marginal areas of North China Craton as the studyhotspots, while the northeastern margin of North China Craton is close toPacific subduction plate and northeast orogenic belt, and obviously thestudy work on the nature of the mantle of the subcontinental lithosphereof the northeast orogenic belt similarly has important significance. Inview of this, in this paper, in addition that the peridotite xenoliths of theCenozoic basalts in Kuandian, Longgang and Changbai Mountain areas of the northeastern margin of North China Craton were selected as thestudy objects, we also selected the spinel phase peridotite xenoliths inAer-Chaihe area of northeast orogenic belt Daxinganling as the studyobject, conducted the studies on the nature and evolutionary process ofthe subcontinental lithosphere mantle under different tectonicenvironments through the detailed petrology and geochemistry as well asthe redox state (O2) of the mantle in the study area, and carried out thedetailed comparative study on the formation mechanism.
     The chemical characteristics of the major elements of the wholerock and minerals in the study area show that, the nature of the mantle ofthe northeastern margin of North China Craton overall is dominated bythe nascent oceanic mantle, while the Aer-Chaihe lithosphere mantleretains more remnants of ancient mantle. The equilibrium temperature ofthe study area also shows the following heterogeneity: The equilibriumtemperature of the peridotite in Longgang-Changbai Mountain-Kuandian areas of the northeastern margin of North China Craton is low,being close to the equilibrium temperature of the peridotite in Changleand Shanwang areas of eastern North China Craton; the equilibriumtemperature range of the mantle peridotite in Aer-Chaihe area is similarto the equilibrium temperature range of the peridotite in Hebi area ofHenan of North China Craton; both lherzolite and harzburgite have thedistinctions of high temperature and low temperature, the minority lowtemperature samples present the characteristics of the lithosphericmantle which accepts transformation; while the high temperaturelherzolite samples are speculated to be the results after the interactionbetween asthenosphere and lithosphere.
     The characteristics of the trace elements of the clinopyroxene in thestudy area show that, the overall partial melting degree of thenortheastern margin of North China Craton is similar to the low partial melting degree experienced by the nascent and full-type peridotite inShanwang area, besides, the northeastern margin of North China Cratonexperienced the metasomatism of low degree, and the metasomaticmedium was the silicate fluid/melt. The data of the Aer-Chaihe areashow that, the partial melting degree of most samples in the study area issimilar to that of the refractory and defective Hebi peridotite, showinghigh partial melting degree. The discussions about the metasomatism ofthe Aer-Chaihe study area show that, the metasomatic process of thestudy area is relatively complex, the main bodies of its metasomaticmedium are silicate fluids/melts, very few samples have the metasomaticresidues of carbonate melt and the metasomatic characteristics ofwater-rich fluids, and it is speculated that the water-rich fluids comefrom the deep asthenosphere, while not from the influence of the ancientsubduction slabs.
     The results of the discussions about the redox state of the mantle inthe study area show that, the range value of the oxygen fugacity (O2) ofthe subcontinental lithosphere mantle of the northeastern margin of NorthChina Craton is equivalent to the range value of the oxygen fugacity ofthe subcontinental lithosphere mantle affected by the asthenosphere, andit is speculated that the formation of the nascent mantle in the study areais related to the activities of the asthenosphere. However, the Aer-Chaihearea has a considerable number of the transition samples of thegarnet-spinel phase. After discussions, it is thought that, the oxygenfugacity calculated by using the peridotite samples which do not reach themineral chemical equilibrium (spinel-garnet transition samples) is invalid,and it cannot truly reflect the redox state of the mantle in the study area.
     The content characteristics of the pro-copper and pro-iron elementsof the subcontinental lithosphere mantle in Longgang-ChangbaiMountain-Kuandian areas of the northeastern margin of North China Craton show that, the sulfides are not the main occurrence matters ofPGE, while the alloys, silicate minerals and oxides are more inclined tobe the occurrence matters of PGE. The low content of Cu, S and PGEmay indicate that compared with other areas inside North China Craton,the nature of the mantle of the northeastern margin of North ChinaCraton is characterized by heterogeneity.
     After the discussions were conducted for the formation mechanismof the mantle in the study area, it is thought that, the respectivelyeastward and southward composite subduction of western Pacific plateand Mongolia-Okhotsk oceanic plate result in the imbalance anddelamination of the ancient lithosphere of the northeastern margin ofNorth China Craton, while cause the diapir and upwelling of the hot andfull asthenosphere substances below, thereby leading to the formation ofthe nascent lithosphere mantle of the northeastern margin of North ChinaCraton. Besides, the eastward and westward subduction of westernPacific plate is the fundamental factor of the delamination of thelithosphere mantle. However, the processes which are similar to thedestruction and transformation of the northeastern margin of North ChinaCraton for the protogenetic lithosphere mantle do not exist in thelithosphere mantle of the Aer-Chaihe area. The phenomenon that thestudy area retains a considerable number of ancient lithosphere mantleshow that the evolutionary history of the lithosphere mantle of theAer-Chaihe area significantly differs from the destruction and activationprocesses experienced by the northeastern margin of North China Craton.
引文
[1]白志达,徐德斌,张秉良等.龙岗火山群第四纪爆破式火山作用类型与期次研究[J].岩石学报,2006,22(6):1473-1480.
    [2]陈绍海,周新华,张国辉等.透辉石的激光探针ICP质谱分析及其深部地质意义[J].科学通报,1997,42(16):1707-1711.
    [3]池阵尚和路凤香.华北地台金伯利岩及古生代岩石圈地幔特征[M].科学出版社,1996.
    [4]邓晋福,苏尚国,刘翠等.关于华北克拉通燕山期岩石圈减薄的机制与过程的讨论:是拆沉,还是热侵蚀和化学交代?[J].地学前缘,2006,13(2):105-119.
    [5]邓晋福,苏尚国,赵海玲等.华北地区燕山期岩石圈减薄的深部过程[J].地学前缘,2003,10(3):41-50.
    [6]鄂莫岚和赵大升.中国东部新生代玄武岩及深源岩石包体[M].科学出版社,1987.
    [7]樊祺诚,隋建立,刘若新等.吉林龙岗第四纪火山活动分期[J].岩石学报,2002,18(4):495-500.
    [8]樊祺诚,隋建立,王团华等.长白山天池火山粗面玄武岩的喷发历史与演化[J].岩石学报,2006,22(6):1449-1457.
    [9]樊祺诚,赵勇伟,李大明等.大兴安岭哈拉哈河-绰尔河第四纪火山分期: K-Ar年代学与火山地质特征[J].岩石学报,2011,27(10):2827-2832.
    [10]樊祺诚,赵勇伟,隋建立等.大兴安岭诺敏河第四纪火山岩分期:岩石学,年代学与火山地质特征[J].岩石学报,2012,28(4):1092-1098.
    [11]方同辉和马鸿文,辽宁宽甸地区上地幔岩石圈组成及热结构——来自地幔岩包体的信息[J].地质论评,1999,45(7):450-457.
    [12]干微,金振民,王根厚等.吉林辉南幔源橄榄岩流变学与组构特征及其动力学启示[J].地质学报,2011,85(4):491-504.
    [13]葛文春,李献华,林强等.呼伦湖早白垩世碱性流纹岩的地球化学特征及其意义[J].地质科学,2001,36(2):176-183.
    [14]洪大卫,王涛,童英等.华北地台和秦岭—大别—苏鲁造山带的中生代花岗岩与深部地球动力学过程[J].地学前缘,2003,10(3):231-256.
    [15]赖勇,刘玉琳,黄宝玲等.五大连池和宽甸地幔包体的惰性气体同位素特征-MORB型地幔和交代型地幔[J]. Acta Petrologica Sinica,2005,21(5).
    [16]李继亮,王凯怡,王清晨等.五台山早元古代碰撞造山带初步认识[J].地质科学,1990,1(1).
    [17]李天福和马鸿文.汉诺坝玄武岩的地球化学特征及成因模式[J].岩石矿物学杂志,1999,18(3):217-228.
    [18]刘丛强,李和平,黄智龙等.地幔氧逸度的研究进展[J].地学前缘(中国地质大学,北京),2001,8(3):73-82.
    [19]刘金霖,王建,宋樾等.内蒙古阿尔山-柴河地区陆下岩石圈地幔性质研究-第四纪碱性玄武岩中橄榄岩捕掳体中单斜辉石微量元素证据[J].世界地质,2014,33(1):1-10.
    [20]刘嘉麒.中国东北地区新生代火山岩的年代学研究[J].岩石学报,1987,4:21-31.
    [21]刘嘉麒.中国火山[M].科学出版社,1999.
    [22]刘若新,樊祺诚,郑祥身等.长白山天池火山的岩浆演化[J].中国科学: D辑,1998,28(3):226-231.
    [23]刘祥和向天元.中国东北地区新生代火山和火山碎屑堆积物资源与灾害[M].吉林大学出版社,1997.
    [24]刘祥和张成梁.龙岗火山群四海火山渣层—来自金龙顶子火山亚普林尼式火山爆发[J].吉林地质,1997,16(3):1-8.
    [25]鲁江姑和郑建平.辉南新生代玄武岩中橄榄岩捕虏体矿物化学与华北岩石圈地幔演化[J].地质学报,2011,85(3):330-342.
    [26]路凤香,邓晋福,鄂莫岚.辽宁宽甸黄椅山碱性玄武岩岩浆起源问题的讨论[J].地球科学-中国地质大学学报,1981,1:014.
    [27]路凤香,韩柱国,郑建平等.辽宁复县地区古生代岩石圈地幔特征[J].地质科技情报,1991,10(2):20.
    [28]苗来成,范蔚茗,张福勤等.小兴安岭西北部新开岭-科洛杂岩锆石SHRIMP年代学研究及其意义[J].科学通报,2004,48(22):2315-2323.
    [29]闵宁,刘勇胜,宗克清等.华北克拉通东北缘与古亚洲样壳俯冲有关的岩石圈地幔改造:来自大同玄武岩中橄榄岩证据[A].全国岩石学与地球动力学研讨会会议摘要集[C].2013年.
    [30]茹艳娇.大陆岩石圈地幔的组成与交代作用[J].地质与资源,2011(4):311-314.
    [31]宋樾,王建,刘金霖等.吉林东部汪清新生代玄武岩中地幔包体的矿物化学:对该地区岩石圈地幔形成过程的启示[J].地学前缘,2013,20(5).
    [32]隋建立,樊祺诚,刘嘉麒等.长白山火山地幔不均一性———微量元素及同位素地球化学研究[J].岩石学报,2007,23(6):1512-1520.
    [33]隋建立,樊祺诚,徐义刚.大兴安岭诺敏河石榴石橄榄岩捕虏体的发现及其地质意义[J].岩石学报,2012,28(4):1130-1138.
    [34]隋振民.大兴安岭东北部花岗岩类锆石U-Pb年龄,岩石成因及地壳演化[J].博士学位论文,2007.
    [35]王建, Keiko H·H, Charles R·S,等.软流圈熔体地幔交代作用过程中的铂族元素行为[J].地学前缘,2010(1):164-176.
    [36]吴福元,葛文春,孙德有等.中国东部岩石圈减薄研究中的几个问题[J].地学前缘,2003,3:51-60.
    [37]吴福元,孙德有,张广良等.论燕山运动的深部地球动力学本质[J].高校地质学报,2000,6(3):379-388.
    [38]吴福元,徐义刚,高山等.华北岩石圈减薄与克拉通破坏研究的主要学术争论[J].岩石学报,2008,24(6):1145-1174.
    [39]吴福元和孙德有.中国东部中生代岩浆作用与岩石圈减薄[J].长春科技大学学报,1999,29(4):313-318.
    [40]伍家善,耿元生,沈其韩.华北陆台早前寒武纪重大地质事件[J].中国地质科学院文集(1992中英文合订本),1992.
    [41]徐义刚,黄小龙,陈小明.吉林辉南“反应”成因方辉橄榄岩包体及其深部动力学意义[J].岩石学报,2003,19(1):19-26.
    [42]徐义刚.华北岩石圈减薄的时空不均一特征[J].高校地质学报,2004,10(3):324-331.
    [43]徐义刚.太行山重力梯度带的形成与华北岩石圈减薄的时空差异性有关[J].地球科学:中国地质大学学报,2006,31(1):14-22.
    [44]徐义刚.岩石圈的热-机械侵蚀和化学侵蚀与岩石圈减薄[J].矿物岩石地球化学通报,1999,18(1):1-5.
    [45]许文良,王冬艳,王清海等.华北地块中东部中生代侵入杂岩中角闪石和黑云母的40Ar/39Ar定年:对岩石圈减薄时间的制约[J].地球化学,2004,33(3):221-231.
    [46]许文良,王枫,裴福萍,等.中国东北中生代构造体制与区域成矿背景:来自中生代火山岩组合时空变化的制约[J].岩石学报,2013,29(2):339-353.
    [47]许文良,周群君,杨德彬等.大陆深俯冲作用对邻区岩石圈地幔改造的时间,方式与过程:鲁西橄榄岩类与辉石岩类捕虏体证据[J].科学通报,2013,58(23):2300-2305.
    [48]杨清福,王建,盘晓东等.吉林南部辉南-靖宇地区岩石圈地幔氧化-还原状态及研究意义[J].岩石学报,2011,27(6):1797-1809.
    [49]叶慧文,张兴洲,周裕文等.从蓝片岩及蛇绿岩特点看满洲里-绥芬河断面岩石圈结构与演化[J]. M0SGT地质课题组.中国满洲里-绥芬河地学断面域内岩石圈结构及它的演化的地质研究.北京:地震出版社,1994,73083.
    [50]余淳梅.华北克拉通中东部典型地区橄榄岩捕虏体年龄及地幔不均一性[D].中国地质大学,2009.
    [51]袁学诚.秦岭岩石圈速度结构与蘑菇云构造模型[J].中国科学: D辑,1996,26(3):209-215.
    [52]袁学诚.再论岩石圈地幔蘑菇云构造及其深部成因[J].中国地质,2007,34(5):737-758.
    [53]张宏福,周新华,范蔚茗等.华北东南部中生代岩石圈地幔性质,组成,富集过程及其形成机理[J].岩石学报,2005,21(4):1271-1280.
    [54]张华利,杨福春,崔学发.辽宁宽甸火山群地质遗迹的保护与开发[J].国土资源,2009(5):44-47.
    [55]张立敏和唐晓明.西太平洋板块俯冲运动与中国东北深震带[J].地球物理学报,1983,26(4):331-340.
    [56]张梅生和彭向东.中国东北区古生代构造古地理格局[J].辽宁地质,1998(2):91-96.
    [57]张旗和王焰.埃达克岩的特征及其意义[J].地质通报,2002,21(7):431-435.
    [58]张彦龙.大兴安岭地区地幔橄榄岩捕虏体的同位素特征与岩石圈地幔时代[D].吉林大学,2011.
    [59]张志海,郑建平,马鸿文.吉林汪清-辉南地幔透辉石微量元素及其记录的地幔熔融与交代作用[J].地质科技情报,2007,25(6):9-16.
    [60]赵勇伟和樊祺诚,白志达等.大兴安岭哈拉哈河-淖尔河地区第四纪火山活动初步研究[J].岩石学报,2008,24(11):2569-2575.
    [61]赵勇伟和樊祺诚.大兴安岭岩石圈地幔特征——哈拉哈河-绰尔河橄榄岩捕虏体的证据[J].岩石学报,2011,27(10):2833-2841.
    [62]郑建平.路凤香, O RellyS Y,等.新疆托云地幔单斜辉石微量元素互西南天山岩石圈深部过程[J].科学通报,2001,46(6):497-502.
    [63]郑建平.中国东部地幔置换作用与中新生代岩石圈减薄[M].中国地质大学出版社,1999.
    [64]郑瑞伦和邹天人.宽甸火山群地质遗迹的地质特征与特殊性[J].地质与资源,2006,15(1):75-77.
    [65]支霞臣和秦协.中国东部地幔橄榄岩捕虏体的Re-Os同位素地球化学:岩石圈地幔的形成年龄和减薄作用的制约[J].岩石学报,2004,20(5):989-998.
    [66]周琴,吴福元,储著银等.吉林蛟河地幔橄榄岩捕虏体的Sr-Nd-Hf-Os同位素特征与岩石圈地幔时代[J].岩石学报,2007,23(6):1269-1280.
    [67]周琴,吴福元,储著银等.吉林省伊通地区橄榄岩包体的同位素特征与岩石圈地幔时代[J].岩石学报,2010,26(4):1241-1264.
    [68]周群君,许文良,杨德彬等.再循环陆壳物质对岩石圈地幔的改造:鲁西早白垩世高镁闪长岩中异剥橄榄岩捕虏体证据[J].中国科学:地球科学,2013,7:012.
    [69]周媛婷,郑建平,余淳梅等.内蒙古集宁新生代玄武岩中橄榄岩包体矿物化学特征及其地幔演化意义[J].岩石矿物学杂志,2010,29(3):243-257.
    [70]朱日祥,徐义刚,朱光等.华北克拉通破坏[J].中国科学:地球科学,2012,42(8):1135-1159.
    [71]邹东雅,刘勇胜,宗克清等.与古亚洲洋俯冲有关的熔/流体-橄榄岩作用:来自克什克腾旗地幔包体的证据[A].全国岩石学与地球动力学研讨会会议摘要集,2013年.
    [72] Amundsen H E F, Neumann E R. Redox control during mantle/melt interaction[J].Geochimica et cosmochimica acta,1992,56(6):2405-2416.
    [73] Arai S, Ishimaru S, Okrugin V M. Metasomatized harzburgite xenoliths fromAvacha volcano as fragments of mantle wedge of the Kamchatka arc: implicationfor the metasomatic agent[J]. Island Arc,2003,12(2):233-246.
    [74] Arai S. Characterization of spinel peridotites by olivine-spinelcompositional relationships: review and interpretation[J]. Chemical geology,1994,113(3):191-204.
    [75] Ashchepkov I V, André L, Downes H, et al. Pyroxenites and megacrysts fromVitim picrite-basalts (Russia): Polybaric fractionation of rising melts inthe mantle?[J]. Journal of Asian Earth Sciences,2011,42(1):14-37.
    [76] Ballhaus C, and Ronald F B. The generation of oxidized CO2-bearing basalticmelts from reduced CH4--bearing upper mantle sources[J]. Geochimica etCosmochimica Acta,1994,58(22):4931-4940.
    [77] Ballhaus C, Bockrath C, Wohlgemuth-Ueberwasser C, et al. Fractionation ofthe noble metals by physical processes[J]. Contributions to Mineralogy andPetrology,2006,152(6):667-684.
    [78] Ballhaus C. A question of reduction[J].1993,366:112-113.
    [79] Ballhaus C. Redox states of lithospheric and asthenospheric upper mantle[J].Contributions to Mineralogy and Petrology,1993,114(3):331-348.
    [80] Barnes S J, Naldrett A J, Gorton M P. The origin of the fractionation ofplatinum-group elements in terrestrial magmas[J]. Chemical Geology,1985,53(3):303-323.
    [81] Bell D R, Gregoire M, Grove T L, et al. Silica and volatile-elementmetasomatism of Archean mantle: a xenolith-scale example from the KaapvaalCraton[J]. Contributions to Mineralogy and Petrology,2005,150(3):251-267.
    [82] Bertrand P and Mercier J C C. The mutual solubility of coexisting ortho-andclinopyroxene: toward an absolute geothermometer for the natural system?[J].Earth and Planetary Science Letters,1985,76(1):109-122.
    [83] Blundy J D, Brodholt J P, Wood B J. Carbon–fluid equilibria and the oxidationstate of the upper mantle[J]. Nature,1991,349(6307):321-324.
    [84] Blundy J and Dalton J. Experimental comparison of trace element partitioningbetween clinopyroxene and melt in carbonate and silicate systems, andimplications for mantle metasomatism[J]. Contributions to Mineralogy andPetrology,2000,139(3):356-371.
    [85] Boyd F R, and Mertzman S A. Composition and structure of the Kaapvaallithosphere, southern Africa[J]. Magmatic processes: physicochemicalprinciples,1987,1:13-24.
    [86] Boyd F R. Compositional distinction between oceanic and cratoniclithosphere[J]. Earth and Planetary Science Letters,1989,96(1):15-26.
    [87] Brenan J M, McDonough W F, Ash R. An experimental study of the solubilityand partitioning of iridium, osmium and gold between olivine and silicatemelt[J]. Earth and Planetary Science Letters,2005,237(3):855-872.
    [88] Brey G P,and K hler T. Geothermobarometry in four-phase lherzolites II. Newthermobarometers, and practical assessment of existing thermobarometers[J].Journal of Petrology,1990,31(6):1353-1378.
    [89] Brügmann G E, Arndt N T, Hofmann A W, et al. Noble metal abundances in komatiitesuites from Alexo, Ontario and Gorgona Island, Colombia[J]. Geochimica etCosmochimica Acta,1987,51(8):2159-2169.
    [90] Bryndzia L T, and Wood B J. Oxygen thermobarometry of abyssal spinelperidotites: the redox state and C–O–H volatile composition of the Earth’ssub-oceanic upper mantle[J]. Am. J. Sci,1990,290(10):1093-1116.
    [91] Canil D, O'Neill H S C, Pearson D G, et al. Ferric iron in peridotites andmantle oxidation states[J]. Earth and Planetary Science Letters,1994,123(1):205-220.
    [92] Canil D, O'Neill H S T C. Distribution of ferric iron in some upper-mantleassemblages[J]. Journal of Petrology,1996,37(3):609-635.
    [93] Capobianco C J, Hervig R L, Drake M J. Experiments on crystal/liquidpartitioning of Ru, Rh and Pd for magnetite and hematite solid solutionscrystallized from silicate melt[J]. Chemical Geology,1994,113(1):23-43.
    [94] Carlson R W, Boyd F R, Shirey S B, et al. Continental growth, preservationand modification in southern Africa[J]. GSA Today,2000,10(2):1-7.
    [95] Carlson R W, Pearson D G, James D E. Physical, chemical, and chronologicalcharacteristics of continental mantle[J]. Reviews of Geophysics,2005,43(1).
    [96] Coltorti M, Bonadiman C, Hinton R W, et al. Carbonatite metasomatism of theoceanic upper mantle: evidence from clinopyroxenes and glasses in ultramaficxenoliths of Grande Comore, Indian Ocean[J]. Journal of Petrology,1999,40(1):133-165.
    [97] Daniels L R M, and Gurney J J. Oxygen fugacity constraints on the southernAfrican lithosphere[J]. Contributions to Mineralogy and Petrology,1991,108(1-2):154-161.
    [98] De Hoog J C M, Hattori K H, Hoblitt R P. Oxidized sulfur-rich mafic magmaat Mount Pinatubo, Philippines[J]. Contributions to Mineralogy and Petrology,2004,146(6):750-761.
    [99] Dick H J B, Bullen T. Chromian spinel as a petrogenetic indicator in abyssaland alpine-type peridotites and spatially associated lavas[J]. Contributionsto Mineralogy and Petrology,1984,86(1):54-76.
    [100] Doin M. P., Fleitout L, Christensen U. Mantle convection and stability ofdepleted and undepleted continental lithosphere[J]. Journal of GeophysicalResearch: Solid Earth (1978–2012),1997,102(B2):2771-2787.
    [101] Jan Z Y, Zhou X R, Du X R. Characteristics of the Trace Elements in PotassicAlkaline Basalts and mantle Source Inclusions and their Genesis informationsfrom Wudalianchi and other Regions[J]. Geoscience,1987,1:007.
    [102] Engebretson D C. Relative motions between oceanic and continental plates inthe Pacific basin[M]. Geological society of America,1985.
    [103] Fan W M, Menzies M A. Destruction of aged lower lithosphere and accretionof asthenosphere mantle beneath eastern China[J]. Geotectonica etMetallogenia,1992,16(3-4):171-180.
    [104] Fan W M, Zhang H F, Baker J, et al. On and off the North China Craton: whereis the Archaean keel?[J]. Journal of Petrology,2000,41(7):933-950.
    [105] Fleet M E, Crocket J H, Stone W E. Partitioning of platinum-group elements(Os, Ir, Ru, Pt, Pd) and gold between sulfide liquid and basalt melt[J].Geochimica et Cosmochimica Acta,1996,60(13):2397-2412.
    [106] Frost D J, and McCammon C A. The redox state of Earth's mantle[J]. Annu. Rev.Earth Planet. Sci.,2008,36:389-420.
    [107] Fukao Y, Obayashi M, Inoue H, et al. Subducting slabs stagnant in the mantletransition zone[J]. Journal of Geophysical Research: Solid Earth(1978–2012),1992,97(B4):4809-4822.
    [108] Gao S, Rudnick R L, Carlson R W, et al. Re–Os evidence for replacement ofancient mantle lithosphere beneath the North China craton[J]. Earth andPlanetary Science Letters,2002,198(3):307-322.
    [109] Gao S, Rudnick R L, Yuan H L, et al. Recycling lower continental crust inthe North China craton[J]. Nature,2004,432(7019):892-897.
    [110] Goncharov A G, Ionov D A, Doucet L S, et al. Thermal state, oxygen fugacityand C-O-H fluid speciation in cratonic lithospheric mantle: New data onperidotite xenoliths from the Udachnaya kimberlite, Siberia[J]. Earth andPlanetary Science Letters,2012,357:99-110.
    [111] Griffin W L, Andi Z, O'reilly S Y, et al. Phanerozoic evolution of thelithosphere beneath the Sino-Korean Craton[J]. Geodynamics Series,1998,27:107-126.
    [112] Griffin W L, O’Reilly S Y, Ryan C G. The composition and origin ofsub-continental lithospheric mantle[J]. Mantle Petrology: FieldObservations and High-Pressure Experimentation: A Tribute to Francis R.(Joe)Boyd: In: Ber1tka, CM (Ed.), The Geochemical Society Special Publication,Houston,1999:13-45.
    [113] Griffin W L, O'Reilly S Y, Ryan C G. Composition and thermal structure ofthe lithosphere beneath South Africa, Siberia and China: proton microprobestudies[C]. International Symposium on Cenozoic Volcanic rocks anddeep-seated xenoliths of China and its Environs, Beijing.1992:65-66.
    [114] Gueddari K, Piboule M, Amossé J. Differentiation of platinum-group elements(PGE) and of gold during partial melting of peridotites in the lherzoliticmassifs of the Betico-Rifean range (Ronda and Beni Bousera)[J]. ChemicalGeology,1996,134(1):181-197.
    [115] Hattori K H, and Guillot S. Geochemical character of serpentinites associatedwith high‐to ultrahigh‐pressure metamorphic rocks in the Alps, Cuba, andthe Himalayas: Recycling of elements in subduction zones[J]. Geochemistry,Geophysics, Geosystems,2007,8(9).
    [116] Hellebrand E, Snow J E, Dick H J B, et al. Coupled major and trace elementsas indicators of the extent of melting in mid-ocean-ridge peridotites[J].Nature,2001,410(6829):677-681.
    [117] Holloway J R. Graphite-melt equilibria during mantle melting: constraintson CO2in MORB magmas and the carbon content of the mantle[J]. Chemical Geology,1998,147(1-2):89-97.
    [118] Huang X and Xu Y. Thermal state and structure of the lithosphere beneatheastern China: a synthesis on basalt-borne xenoliths[J]. Journal of EarthScience,2010,21:711-730.
    [119] Ionov D A, Ashchepkov I, Jagoutz E. The provenance of fertile off-cratonlithospheric mantle: Sr–Nd isotope and chemical composition of garnet andspinel peridotite xenoliths from Vitim, Siberia[J]. Chemical Geology,2005,217(1):41-75.
    [120] Ionov D A, Griffin W L, O'Reilly S Y. Volatile-bearing minerals and lithophiletrace elements in the upper mantle[J]. Chemical Geology,1997,141(3):153-184.
    [121] Ionov D A, Wood B J. The oxidation state of subcontinental mantle: oxygenthermobarometry of mantle xenoliths from central Asia[J]. Contributions toMineralogy and Petrology,1992,111(2):179-193.
    [122] Ionov D. Chemical variations in peridotite xenoliths from Vitim, Siberia:inferences for REE and Hf behaviour in the garnet-facies upper mantle[J].Journal of Petrology,2004,45(2):343-367.
    [123] Ishii T. Petrological studies of peridotites from diapiric serpentiniteseamounts in the Izu-Ogasawara-Mariana forearc, LEG125[C]//Proc. ODP, Sci.Results. Ocean Drilling Program, College Station, TX,1992,125:445-485.
    [124] Wang J, Liu J L, Keiko H, et al. Behavior of siderophile and chalcophileelements in the subcontinental lithospheric mantle beneath the Changbaishanvolcano, NE China[J]. Acta Geologica Sinica‐English Edition,2012,86(2):407-422.
    [125] Li J P and Wang J. Mantle redox state evolution in eastern China and itsimplications[J]. Acta Geologica Sinica‐English Edition,2002,76(2):238-248.
    [126] Johnson K, Dick H J B, Shimizu N. Melting in the oceanic upper mantle: anion microprobe study of diopsides in abyssal peridotites[J]. Journal ofGeophysical Research: Solid Earth (1978–2012),1990,95(B3):2661-2678.
    [127] Kadik A. Evolution of Earth's redox state during upwelling of carbon-bearingmantle[J]. Physics of the earth and planetary interiors,1997,100(1):157-166.
    [128] Kelemen P B, Hart S R, Bernstein S. Silica enrichment in the continental uppermantle via melt/rock reaction[J]. Earth and Planetary Science Letters,1998,164(1):387-406.
    [129] Klemme S. The influence of Cr on the garnet–spinel transition in the Earth'smantle: experiments in the system MgO–Cr2O3–SiO2and thermodynamicmodelling[J]. Lithos,2004,77(1):639-646.
    [130] Lécuyer C and Ricard Y. Long-term fluxes and budget of ferric iron:implication for the redox states of the Earth's mantle and atmosphere[J].Earth and Planetary Science Letters,1999,165(2):197-211.
    [131] Lee C T and Rudnick R L. Compositionally stratified cratonic lithosphere:pertology and geochemistry of peridotite xenoliths from the Labaitvolcano,Tanzaia. In: Gurney J J,Gurney J L,Pascoe M D, et al(Eds.),The P HNixon Volume. Proceedings VIIth International Kimberlite Conferece. Red RoofDesign,Cape Town,1999,503-521
    [132] Li S Z, Kusky T M, Zhao G, et al. Mesozoic tectonics in the Eastern Blockof the North China Craton: implications for subduction of the Pacific platebeneath the Eurasian plate[J]. Geological Society, London, SpecialPublications,2007,280(1):171-188.
    [133] Liu D Y and Nutman A P, Compston W, et al. Remnants of≥3800Ma crust inthe Chinese part of the Sino-Korean craton[J]. Geology,1992,20(4):339-342.
    [134] Liu J, Han J, Fyfe W S. Cenozoic episodic volcanism and continental riftingin northeast China and possible link to Japan Sea development as revealedfrom K–Ar geochronology[J]. Tectonophysics,2001,339(3):385-401.
    [135] Liu M, Cui X, Liu F. Cenozoic rifting and volcanism in eastern China: a mantledynamic link to the Indo–Asian collision?[J]. Tectonophysics,2004,393(1):29-42.
    [136] Luguet A, Shirey S B, Lorand J P, et al. Residual platinum-group mineralsfrom highly depleted harzburgites of the Lherz massif (France) and their rolein HSE fractionation of the mantle[J]. Geochimica et Cosmochimica Acta,2007,71(12):3082-3097.
    [137] McCammon C A, Griffin WL, Shee SH and O'Neill H S C. Oxidation duringmetasomatism in ultramafic xenoliths from the Wesselton kimberlite, SouthAfrica: implications for the survival of diamond[J]. Contrib Mineral Petrol,2001,141:287-296.
    [138] McCammon C and Kopylova M G. A redox profile of the Slave mantle and oxygenfugacity control in the cratonic mantle[J]. Contributions to Mineralogy andPetrology,2004,148(1):55-68.
    [139] McDonough W F, and Sun S S. The composition of the Earth[J]. Chemical geology,1995,120(3):223-253.
    [140] McGuire A V, Dyar M D, Nielson J E. Metasomatic oxidation of upper mantleperiodotite[J]. Contributions to Mineralogy and Petrology,1991,109(2):252-264.
    [141] Meisel T and Moser J. Reference materials for geochemical PGE analysis: newanalytical data for Ru, Rh, Pd, Os, Ir, Pt and Re by isotope dilution ICP-MSin11geological reference materials[J]. Chemical Geology,2004,208(1):319-338.
    [142] Menzies M A and Xu Y. Geodynamics of the North China craton[J]. GeodynamicsSeries,1998,27:155-165.
    [143] Menzies M A, Fan W, Zhang M. Palaeozoic and Cenozoic lithoprobes and the lossof>120km of Archaean lithosphere, Sino-Korean craton, China[J]. GeologicalSociety, London, Special Publications,1993,76(1):71-81.
    [144] Menzies M A. Continental Mantle [M].London:Oxford Science Pubilications,1990:1-184.
    [145] Mungall J E. Roasting the mantle: slab melting and the genesis of major Auand Au-rich Cu deposits[J]. Geology,2002,30(10):915-918.
    [146] Nell J and Wood B J. High-temperature electrical measurements andthermodynamic properties of Fe3O4-FeCr2O4-MgCr2O4-FeAl2O4spinels. Am. Miner.,1991,76:405-426.
    [147] Niu Y L. Generation and evolution of basaltic magmas: some basic conceptsand a new view on the origin of Mesozoic–Cenozoic basaltic volcanism ineastern China[J]. Geological Journal of China Universities,2005,11(1):9-46.
    [148] Norman M D. Melting and metasomatism in the continental lithosphere: laserablation ICPMS analysis of minerals in spinel lherzolites from easternAustralia[J]. Mineralogy and Petrology,1998,130(3-4):240-255.
    [149] O'Neill H S C and Wall V J. The Olivine—Orthopyroxene—Spinel oxygengeobarometer, the nickel precipitation curve, and the oxygen fugacity of theEarth's Upper Mantle[J]. Journal of Petrology,1987,28(6):1169-1191.
    [150] Onuma N, Higuchi H, Wakita H, et al. Trace element partition between twopyroxenes and the host lava[J]. Earth and Planetary Science Letters,1968,5:47-51.
    [151] O'Reilly S Y and Griffin W L.4-D lithosphere mapping: methodology andexamples[J]. Tectonophysics,1996,262(1):3-18.
    [152] O'Reilly S Y, Griffin W L, Poudjom Djomani Y H, et al. Are lithospheresforever[J]. Tracking changes in subcontinental lithospheric mantle throughtime: GSA Today,2001,11(4):4-10.
    [153] Parkinson I J and Arculus R J. The redox state of subduction zones: insightsfrom arc-peridotites[J]. Chemical Geology,1999,160(4):409-423.
    [154] Parkinson I J and Pearce J A. Peridotites from the Izu–Bonin–Mariana forearc(ODP Leg125): evidence for mantle melting and melt–mantle interaction ina supra-subduction zone setting[J]. Journal of Petrology,1998,39(9):1577-1618.
    [155] Pearson D G and Nowell G M. Dating Mantle Differentiation: a comparison ofthe Lu-Hf, Re-Os&Sm-Nd isotope systems in the Beni Bousera peridotite massifand constraints on the Nd-Hf isotope composition of the lithosphericmantle[C]//EGS-AGU-EUG Joint Assembly.2003,1:5430.
    [156] Pei S, Chen Y J, Zhao D, et al. Tomgraphic structure of East Asia: Data andresults[C]//AGU Fall Meeting Abstracts.2004,1:03.
    [157] Righter K, Campbell A J, Humayun M, et al. Partitioning of Ru, Rh, Pd, Re,Ir, and Au between Cr-bearing spinel, olivine, pyroxene and silicate melts[J].Geochimica et Cosmochimica Acta,2004,68(4):867-880.
    [158] Rivalenti G, Vannucci R, Rampone E, et al. Peridotite clinopyroxene chemistryreflects mantle processes rather than continental versus oceanic settings[J].Earth and Planetary Science Letters,1996,139(3):423-437.
    [159] Robinson P T, Zhou M, Hu X F, et al. Geochemical constraints on the originof the Hegenshan Ophiolite, Inner Mongolia, China[J]. Journal of Asian EarthSciences,1999,17(4):423-442.
    [160] Rollinson H R. Using geochemical data: evaluation, presentation,interpretation[M]. Routledge,1993.
    [161] Seng r A M C, Natalin B A. Paleotectonics of Asia: fragments of a synthesis.In Yin A and Harrison M (eds.).The Tectonic Evolution of Asia. London:Cambridge University Press,1996,486-641.
    [162] Sleep N H. Evolution of the continental lithosphere[J]. Annu. Rev. EarthPlanet. Sci.,2005,33:369-393.
    [163] Stosch H G. Rare Earth Element Partitioning between Minerals from AnhydrousSpinet Peridotite Xenoliths[J].Geochim.Cosmochim.Acta,1982,46:793-811.
    [164] Sun S S and McDonough W F. Chemical and isotopic systematics of oceanic basalts:implications for mantle composition and processes[J]. Geological Society,London, Special Publications,1989,42(1):313-345.
    [165] Sun W, Ding X, Hu Y H, et al. The golden transformation of the Cretaceousplate subduction in the west Pacific[J]. Earth and Planetary Science Letters,2007,262(3):533-542.
    [166] Tang J, Xu W L, Wang F, et al. Geochronology and geochemistry of Neoproterozoicmagmatism in the Erguna Massif, NE China: petrogenesis and implications forthe breakup of the Rodinia supercontinent[J]. Precambrian Research,2013,224:597-611.
    [167] Tang Y J, Zhang H F, Ying J F, et al. Refertilization of ancient lithosphericmantle beneath the central North China Craton: evidence from petrology andgeochemistry of peridotite xenoliths[J]. Lithos,2008,101(3):435-452.
    [168] Taylor W R and Green D H. Measurement of reduced peridotite-COH solidus andimplications for redox melting of the mantle[J]. Nature,1988,332(6162):349-352.
    [169] Taylor W R. A reappraisal of the nature of fluids included by diamond—a windowto deep-seated mantle fluids and redox conditions[J]. Stable isotopes andfluid processes in mineralization. University of Western Australia,1990:333-349.
    [170] Thibault Y and Edgar A. Patent mantle-metasomatism:inferences based onexperimental studies[J].Journal of Earth System Science,1990,99:21-37.
    [171] Van Orman J A, Crispin K L. Diffusion in oxides[J]. Reviews in Mineralogyand Geochemistry,2010,72(1):757-825.
    [172] Van Orman J A, Grove T L, Shimizu N, et al. Rare earth element diffusion ina natural pyrope single crystal at2.8GPa[J]. Contributions to Mineralogyand Petrology,2002,142(4):416-424.
    [173] Walter M, Katsura T, Kubo A, et al. Spinel–garnet lherzolite transition inthe system CaO-MgO-Al2O3-SiO2revisited: an in situ X-ray study[J]. Geochimicaet cosmochimica acta,2002,66(12):2109-2121.
    [174] Wang F, Zhou X H, Zhang L C, et al. Late Mesozoic volcanism in the Great Xing'anRange (NE China): Timing and implications for the dynamic setting of NEAsia[J]. Earth and Planetary Science Letters,2006,251(1):179-198.
    [175] Wang J, Hattori K H, Li J, et al. Oxidation state of Paleozoic subcontinentallithospheric mantle below the Pali Aike volcanic field in southernmostPatagonia[J]. Lithos,2008,105(1):98-110.
    [176] Wang J, Hattori K, Xie Z P. Oxidation state of lithospheric mantle along thenortheastern margin of the North China Craton: implications for geodynamicprocesses[J]. International Geology Review,2013,55(11):1418-1444.
    [177] Wang J, Liu J L, Keiko H, et al. Behavior of siderophile and chalcophileelements in the subcontinental lithospheric mantle beneath the Changbaishanvolcano, NE China[J]. Acta Geologica Sinica‐English Edition,2012,86(2):407-422.
    [178] Webb S A C, Wood B J. Spinel-pyroxene-garnet relationships and theirdependence on Cr/Al ratio[J]. Contributions to Mineralogy and Petrology,1986,92(4):471-480.
    [179] Wells P R A. Pyroxene thermometry in simple and complex systems[J].Contributions to mineralogy and Petrology,1977,62(2):129-139.
    [180] Wilde S A, Zhou X, Nemchin A A, et al. Mesozoic crust-mantle interactionbeneath the North China craton: A consequence of the dispersal of Gondwanalandand accretion of Asia[J]. Geology,2003,31(9):817-820.
    [181] Witt-Eickschen G, Seck H A. Solubility of Ca and Al in orthopyroxene fromspinel peridotite: an improved version of an empirical geothermometer[J].Contributions to Mineralogy and Petrology,1991,106(4):431-439.
    [182] Wood B J and Banno S. Garnet-orthopyroxene and orthopyroxene-clinopyroxenerelationships in simple and complex systems[J]. Contributions to mineralogyand petrology,1973,42(2):109-124.
    [183] Wood B J and Virgo D. Upper mantle oxidation state: Ferric iron contents ofIherzolite spinels by57Fe M ssbauer spectroscopy and resultant oxygenfugacities[J]. Geochimica et Cosmochimica Acta,1989,53:1277-1291.
    [184] Wood B J, Bryndzia L T, Johnson K E. Mantle oxidation state and itsrelationship to tectonic environment and fluid speciation[J]. Science,1990,248(4953):337-345.
    [185] Woodland A B and Koch M. Variation in oxygen fugacity with depth in the uppermantle beneath the Kaapvaal craton, Southern Africa[J]. Earth and PlanetaryScience Letters,2003,214(1):295-310.
    [186] Woodland A B, Kornprobst J, McPherson E, et al. Metasomatic interactions inthe lithospheric mantle: petrologic evidence from the Lherz massif, FrenchPyrenees[J]. Chemical Geology,1996,134(1):83-112.
    [187] Woodland A B, Kornprobst J, Wood B J. Oxygen thermobarometry of orogeniclherzolite massifs[J]. Journal of Petrology,1992,33(1):203-230.
    [188] Wu F Y, Lin J Q, Wilde S A, et al. Nature and significance of the EarlyCretaceous giant igneous event in eastern China[J]. Earth and PlanetaryScience Letters,2005,233(1):103-119.
    [189] Wu F Y, Sun D Y, Ge W C, et al. Geochronology of the Phanerozoic granitoidsin northeastern China[J]. Journal of Asian Earth Sciences,2011,41(1):1-30.
    [190] Wu F Y, Walker R J, Yang Y H, et al. The chemical-temporal evolution oflithospheric mantle underlying the North China Craton[J]. Geochimica etCosmochimica Acta,2006,70(19):5013-5034.
    [191] Wu F Y, Zhang Y B, Yang J H, et al. Zircon U–Pb and Hf isotopic constraintson the Early Archean crustal evolution in Anshan of the North China Craton[J].Precambrian Research,2008,167(3):339-362.
    [192] Wu F, Sun D, Li H, et al. A-type granites in northeastern China: age andgeochemical constraints on their petrogenesis[J]. Chemical Geology,2002,187(1):143-173.
    [193] Wu F, Walker R J, Ren X, et al. Osmium isotopic constraints on the age oflithospheric mantle beneath northeastern China[J]. Chemical Geology,2003,196(1):107-129.
    [194] Wulff-Pedersen E, Neumann E R, Vannucci R, et al. Silicic melts produced byreaction between peridotite and infiltrating basaltic melts: ion probe dataon glasses and minerals in veined xenoliths from La Palma, Canary Islands[J].Contributions to Mineralogy and Petrology,1999,137(1-2):59-82.
    [195] Xiao W, Windley B F, Hao J, et al. Accretion leading to collision and thePermian Solonker suture, Inner Mongolia, China: termination of the centralAsian orogenic belt[J]. Tectonics,2003,22(6).
    [196] Xu W L, Pei F P, Wang F, et al. Spatial–temporal relationships of Mesozoicvolcanic rocks in NE China: Constraints on tectonic overprinting andtransformations between multiple tectonic regimes[J]. Journal of Asian EarthSciences,2013,74:167-193.
    [197] Xu W, Gao S, Wang Q, et al. Mesozoic crustal thickening of the eastern NorthChina craton: Evidence from eclogite xenoliths and petrologicimplications[J]. Geology,2006,34(9):721-724.
    [198] Xu W, Hergt J M, Gao S, et al. Interaction of adakitic melt-peridotite:Implications for the high-Mg#signature of Mesozoic adakitic rocks in theeastern North China Craton[J]. Earth and Planetary Science Letters,2008,265(1):123-137.
    [199] Xu Y G, Blusztajn J, Ma J L, et al. Late Archean to Early Proterozoiclithospheric mantle beneath the western North China craton: Sr–Nd–Osisotopes of peridotite xenoliths from Yangyuan and Fansi[J]. Lithos,2008,102(1):25-42.
    [200] Xu Y G, Huang X L, Ma J L, et al. Crust-mantle interaction during thetectono-thermal reactivation of the North China Craton: constraints fromSHRIMP zircon U–Pb chronology and geochemistry of Mesozoic plutons fromwestern Shandong[J]. Contributions to Mineralogy and Petrology,2004,147(6):750-767.
    [201] Xu Y G. Thermo-tectonic destruction of the Archaean lithospheric keel beneaththe Sino-Korean Craton in China: Evidence, timing and mechanism[J]. Physicsand Chemistry of the Earth, Part A: Solid Earth and Geodesy,2001,26(9):747-757.
    [202] Yaxley,G.M., Green,D.H., and Kamenetsky,V.carbonatite Metasomatism in theSoutheastern Australian Lithosphere[J].Journal of Petrology,1998,39:1917-1930.
    [203] Yin A and Nie S. A Phanerozoic palinspastic reconstruction of China and itsneighboring regions[J]. World and Regional Geology,1996:442-485.
    [204] Yu S Y, Xu Y G, Huang X L, et al. Hf–Nd isotopic decoupling in continentalmantle lithosphere beneath Northeast China: effects of pervasive mantlemetasomatism[J]. Journal of Asian Earth Sciences,2009,35(6):554-570.
    [205] Zangana,N.,Downes,H., Thirlwall,M., et al. Geochemical variation inperidotite xenoliths and their constituent clinopyroxenes from Ray pic(FrenchMassif Central):implications for the composition of the shallow lithospheremantle [J].Chemical Geology,1999,153:11-35.
    [206] Zhang H F, Goldstein S L, Zhou X H, et al. Evolution of subcontinentallithospheric mantle beneath eastern China: Re–Os isotopic evidence frommantle xenoliths in Paleozoic kimberlites and Mesozoic basalts[J].Contributions to Mineralogy and Petrology,2008,155(3):271-293.
    [207] Zhang H F, Sun M, Zhou X H, et al. Secular evolution of the lithosphere beneaththe eastern North China Craton: evidence from Mesozoic basalts and high-Mgandesites[J]. Geochimica et Cosmochimica Acta,2003,67(22):4373-4387.
    [208] Zhang H F. Transformation of lithospheric mantle through peridotite-meltreaction: a case of Sino-Korean craton[J]. Earth and Planetary ScienceLetters,2005,237(3):768-780.
    [209] Zhang H, Ying J, Xu P, et al. Mantle olivine xenocrysts entrained in Mesozoicbasalts from the North China craton: Implication for replacement process oflithospheric mantle[J]. Chinese Science Bulletin,2004,49(9):961-966.
    [210] Zhang J H, Gao S, Ge W C, et al. Geochronology of the Mesozoic volcanic rocksin the Great Xing'an Range, northeastern China: Implications forsubduction-induced delamination[J]. Chemical Geology,2010,276(3):144-165.
    [211] Zhang M and Suddaby P, Thompson R N, et al. Potassic volcanic rocks in NEChina: geochemical constraints on mantle source and magma genesis[J]. Journalof Petrology,1995,36(5):1275-1303.
    [212] Zhang M, Zhou X H, Zhang J B. Nature of the lithospheric mantle beneath NEChina: evidence from potassic volcanic rocks and mantle xenoliths[J].Geodynamics Series,1998,27:197-219.
    [213] Zhao Z F, Zheng Y F, Wei C S, et al. Zircon isotope evidence for recyclingof subducted continental crust in post‐collisional granitoids from the Dabieterrane in China[J]. Geophysical Research Letters,2004,31(22).
    [214] Zhao G C, Wilde S A, Cawood P A, Sun M. Archean blocks and their boundariesin the North China Craton:lithological, geochemical, stuctural and P-T pathconstraints and tectonic evolution[J]. Precambrian Research,2001,107:45-73.
    [215] Zheng J P, Griffin W L, O’Reilly S Y, et al. Mechanism and timing oflithospheric modification and replacement beneath the eastern North ChinaCraton: peridotitic xenoliths from the100Ma Fuxin basalts and a regionalsynthesis[J]. Geochimica et Cosmochimica Acta,2007,71(21):5203-5225.
    [216] Zheng J P, Zheng J, Griffin W L, O'Reilly S Y, et al.3.6Ga lower crust incentral China: new evidence on the assembly of the North China Craton[J].Geology,2004,32(3):229-232.
    [217] Zheng J, Griffin W L, O'Reilly S Y, et al. Late Mesozoic-Eocene mantlereplacement beneath the eastern North China Craton: Evidence from thePaleozoic and Cenozoic peridotite xenoliths[J]. International Geology Review,2005,47(5):457-472.
    [218] Zheng J, Griffin W L, O'REILLY S Y, et al. Mineral chemistry of peridotitesfrom Paleozoic, Mesozoic and Cenozoic lithosphere: constraints on mantleevolution beneath eastern China[J]. Journal of Petrology,2006,47(11):2233-2256.
    [219] Zheng J, O'reilly S Y, Griffin W L, et al. Nature and evolution of Cenozoiclithospheric mantle beneath Shandong peninsula, Sino-Korean craton, easternChina[J]. International Geology Review,1998,40(6):471-499.
    [220] Zheng J, O'Reilly S Y, Griffin W L, et al. Relict refractory mantle beneaththe eastern North China block: significance for lithosphere evolution[J].Lithos,2001,57(1):43-66.
    [221] Zheng J, Sun M, Zhou M F, et al. Trace elemental and PGE geochemicalconstraints of Mesozoic and Cenozoic peridotitic xenoliths on lithosphericevolution of the North China Craton[J]. Geochimica et Cosmochimica Acta,2005,69(13):3401-3418.
    [222] Zheng J P, Sun M, Griffin W L, et al. Age and geochemistry of contrastingperidotite types in the Dabie UHP belt, eastern China: Petrogenetic andgeodynamic implications[J]. Chemical Geology,2008,247:282-304.
    [223] Zorin Y A. Geodynamics of the western part of the Mongolia–Okhotsk collisionalbelt, Trans-Baikal region (Russia) and Mongolia[J]. Tectonophysics,1999,306(1):33-56.
    [224] Zou H, Reid M R, Liu Y, et al. Constraints on the origin of historic potassicbasalts from northeast China by U–Th disequilibrium data[J]. ChemicalGeology,2003,200(1):189-201.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700