用户名: 密码: 验证码:
稻田养鸭抑制水稻纹枯病机制及拮抗细菌A168筛选鉴定研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
稻田养鸭不仅能除草、防虫、免耕、减少甲烷排放,提高水稻产量和品质,而且能减轻水稻纹枯病的发生和危害。本研究从两方面就稻田养鸭抑制水稻纹枯病进行探讨。一方面从鸭在稻田中的活动来研究其对水稻及水稻纹枯病菌的影响;另一方面从鸭嘴、鸭毛和鸭粪分泌物中提取粗提物和筛选微生物来研究其对水稻及水稻纹枯病菌的影响。本研究旨在通过系统研究稻田养鸭抑制水稻纹枯病的主要因素及作用机理,探索生物防治水稻纹枯病新途径。主要研究结果如下:
     1影响因素及作用机理研究
     1.1稻田养鸭对水稻纹枯病菌菌核的影响
     在初始菌核相同的情况下,调查放鸭区和未放鸭区纹枯病菌菌核数量。在水稻生长的分蘖末期和齐穗期,放鸭区菌核量为35.7万粒/hm2、41.9万粒/hm2,比未放鸭区菌核72.9万粒/hm2、96.4万粒/hm2,低48.97%、43.46%,表明鸭通过啄食菌核,从而减少纹枯病菌源,减轻病害发生。
     1.2封泥对水稻纹枯病的影响
     将泥砌封于水稻基部叶鞘研究其对水稻纹枯病的影响。先砌封泥于水稻叶鞘再人工接种纹枯病菌,其发病率为3.08~10.61%、病情指数为5.42~11.82,明显低于井冈霉素处理和对照的发病率3.88~55.36%和3.97~86.22%、病情指数5.66~18.40和19.94~60.72,其控病效果为72.80~81.21%,优于井冈霉素处理和对照。对先砌封泥再接病菌的处理,不同时期测定水稻的过氧化物酶活性均比对照高,但低于井冈霉素处理;同时砌封泥处理使水稻的可溶性糖含量降低。
     1.3鸭毛、鸭嘴和鸭粪粗提物对水稻几丁质酶活性的影响
     一般认为,水稻抗病性与水稻几丁质酶活性呈正相关的。本研究采用乙酸乙酯和乙醇提取鸭毛、鸭嘴及鸭粪分泌物,并将粗提物施用于水稻,测定水稻几丁质酶活性。其中,鸭粪乙酸乙酯粗提物处理水稻后第8d水稻几丁质酶活性达最大值,为124.7 U·g(-1)·FW(-1)·min(-1),显著高于对照(77.11 U·g(-1)·FW(-1)·min(-1)),且差异显著(P<0.05,P<0.01);鸭粪乙醇粗提物处理水稻后第8d几丁质酶活性达最大值62.9 U·g(-1)·FW(-1)·min(-1),与对照62.9U·g(-1)·FW(-1)·min(-1)比较无显著差异(P>0.05,P>0.01);表明鸭粪乙酸乙酯粗提物能提高水稻几丁质酶活性,鸭粪乙醇提取物不能提高水稻几丁质酶活性。而鸭毛和鸭嘴乙酸乙酯、乙醇粗提物处理水稻后,水稻几丁质酶活性与对照比较也无显著变化。
     1.4鸭毛、鸭嘴和鸭粪中微生物对水稻几丁质酶活性的影响
     采用稀释分离法分别从鸭毛、鸭嘴和鸭粪中共分离出细菌323株,真菌126株。经初步归类,从鸭毛中分离获得1株细菌B106和1株真菌F123,鸭嘴中分离获得1株细菌B75和1株真菌F66,鸭粪中分离获得1株细菌B117和1株真菌F16,并用各菌株悬浮液处理水稻。细菌B117悬浮液处理水稻后,第3d、7d水稻几丁质酶活性达最大值,分别为42.24U·g(-1)·FW(-1)·min(-1)、42.23U·g(-1)·FW(-1)·min(-1),明显高于对照41.74U·g(-1)·FW(-1)·min(-1)、41.69 U·g(-1)·FW(-1)·min(-1),且差异显著(P<0.05,P<0.02),说明鸭粪中存在能提高水稻几丁质酶活性的细菌;其它菌株F16、B106、F123、B75、F66等菌悬液处理水稻后,水稻几丁质酶活性均无显著变化。
     1.5鸭毛、鸭嘴和鸭粪粗提物对水稻纹枯病菌的影响
     采用平板拮抗法测定鸭毛、鸭嘴和鸭粪乙醇、乙酸乙酯粗提物对水稻纹枯病菌的抑制作用。鸭毛、鸭嘴和鸭粪的乙醇、乙酸乙酯粗提物抑菌效果分别为13%、8%、6%,7%、88.64%、84.11%;鸭粪乙醇粗提物在24h内对水稻纹枯病病菌ECso值为26.11mg/ml;鸭粪乙醇粗提物经萃取分离得到石油醚和乙酸乙酯两种组分,其中石油醚组分抑制效果较弱,乙酸乙酯组分抑制能力较强,对水稻纹枯病抑制率为89.70%,EC(50)值为15.52mg/ml;对乙酸乙酯组分进行硅胶柱层析分离得到5种流份,其中第2流份(L2)有显著抑菌活性,其在24h、48h内对水稻纹枯病抑制率分别为89.58%、80.36%,通过GC-MS分析鉴定,为酚酸类和硫醇类物质。本研究表明:稻田养鸭生态系统中鸭分泌物中存在抑制水稻纹枯病菌的物质。
     1.6鸭毛、鸭嘴和鸭粪中微生物对水稻纹枯病菌的影响
     采用平板对峙法将菌株B106、B75、B117,F123、F66,F16进行拮抗试验。菌株B106、B75,F123、F66,F16均无拮抗作用,而来自鸭粪中的菌株B117对水稻纹枯病菌具有较强的拮抗作用,进一步分离纯化得菌株A168。稻田养鸭生态系统中鸭分泌物中存在抑制水稻纹枯病菌的拮抗菌。
     2鸭粪中拮抗细菌A168筛选、鉴定、生物学特性及拮抗作用研究
     2.1鸭粪中拮抗细菌A168筛选、鉴定及生物学特性
     采用平板拮抗法,将细菌B117纯化100次,获得拮抗菌株A168,对其进行了鉴定和生物学特性研究。A168菌体杆状,革兰氏染色阳性、芽孢中生、周生鞭毛。A168菌株能利用葡萄糖、阿拉伯糖、木糖和甘露醇产酸,葡萄糖产气试验阴性,淀粉水解阴性,硝酸还原试验阳性,厌氧生长阴性,酪素分解试验阳性,酪氨酸分解试验阴性,接触酶试验阳性,VP反应阳性,苯丙氨酸脱氨酶试验阴性。16S rDNA分析与其亲缘关系较近菌株Bacillus cereus (AJ577288.1)的同源性达99%,初步鉴定A168菌株为蜡状芽孢杆菌(Bacillus cereus),其16SrDNA序列已在GenBank中注册,登录号为GQ118339。A168菌株最优培养时间60h,最适温度28℃、最适pH 7.0。A168菌株能利用的碳源有蔗糖、葡萄糖、甘露醇、α-乳糖、D-木糖、麦芽糖、D-半乳糖、D-果糖;能利用的氮源有胰蛋白胨、蛋白胨、牛肉浸膏和酵母浸膏、干酪素,氯化铵等,但不能利用硝酸钾。
     2.2 A168菌株活性物质的提取条件及抑菌机理研究
     采用乙酸乙酯以物料比4:1,在28℃条件下连续超声萃取36h提取A168菌株活性物质效果最好。A168菌株活性物质对水稻纹枯病菌(R.solani)的ECso和EC90值分别为2.15mg/mL和237.86mg/mL;经处理的水稻纹枯病菌菌丝扭曲;当浓度为35mg/mL时,可溶性蛋白质的合成抑制率最大为24.45%,菌核萌发率最低为80.36%;水稻纹枯病菌致病力随活性物质浓度的提高而降低,当浓度为45mg/mL时,纹枯病菌被抑制率为80.29%;A168菌株活性物质对病原菌菌丝体电导率无影响。A168菌株活性物质可通过抑制菌丝生长、蛋白质合成、菌核萌发、降低病菌致病力等途径达到控制纹枯病发生。
     2.3 A168菌株最优培养基及发酵条件研究
     通过正交试验确定菌株A168的最优发酵培养基配方及发酵条件:豆饼粉2%,葡萄糖7%,CaCO3 0.4%,NaCL 0.35%,蛋白胨6%。摇瓶最优发酵条件:培养时间48h,温度28℃,菌龄24h,接种量6%,转速为200r/min,装液量为210ml(摇瓶500mL),pH值7.0。10L发酵罐最优发酵条件:通气量为180L/h,转速为200r/min,温度为28℃,初始pH为6.5,最优发酵时间为72h。
     2.4 A168菌株在水稻上定殖规律及对水稻纹枯病田间防治效果研究
     采用回收标记菌株法探索了A168菌株定殖规律及田间防效。以摩擦方式定殖A168菌量最多;在分蘖期菌量最大,水稻齐穗期次之,成熟期最少;水稻基部叶鞘定殖的菌量高于根部和茎部;在接种后32d仍能够回收到活菌;田间防效达78.47%,明显高于井冈霉素。表明A168菌株在水稻上定殖能力强防病效果较好。
     2.5 A168菌株促生、抗病及增产效果研究
     经A168菌悬液处理水稻幼苗比对照根长、株高、叶长和鲜重分别增长12.35~30.95%、26.52~30.77%、16.37~20.02%和10.26~29.52%;且对"Lemont"“陆两优996”品种的促生效果比“创丰1号”好;经A168菌悬液处理的水稻"Lemont"内吲哚乙酸(IAA)、玉米素核苷(ZR4)、赤霉素(GA3)的含量比对照高,脱落酸(ABA)的含量比对照低;苯丙氨酸解氨酶(PAL)和过氧化物酶(POD)活性比对照高,但过氧化氢酶(CAT)和抗坏血酸过氧化物酶(APX)活性与对照比较无显著变化;经A168菌悬液处理后的水稻产量比对照高,其中“陆两优996"品种增产最大为13.13%,其次为"Lemont"品种,“创丰1号”品种增产最低。本研究结果表明:A168菌株具有促进水稻生长,提高水稻抗病性及增加水稻产量的作用。
     2.6 A168菌株活性物质的分离、纯化及鉴定
     采用生化反应、硫酸铵沉淀、DEAE-SepharoseFF、FPLC Phenyl FF疏水色谱柱、HPLC C18液相色谱纯化等方法研究A168菌株活性物质成分并进行了分离、纯化及鉴定。初步鉴定A168过滤液中含有蛋白质和肽,进一步分离、纯化获得拮抗纹枯病菌L-518样品。通过SDS-PAGE电泳可知,L-518样品约有15KD,再经质谱分析其质荷比为15006.899。L-518样品不耐高温,对蛋白酶K稳定,对胰蛋白酶和胃蛋白酶不稳定,这些性质与多肽基本相似,初步鉴定为多肽类物质。
Rice-duck Farming Ecosystem (RDFE) is effective in controlling weeds and pests, reducing methane emission in paddy, and has advantages of zero-tillage, enhancing rice yield and quality. It is reported that RDFE is effectual in controlling Rhizoctonia solani(R.solani). The research was divided into two aspects to explore mechanism of RDFE restricting R.solani. On one hand, the influence of duck movements on rice and R. solani was researched, on the other hand, the effects of extractions and microbes from duck beak, excrement, feather on rice and R.solani were also studied. Both researches were aimed at exploring the factors and mechanisms of RDFE controlling R.solani and pursueing new approaches in R.solani controlling.
     1 Research on effective factors and mechanisms
     1.1 Effects of RDFE on the number of R.solani sclerotium
     The number of R.solani sclerotium was investigated in both Duck-raised and non-duck-raised paddies where initial number of R.solani sclerotium were equal. During late tillering stage and full heading stage of rice, the sclerotium number were 357,000 pieces/hm2 and 419,000pieces/hm2 in Duck-raised paddies which were 48.97%and 43.46%lower than non-duck-raised paddies with the number of 729,000 pieces/hm2 and 964,000pieces/hm2. This proved that the reduction number of pathogenic bacteria and the disease controlling were contributed by duck movements.
     1.2 Effect of closing mud on R.solani
     In order to learn the effects of closing mud on R.solani, the research was carried out by closing mud on the surface of basal leaf sheath of rice. Mud was closed manually on the surface of basal leaf sheath and then R.solani was inoculated, the morbidity was between 3.08~10.61%, disease index was 5.42-11.82 after the treatment, which was significantly lower than Validamycin treatment (3.88~55.36%, 5.66~18.40) and blank control (3.97~86.22%,19.94~60.72). And the control efficiency was 72.80~81.21%. Peroxidase activities were significant higher than blank control but lower than Validamycin treatment in the treatment of mud closing then inoculation, which also lowered soluble sugar content but there was no significant difference among the treatments.
     1.3 Effects of extractions from duck beak, excrement, feather on chitinase activity
     Previous research has showed that there was positive correlation between disease resistance of rice and its chitinase activity. Compounds that were applied on rice were extracted from duck beak, excrement and feather by ethylacetale and carbinol, and then chitinase activity of rice was tested. Chitinase activity got to the maximum of 124.7 U·g-1·FW-1·min-1 on the 8th day after treated by compound extracted from duck excrement by ethylacetale, significantly higher than blank control(77.11 U·g-1·FW-1·min-1) (p<0.05, p<0.01); Chitinase activity got to the maximum of 62.9 U·g-1·FW-1·min-1 on the 8th day after treated by compound extracted from duck excrement by carbinol, which had no significant difference with 62.9U·g-1·FW-1·min-1 of blank control (p>0.05, p>0.01); This proved that the enhancement of chitinase activity was contributed by the compound extracted from duck excrement by ethylacetale, presumably that the containment of certain somatomedin and compounds could trigger rice disease resistance. While, there were no significance found from the same operations of duck feather and beak.
     1.4 Effects of microbes separated from duck feather, beak and excrement on chitinase activity
     323 strains of bacteria and 126 strains of fungi were separated from duck feather, beak and excrement by dilution plate method, bacteria B106 and fungi F123 were from duck feather, B75 and fungi F66 were from duck beak, bacteria B117 and fungi F16 were from duck excrement, whose suspensions were treated on rice respectively. Chitinase activity got to maximum of 42.24U·g-1·FW-1·min-1、42.23 U·g-1·FW-1·min-1 at the 3rd and 7th day after B117 treatment, significantly higher than CK 41.74U·g-1·FW-1·min-1、41.69 U·g-1·FW-1·min-1(p<0.05,p<0.01). This proved that microbes from duck excrement could enhance chitinase activity, while others not.
     1.5 Effects of extraction from duck feather, beak and excrement on R.solani
     Control efficiencies of extractions from duck beak, feather and excrement by ethylacetale and ethanol were tested on R.solani via plate antagonism method, the inhibition effect of which were 13%,8%,6%,7%,88.64%,84.11%respectively; EC50 of excrement-ethanol treatment in 24h was 26.11mg/ml; Crude extraction of duck excrement was separated into petroleum-extraction and ethylacetale-extraction, and the ethylacetale-extraction got relatively higher control efficiency,89.0%, with EC50 of 15.52mg/ml, and the petroleum-extraction got relatively lower control efficiency; Ethylacetale-extraction were filtered and separated by means of silica gel column chromatography and 5 components were acquired, and the L2 fraction had significant control efficiency, with 89.58%and 80.36%in 24h and 48h, which was identified as phenolic acid and mercaptan via GC-MS. This proved that compounds existed in duck secretion could control R.solani in RDFE.
     1.6 Effect of microbes from duck feather, beak and excrement on R.solani
     Antagonisms of B106, B75, B117, F123, F66 and F16 against R.solani were tested via plate-confront method. No antagonism were found in strains of B106, B75, F123, F66 and F16, while B117 isolated from duck excrement showed high antagonism against R.solani, and A168 strain was acquired via further screening of B117. This proved that antagonistic bacteria could be isolated from duck secretion in RDFE.
     2. Research on screening, identification, biological property and antagonism of A168
     2.1 Research on screening, identification and biological property of A168
     By purifying B117 for 100 times via plate-antagonistic method, A168 strain was selected, identified and biologically characterized. A168 was rhabditiform, Gram-positive, central spore, peritrichate. It can utilize Glucose, Arabinose, Xylose and mannitol to produce acid, and is negative in Glucose gas producing test, Amylohydrolysis test, anaerobic growth test, Tyr degradation test, Phenylalanine deaminase test, while positive in Hydrogen nitrate reduction test, Casein degradation test, Catelase test and VP reaction test. It had homology of 99% with its consanguinity Bacillus according to 16S rDNA analysis.16S rDNA sequence was registered in GenBank with the accession number of GQ118339. Population of A168 had maximum in 60h cultivation, its optimum temperature was 28℃, and it lived well at pH7.0. Sucrose, Glucose, Mannitol, a-lactose, D-xylose, maltose, D-galactose and D-fructose could be utilized as carbon source, and tryptone, peptone, beef extract, yeast extract, casein and salmiac could be utilized as nitrogen source by A168.
     2.2 Research on process of active materials extraction and fungistatic mechanism of A168
     Optimum extraction process were worked out:ratio of ethylacetate and zymotic fluid was 4:1, temperature 28℃,36h constantly ultrasound extraction. EC50 and EC90 of extracted active material against R.solani were 2.15mg/mL and 237.86mg/mL; mycelium twisted after active material treatment; Inhibition ratio of soluble protein had maximum of 24.45% and germination ratio of sclerotium had minimum of 80.36% at treatment concentration of 35mg/mL; Pathogenicity of R.solani decreased along with increasing concentration of active material, and inhibition ratio reached to 80.29% at concentration of 45mg/ml; Effect of active material on electrical conductivity of mycelium was not found yet. This proved that active material of A168 could control R.solani by inhibiting mycelium growth, protein synthesis and sclerotium germination, as well as reducing pathogenicity.
     2.3 Research on fermentation condition and optimum substrate for A168
     Optimum fermentation and cultural condition were researched via orthogonal test:bean-cake powder 2%, glucose 7%, CaCO3 0.4%, NaCl 0.35%, peptone 6%. Optimum in vibrating flask:48h,28℃, cell age 24h, inoculation volume 6%, rotate speed 200r/min, liquid capacity 210ml (500ml in vibrating flask), pH7.0. Optimum in lOL-fermentor:VC 180L/h, rotate speed 200r/min,28℃, nascent pH6.5, duration 72h.
     2.4 Research on colonizing regulation and control efficiency of A168 on rice
     Colonizing regulation and field control efficiency of A168 were explored via strain recycling marked method. Friction was optimum for colonizing; A168 had largest population at tillering stage in rice after inoculation, then full headin stage and mature period had smallest; Basal sheath had denser population than root and stem; Live strain could be obtained after 32 days of inoculation; Field control efficiency reached to 78.47%, significant higher than Validamycin treatment.This proved that A168 had a higher colonizing capacity and control efficiency on rice.
     2.5 Research on growth promotion, disease resistance and yield improvement effects of A168
     After treated by A168 suspensions, root length, plant height, leaf length and fresh weight of rice seedling were respectively increased by 12.35~30.95%、26.52~30.77%、16.37~20.02%and 10.26~29.52%, compared to blank control; A168 had better growth promotion effects in rice variety "Lemont" and "Luliangyou996" than in "ChuangfengNo.1"; Compared to blank control, "Lemont" had higher content of IAA, ZR4, GA3 and lower content of ABA, and had higher activity of PAL, POD but no significantly different activity of CAT and APX after treatment of A68 suspensions; A168 suspensions increased rice yield, with increasing rate of 13.13% on "Luliangyou 996", and then "Lemont" and "Chuangfeng No.1". These proved that A168 had effect of promoting growth, improving disease resistance and yield on rice.
     2.6 Research on screening, purification and identification of active materials in A168
     Chemical reaction, Ammonium sulfate precipitation, DEAE-SepharoseFF and FPLC Phenyl FF lyophobic chromatographic column, HPLC C18-purification were used in order to study, isolate, purificate and identificate the active materials in A168. Protein and peptide were isolated from filtrate of A168, and such active material was named L-158, and then contributed to further separation and purification. Via SDS-PAGE electrophoresis analysis,15KD of L-518 was found; Via mass spectrum analysis, L-518 was identified to have charge-to-mass ration of 15006.899. Sample L-518 was not well resistant to high temperatures, and stable when exposed to protease K while instable to trypsase and pepsase. Considered these characters were similar to polypeptide, L-518 was presumably identified to be polypeptide.
引文
毕亚玲,王小天.多菌灵、井冈霉素及其复配剂对水稻纹枯病菌的增效作用[J].安徽科技学院学报,2008,(1):21-24.
    操海群,岳永德,彭镇华.毛竹粗提物的抑菌活性及其有效成分的初步分离[J].植物病理学报,2005,35(5):428-433.
    陈冲,王程亮.蜡状芽孢杆菌TS-02防治草莓白粉病研究[J].安徽农业科学,2007,35(11):3298-3300.
    陈坚,李寅.发酵过程优化原理与实践[M].北京:化学工业出版社,2002,28-39.
    陈捷,蔺瑞明,高增贵,等.玉米弯孢叶斑病菌毒素对寄主防御酶系抑菌的影响及诱导抗性效应[J].植物病理学报,2002,32(1):43-48.
    陈凯,杨合同,李纪顺,等.绿色木霉菌LTR-2孢子粗提物的抑菌活性及化学成分分析[J].微生物学通报,2007,34(3):455-458.
    陈莉.芽孢杆菌A57对棉花主要病原真菌的拮抗机理[J].西北农业学报,2008,15(1):60-63.
    陈志宜,刘永锋,陆凡,等.水稻纹枯病生防菌Bs-916产业化生产关键技术[J].植物保护学报,2004,31(3):230-234.
    陈志谊.水稻纹枯病抗性机制的研究[J].中国农业科学,1992,25(4):41-46.
    陈中义,张杰,黄大肪.植物病害生防芽孢杆菌抗菌机制与遗传改良研究[J].植物病理学报,2003,33(2):97-103.
    戴志明,杨华松,张曦,等.云南稻-鸭共生模式效益的研究与综合评价(三)[J].中国农学通报[J],2004,20(4):265-273.
    董太福.增施钾肥对水稻纹枯病的防治效果试验[J].江西农业科技,2004,(3):8-9.
    东秀珠,蔡妙英.常见细菌系统鉴定手册[M].北京:科学出版社,2001:45-87.
    段桂芳,张建萍,周勇军,等.禾长蠕孢菌及其代谢产物Ophiobol in A防治水稻纹枯病[J].中国水稻科学,2006,20(3):337-339.
    方中达.植物病理研究方法[M].中国农业出版社,1998,46-51.
    甘德欣.稻鸭共栖免耕减排甲烷机制及综合效益研究[D].湖南农业大学,2003.44-46.
    高林,陈涛.蜡状芽孢杆菌深圳菌株754-1产磷酯酶C培养条件的优化研究[J].安徽农业大学学报,2007,34(4):501-504.
    葛小鹏,潘建华.重金属生物吸附研究中蜡状芽孢杆菌菌体微观形貌的原子力显微镜观察与表征[J].环境科学学报,2004,24(5):753-760.
    葛银林,张元恩.二硝基苯胺类化合物对棉花枯萎病的诱导作用及机理[J].植物保护学报,1995,22(1):62-66
    过崇俭,陈志谊.中国水稻纹枯病的防治策略[J].江苏农业学报,1992,8(2):36-39.
    过祟俭.水稻纹枯病菌致病力分化致品种抗性鉴定研究[J].中国农业科学,1986,(5)50-56
    韩新才,阎耀林,黄志农,等.20%井冈霉素水溶性粉剂对水稻纹枯病的防治效果(英文)[J].华中农业大学学报,2004,(1):100-102.
    何明,何忠全.杂交稻纹枯病危害损失及经济阈值的研究[J].农业科学导报,1986,(3):16-20.
    何成伟,周煜华.进口鸭毛中沙门氏菌的分离与鉴定[J].广西畜牧兽医,2001,17(6):7-9.
    何青芳,陈卫良,马志超.枯草芽孢杆菌A30菌株产生的拮抗肽分离纯化与理化性质研究[J].中国水稻科学,2002,16(4):361-365.
    何迎春,高必达.立枯丝核菌的生物防治[J].中国生物防治,2000,16(1):312-341.
    何月英,曾德年,胡仕凤.蜡状芽孢杆菌的分离培养与鉴定[J].中国饲料,2005,15:15-19.
    洪楠,林爱华.SPSS for Windows统计产品和服务解决方案教程[M].北京:清华大学出版社,2003.
    洪永聪,辛伟.蜡状芽孢杆菌菌株TR2对氯氰菊酯降解作用的小区试验[J].青岛农业大学学报,2007,24(4):291-293.
    华苟根.AR99菌剂诱导的番茄青枯病抗性研究[D].南京:南京农业大学,2004.
    黄学,伍晓林.短短芽孢杆菌和蜡状芽孢杆菌降解原油烃机制研究[J].石油学报,2006,27(5):92-95.
    黄炳球,胡美英,黄端平,等.APSA-80对草甘膦增效机制及药效研究[J].华南农业大学学报,1998,(3):171-371.
    黄璜,王华,胡泽友,等.稻鸭种养生态工程的理论分析与实践过程[J].作物研究,2003,17(4):189-191.
    黄梅;黄璜.晚稻免耕抛秧养鸭技术应用[J].湖南农业大学学报,2003,29(3):207-210.
    黄青春,叶钟音.烯酰吗啉(DMM)的特性及其作用机制[J].农药科学与管理,2000,21(5):28-31.
    霍云霞,何其瑞.两株内生放线菌发酵液防治黄瓜白粉病机理初探[J].西北农业学报,2009,18(6):295-300.
    江佳富,王俊,蔡平,等.杂草生物防治研究回顾与展望[J].安徽农业大学学报,2003,30(1):61-65.
    焦琮,杨培文.棉苗立枯病生物防治研究[J].山西农业大学学报,1984,4(1):43-47.
    李红.水稻几丁质酶基因RCH8创伤诱导转录及启动子功能分析[J].实验生物学报,1997,30(4):431-435.
    李爱宏,许新萍.转基因株系及不同水稻品种的几丁质酶活力及纹枯病抗性[J].作物学报,2003,29(3):520-524.
    李柏青,朱育菁,张赛群.蜡状芽孢杆菌对番茄青枯雷尔氏菌致病性的影响[J].厦门大学学报,2007,46(4):574-577.
    李成芳,曹凑贵,展茗,等.稻鸭共作对稻田氮素变化及土壤微生物的影响[J].生态学报,2008,28(5):6112-9112.
    李淑彬,陈振军.蜡状芽孢杆菌菌株Jp-A的分离鉴定及其降解苯酚特性[J].应用生态学报,2006,17(5):920-924.
    李熙英,吕龙石,权成武.氮、磷、钾不同施肥水平下的水稻纹枯病的危害模型研究[J].延边大学农学学报,1998,20(2):9-29.
    李湘民,胡白石,许志刚,等.拮抗细菌Bacillus subtilis B54232R抑制水稻纹枯病的阈值群体数量[J].中国水稻科学,2003,17(4):360-364.
    李晓倩.茶树根际促生细菌研究展望[J].山东农业大学学报,2009,40(2):301-303.
    李云明,赵守清,陈绍才,等.稻鸭共育技术控制水稻主要害虫杂草效果分析[J].中国植保导刊,2004,24(2):14-15.
    连玲丽.芽孢杆菌的生防菌株筛选及其抑病机理[J].福建农林大学,2007,52-53.
    梁军,王媛.溃疡病菌对杨树愈伤组织细胞膜透性、可溶性糖及MDA含量的影响[J].林业科学,2008,44(8):72-77.
    廖皓年,肖陵生,王华生.水稻纹枯病发生历史及演变原因简析[J].广西植保,1997(3):35-38.
    林毅,陈风义.蜡状芽孢杆菌产青霉素酶的研究进展[J].河北工业科技,2008,25(2):125-128.
    林章荣,晋焯忠.稻田放鸭防治虫害的初步研究[J].中国生物防治,2002,18(2):94-95.
    刘小燕,杨治平,黄璜,等.稻鸭复合生态系统中二化螟发生规律的研究[J].湖南师.范大学自然科学学报,2005,28(1):70-74.
    刘小燕,杨治平,黄璜,等.湿地稻-鸭复合系统中水稻纹枯病的变化规律[J].生态学报,2004,24(11):2580-2582.
    刘晓妹.芽孢杆菌B-1、B-2对豌豆尖镰孢菌抗菌机理的研究[J].微生物学通报,2004,(4):34-38.
    刘燕娟.放线菌株HND39的种类鉴定及其对植物病原菌的抑制作用[J].中国生物防治,2008,24(3):272-276.
    刘邮洲,陈志谊,刘永峰,等.拮抗菌株C8-8控病促生作用机制初探[J].中国生物防治,2007,23(4):397-400.
    柳良好,徐同.哈茨木霉几丁质酶诱导及其对水稻纹枯病菌的拮抗作用[J].植物病理学报,2003,33(4):359-363.
    鲁建国,徐正木,余晋洋,等.稻鸭共育配套技术初探[J].上海农业科技,2003,(4):60-61.
    吕凤霞,陆兆新,别小妹,等.Bacillus subtilis 7-DES36纤溶醉发醉条件的优化研究[J].农业工程学报,2005,21(12):175-178.
    吕早生,张敏.蜡状芽孢杆菌产聚羟基烷酸的提取与鉴定[J].化学与生物工程,2008,25(8):52-66.
    马国强,庄雅津,周铭成.稻鸭共作无公害水稻生产技术初探[J].农业装备技术,2002,28(2):20-21.
    孟庆忠,刘志恒,王鹤影,等.水稻纹枯病研究进展[J].沈阳农业大学学报,2001,32(5):376-381.
    聂亚锋,刘永锋,李德全,等.海洋源拮抗细菌对水稻纹枯病的防治[J].江苏农业学报,2007,23(5):420-427.
    农业部农作物病虫测报总站.农作物主要病虫测报办法[M].北京:农业出版社,1981.
    欧阳光察.植物苯丙烷类代谢的生理意思及其调控[J].植物生理学通讯,1988,3:1-9.
    潘建华,刘瑞霞.蜡状芽孢杆菌Bacillus cereus吸附铅的研究[J].环境科学,2004,25(2):166-169.
    彭凤梅,戴志明,万田正治,等.云南稻-鸭共生模式效益的研究与综合评价(一)[J].中国农学通报,2002,18(3):34-36.
    彭昭裘,曾昭瑞,张志光,等.水稻纹枯病及其防治[M].上海:上海科学技术出版社,1986.
    齐珂珂,康相涛.鸡白细胞中抗菌肽的分离纯化及活性鉴定方法的建立[J].西北农林科技大学学报,2008,36(9):27-34.
    乔娟,李秉龙.中国食品质量安全问题的原因与对策探讨[J].中国畜牧杂志,2008,44(8):23-27.
    冉茂林,陈铮.我国稻田养鸭的发展及研究现状[J].中国畜牧杂志,1993,29(5):58-60.
    冉茂林.稻鸭共栖的水稻增产效应[J].宜宾科技,1991,(4):27-30.
    任露泉.试验优化设计[M].北京:机械工业出版社出版,1987.
    任小平,谢关林,王笑,等.铜绿假单胞菌ZJ1999对水稻纹枯病的防治及其在水稻上的定殖[J].中国生物防治,2006,22(1):54-57.
    沈文飚,黄丽琴,徐朗莱.植物抗坏血酸过氧化物酶[J].生命的化学,1997,5(17):24-26.
    沈晓昆.稻鸭共作无公害有机稻米生产新技术[M].北京:中国农业科学技术出版社,2003,126-124.
    沈晓昆.江苏省稻鸭共作的研究与实践进展[J].中国家禽,2004,26(8):17-18.
    束兆林,储国良,缪康,等.稻-鸭-萍共作对水稻田病虫草的控制效果及增产效应[J].江苏农业科学,2004,(6):72-75.
    孙国俊,蒋林忠,蒋小春,等.稻鸭共作对水稻条纹叶枯病的控制效果[J].江苏农业科学,2007,(6):39-49.
    孙国俊.丙环唑25%乳油防治水稻纹枯病药效试验研究[J].农药科学与管理,2008,29(3):25-26.
    谭彩霞.水稻抗纹枯病近等基因系的构建[D].扬州大学,2004,32-35.
    檀根甲,丁克坚,李伯衡.早稻纹枯病越冬菌核量的定量测定及与田间早期病情的关系[J].安徽农业科学,1999,23(2):123-125.
    檀根甲,王子迎,吴芳方,等.水稻纹枯病营养及寄主资源生态位[J].生态学报,2003,23(1):205-210.
    檀根甲,王子迎.水稻纹枯病时间与空间生态位的研究[J].中国水稻科学,2002,16(2):182-184.
    汤颢军,曹凑贵,张似松,汪金平.稻鸭共育体系多因素正交旋转回归试验研究[J].湖北大学学报(自然科学版),2007,28(1):99-104.
    唐龙飞,黄毅斌,翁伯奇,等.稻田高效、低耗、低污染的持续农业模式研究[J].中国农业研究,2000,33(3):60-66.
    唐启义,冯光明.实用统计分析及计算机处理平台[M].北京:中国农业出版社,1997,77-91.
    滕建军.稻鸭共栖的矛盾与对策[J].家畜生态,1994,15(1):25-26.
    童泽霞,王文光,宋兴良,等.从生态学观点再析稻鸭生态种养中鸭的作用[J].湖南农业科学,2007,(1):96-98.
    童泽霞.稻田养鸭与稻田生物种群的关系初探[J].中国稻米,2002,(1):33-34.
    汪家政,范明.蛋白质技术手册[M].北京:科学出版社,2000:189-197.
    汪金平,曹凑贵,金晖,等.稻鸭共生对稻田水生生物群落的影响[J].中国农业科学,2006,39(10):2001-2008.
    汪万宝.氮磷钾与水稻纹枯病发生综合效应研究[J].安徽农业大学学报,1996,23(1):22-24.
    王成豹,马成武,陈海星.稻鸭共作生产有机稻的效果[J].浙江农业科学,2003,(4):194-196.
    王华,黄磺.湿地稻田种养复合生态系统生态经济效益分析[J].中国农学通报,2002,(2):24-28.
    王伟青.番茄叶绿体抗氧化酶基因的克隆与遗传转化的研究[D].山东:山东农业大学,2003:69.
    王志强,沈晓昆.日本的稻鸭共作技术[J].中国家禽,2001,23(22):37.
    王子迎,檀根甲.水稻纹枯病菌的矿质营养生态位[J].应用生态学报,2008,19(1):213-217.
    王子迎,檀根甲.水稻纹枯病生境生态位研究[J].安徽教育学院学报,2003,21(3):66-69.
    魏景超著.真菌鉴定手册[M].上海:上海科学技术出版社,1979,80-89.
    魏守辉,强胜,马波,等.长期稻鸭共作对稻田杂草群落组成及物种多样性的影响[J].植物生态学报,2006,30(1):9-16.
    吴洪生,尹晓明.镰刀菌酸毒素对西瓜幼苗根细胞跨膜电位及叶细胞有关抗逆酶的抑制[J].中国农业科学,2008,41(9):2641-265.
    吴克伟.花青素类色素提取纯化研究现状及发展趋势[J].中国食品添加剂,2008,147-150.
    吴样孙,陈一壮,蒙信满.水稻纹枯病抗性反应中主要防御酶的活性变化.中国农学通报,2008,24(5):327-330.
    吴志刚,朱旭芬.几丁质酶的分子生物学特性及其在转基因植物中的应用[J].生命科学,2002,14(2):117-121.
    吴仲.水稻几丁质酶的表达及其酶学基本性质[J].安徽农业科学,2007,35(7):2018-2020.
    向殉朝,王世全,何立斌,等.一个高抗水稻纹枯病突变体的发现及其遗传特性的初步分析[J].作物学报,2005,31(9):1236-1238.
    肖崇厚.中药化学[M].上海:上海科学技术出版社,1987.
    谢碧霞,陆志科.麻竹叶中抑菌活性成分的分离鉴定[J].中南林学院学报,2005,25(5):10-14.
    谢晶.植物病原菌拮抗微生物的筛选、鉴定及拮抗机理研究[D].四川大学,2005,19-33.
    辛智海,邱礼鸿,崔龙,等.线虫共生菌对水稻纹枯病和稻瘟病的抑菌活性[J].中山大学学报,2004,43(5):69-72.
    熊国远,朱秀柏.稻鸭共生绿色农业生产技术初探[J].饲料工业,2003,24(4):28-30.
    徐德利,高金成.连云港市稻鸭共作高效集成技术研究与示范初探[J].作物杂志,2005,(4):74-94.
    许沧,张成英,罗涛,等.银杏叶中有效成分的提取和鉴定[J].四川省卫生管理干部学院学报,2001,20(1):8-9.
    许德海,禹盛苗.无公害高效益稻鸭共育新技术[J].中国稻米,2002,(3):36-38.
    许文耀,吕伟成,胡秀荣.水稻纹枯病菌抗井冈霉素突变体的生物学特性[J].福建农林大学学报(自然科学版),2007,(3):112-132.
    薛正杰.稻鸭复合生态系统对水稻纹枯病控制机制研究[D].湖南农业大学,2009,12-13.
    杨希,刘德立.蜡状芽孢杆菌好氧反硝化特性研究[J].环境科学研究,2008,21(3):155-159.
    杨华松,戴志明,万田正治,等.云南稻-鸭共生模式效益的研究与综合评价(二)[J].中国农学通报,2002,18(5):23-24.
    杨苏声.主编.细菌分类学[M].北京:北京农业大学出版社.1997,36-38.
    杨望明,张凤英,赵少泉,等.稻鸭共育生态防治模式控害效果及其效益[J].湖北植保,2004,(5):16-26.
    杨治平,刘小燕,黄璜,等.稻田养鸭对稻鸭复合系统中病、虫、草害及蜘蛛的影响[J].生态学报,2004,24(12):2756-2760.
    杨佐毅,李理.白腐乳中蜡状芽孢杆菌的分离与鉴定[J].中国酿造,2008,194(17):39-47.
    叶义和,鲁长贵,陈新春,等.稻田放养鸭密度对水稻病虫草害的影响[J].安徽农业科学,2006,34(21):5583-5583.
    易图永,高必达,何昆,等.水稻纹枯病菌生防细菌的筛选[J].湖南农业大学学报,2000,26(2):116-118.
    易图永.四种拮抗细菌对水稻纹枯病菌的抑制因子[J].中国生物防治,2002,18(3):135-38.
    易有金,肖浪涛,王若仲.内生枯草芽孢杆菌B2001对烟草幼苗的促生作用及其生长动态[J].植物保护学报,2007,34(6):619-624.
    易有金.烟草内生细菌及其对烟草青枯病的防治作用研究[D].湖南农业大学,2007,39-41.
    禹盛苗,欧阳由男,张秋英,等.稻鸭共育复合系统对水稻生长与产量的影响[J].应用生态学报,2005,16(7):1252----1256.
    禹盛苗,金千瑜,欧阳由男,等.稻鸭共育对稻田杂草和病虫害的生物防治效应[J].中国生物防治,2004,20(2):99-102.
    袁红旭,张艳娟,郭建夫,等.抗真菌转基因水稻纹枯病抗性的杂种优势分析[J].植物保护学报,2005,32(4):343-347.
    袁红旭.转几丁质酶基因(RC24)水稻中大2号抗纹枯病特性研究[J].中国水稻科学,2004,18(1):39-42.
    袁筱萍,魏兴华,余汉勇,等.不同品种及有关外因对水稻纹枯病抗性的影响[J].作物学报,2004,30(8):768-773.
    张红见,韩志辉.饲料中蜡状芽孢杆菌的分离与鉴定[J].青海大学学报,2009,27(4):69-88.
    张慧雯,薛秀园,张智平,等.链霉菌702所产抗真菌物质对水稻纹枯病菌的抑菌机制研究[J].江西农业大学学报,2007,29(1):38-42.
    张俊伟,郑裕国.蜡状芽孢杆菌ZJB-07112酰胺酶的分离纯化及其酶学性质[J].化工学报,2008,59(3):624-629.
    张穗,郭永霞,唐文华,等.井冈霉素A对水稻纹枯病菌的毒力和作用机理研究[J].农药学学报,2001,(4):31-37.
    张穗,赵清华,唐文华,等.井冈霉素A对水稻抗性相关酶活性的影响[J].植物保护学报,2003,30(2):177-180.
    张穗,周梅先,宋万昌,等.河南省固始等地稻纹枯病菌对井冈霉素的敏感性[J].植物保护学报,1999,(2):189-190.
    张兆伦.稻田养鸭农牧结合[J].中国畜牧杂志,1993,29(1):52.
    章家恩,陆敬雄,张光辉,等.鸭稻共作生态农业模式的功能与效益分析[J].生态科学,2002,21(1):6-10.
    章家恩,许荣宝,全国明,等.鸭稻共作对水稻生理特性的影响[J].应用生态学报,2007,18(9):1859-1964.
    赵继红,李建中.农用微生物杀菌剂研究进展[J].农药,2003,42(5):6-8.
    甄若宏,王强盛,何加骏,等.稻鸭共作对水稻产量和品质的影响[J].农业现代化研究,2008,29(5):615-617.
    甄若宏,王强盛,沈晓昆,等.我国稻鸭共作生态农业的发展现状与技术探讨[A].第四届亚洲稻鸭共作研讨会论文集[C],2004,153-158.
    甄若宏,王强盛,张卫建,等.稻鸭共作对稻田主要病、虫、草的生态控制效应[J].南京农业大学学报,2007,30(2):60-64.
    甄若宏,王强盛,张卫建,等.稻鸭共作对水稻条纹叶枯病发生规律的影响[J].生态学报,2006,26(9):3061-3065.
    郑爱萍,李平,王世全,等.水稻纹枯病菌强拮抗菌B34的分离与鉴定[J].植物病理学报,2003,33(1):81-85.
    郑希,蒋云飞,李明灌,等.稻田养鸭对免耕抛秧晚稻病、虫、草害的影响[J].杂交水稻,2006,21(S1):120.
    中国科学院上海药物研究所编著.中草药有效成分提取和分离[M].上海:上海科学技术出版社,1983,7.
    周怡,毛亮,张婷婷.大豆内生芽孢杆菌的分离和促生菌株的筛选及鉴定[J].大豆科学,2009,28(3):502-510.
    朱凤姑,丰庆生,诸葛梓,等.稻鸭生态结构对稻田有害生物群落的控制作用[J].浙江农业学报,2004,16(1):37-41.
    左示敏,张亚芳,殷跃军.田间水稻纹枯病抗性鉴定体系的确立与完善[J].扬州大学学报,2006,27(4):57-63.
    左艳霞,胡正嘉.1株抗水稻纹枯病放线菌的筛选[J].华中农业大学学报,2006,25(1):60-63.
    Ahmed G J.Rice-duck farming reduces weeding and insecticide requirement and increases grain yield and income of farmers[J].International rice research notes,2004,29(1):74-77.
    Altoma R E, Norvell W A, Bjorkm A.Combining effective strains of Trichoderm a harzianum and solid matrix priming to improve biological seed treatments[J].Applied and Environmental Microbiology,1999,65(7):2926-2933.
    Antonio J,Barroga.The nutrient supplying, weeding and pesticide effect of rice-duck farming[J].Animal Husbandry and Agricultural Journal,2004,38(8):40-41.
    Asada K.Ascorbate peroxidasea hydrogen peroxide scavenging enzyme in plants [J]. Plant physiol,1992,85:235-241.
    Asano H,Hirano F,Isobe K.Effect of harvest time on the protein composition and amylose content in paddy rice cultivated by Aigamo duckfarming system[J].Jpn Crop Society,2000,69(3):320-323.
    Asano H,Isobe K,Tsuboki Y.Effect of harvesting date on the quality and palatability of paddy rice cultivated by Aigamo duck farming system[J].Jpn Crop Society, 1999,68(3):375-378.
    Baby U I, Manibhushanrao K.Control of rice sheath blight through the integration of fungal antagonists and organist amendments[J].Tropical Agriculture,1993,70: 240-244.
    Backer J O,Cook R J.Role of siderophores in suppression of Phythium species and production of increased growth response of wheat by fluorecent pseudomonads [J].Phytopathology,1998,78:178-782.
    Bhagawati R, Roy A K.Soil amendments on the antagonistic activity of Trichoderma spp.in reducing sheath blight[J]. Oryza,2004,41(3):108-112.
    Biswas A.Bioefficacy of shield:a bio-rational fungicide in rice sheath blight management [J].Pestology,2007,31(6):30-31.
    Bradford M M.A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding [J].Anal Biochem,1976,72:248-254.
    Buchanaan R E,Gibbons N E.Trans:Institute of microbiology,chinese academy of sciences.1984.Bergey'sManual of Determinative Bacteriology (8 th Ed). Beijing:Science Press.
    Cakmak I,Marschner H.Magnesium deficiency and high light intensity enhance activities of superoxide dismutase,ascorbate peroxidase and glutat hione reductase in bean leaves [J].Plant physiol,1992,98:1222.
    Chitarra G S,Breeuwer P,Nout M J R.An antifungal compound produced by Bacillus subtilis YM 10-20 inhibits germination of Penicillium roqueforti conidiospores [J]. Journal of Applied Microbiology,2003,94,159-166.
    Cho J Y,Choi G J,Son S W.Isolation and antifungal activity of lignans from Myristica fragrans against various plant pathogenic fungi [J].Pest Management Science, 2007,63(9):935-940.
    Compant S,Duffy B,Nowak J,et al.Use of plant growth-promoting bacteria for biocontrol of plant diseases:principles,mechanisms of action,and future prospects[J].Applied and Environmental Microbiology September,2005,71 (9): 4951-4959.
    Davis J M,Wu H,Cook J E,et al.Pathogen challenge,salicylic acid,and jasmonic acid regulate expression of chitinase gene homologs in pine[J].Mol Plant Microbe Interact,2002,15:380-387.
    Dobereiner J,Pedrosa F O.Nitrogen-fixing bacteria in nonleguminous crop plants[M].Science Tech Publishers,1987:117-148.
    Duan G F,Zhang Z B,Zhang J P.Evaluation of crude toxin and metabolite produced by Helminthosporium gramineum Rabenh for the control of rice sheath blight in paddy fields[J]. Crop Protection,2007,26(7):1036-1041.
    Ekuremedar.Comparative studies On growth and meat production of ducks free ranged in paddy fields[J].Jpn.poult.Sci,1996,33:198-204.
    Elizabeth A,Emmert B,Handelsman J.Biocontrol of plant disease:a (Gram-) positive perspective[J].FEMS Microbilology Letters,1999,171:1-9.
    Emani C, Garcia J M, Lopata F E,et al.Enhanced fungal resistance in transgenic cotton expressing an endochitinase gene from trichodermavirens [J].J Plant Biotechnol,2003,321-336.
    Emmert E A B, Handelsman J.Biocontrol of plant disease:a (Gram-) positive perspective.FEMS Microbiolo.Lett.,1999,171:1-9.
    Foyer C H,Hailiwell B.The presence of glutat hione and glutat hione reductase in chloroplasts:proposed role in ascorbic acid metabolism[J]. Planta,1976,133: 21-25.
    Fu J F.16S-23S ITS sequence-a new method of classification and identification bacteria Overseas Medicine[J].Epidemics and Epidemiology Fascicule,1998, 25(6):245-249.
    Groth D E,Bond J A.Initiation of rice sheath blight epidemics and effect of application timing of azoxystrobin on disease incidence, severity, yield, and milling quality[J].Plant Disease,2006,90(8):1073-1076.
    Groth D E.Azoxystrobin rate and timing effects on rice sheath blight incidence and severity and rice grain and milling yields[J].Plant Disease,2005,89(11): 1171-1174.
    Gyung J C,Jin C K;et al.Biological control activity of two isolates of pseudomonas fluorescens against rice sheath blight[J]. The Plant Pathology Journal, 2006,22(3):289-294.
    Huang Y, Wang H, Huang H,et al.Characteristics of methane emission from wetland rice-duck complex ecosystem[J].Agric Ecosyst Environ,2005,105:181-193.
    Isobe K,Asano H,Tsuboki Y.Effects of cultivation methods on the emergence of weeds and the growth and yield of paddy rice, with special reference to using aigamo duck[J].Jpn crop society,1998,67(3):297-301.
    Jia Y, Singh P, Eizenga G C.Identification of rice genes to tag quantitative resistance to sheath blight in rice,arkansas agricultural experiment station[J].Research Series,2004,517:197-201.
    Kalpana K,Maruthasalam S,Rajesh T.Engineering sheath blight resistance in elite indica rice cultivars using genes encoding defense proteins[J].Plant Science, 2006,170(2):203-215.
    Kamoun F.Purification amino acid sequence and characterization of Bacthuricin F4, a new bacteriocin produced by Bacillus thuringiensis [J].Applied Microbiology, 2005,98(4):881-888.
    Katz E, Demain A L.The peptide antibiotics of Bacillus:chemistry, biogenesis, and possible functions[J].Bacteriological Reviews,1977,449-474.
    Kauffmann I M, Schmitt J.Dna isolation from soil samples for cloning in different hosts[J].Appl Microbiol Biotechnol,2004,64:665-670.
    Khan A A,Sinha A P.Influence of formulations, doses and time of application of fungal bio-agents on rice sheath blight[J].Annals of Plant Protection Sciences, 2006,14(1):157-161.
    Kishore G K.Chitin-supplemented foliar application of chitinolytic Bacillus cereus reduces severity of Botrytis gray mold disease in chickpea under controlled conditions[J].Letters in Applied Microbiology,2007,44 (1):98-105.
    Kloepper J W,Lif shita R, Zablotowica R M.Free living bacterial inoculation for enhancing crop productivity[J].Trends in Biotech,1998,7:39-43.
    Kumaraswamy S,Rath A K,Ramakrishnan B,et al.Wetland rice soils as sources and sinks of methane:a review and prospects for research [J].Biol Fertil Soils,2000, 31:449-461.
    Kusler J A.Wetlands[M].Scientific American,1994,1:50-56.
    Landy M, Warren G H,Rosenman S B,et al.Bacillomycin:an antibiotic from Bacillus subtilis active against pathogenic fungi [J]. Proc. Soc.Exp.Biol.Med,1948,67: 539-541
    Li A H,Xu X P,Dai Z Y.Resistance Evaluation to sheath blight in transgenic rice lines[J].Rice Science,2004,11(3):95-100.
    Li C F;Cao C G;Wang J P.Nitrogen losses from integrated rice-duck and rice-fish ecosystems in southern China[J].Plant Soil,2008,307:207-217.
    Liu Ru shi,Yang Hun yu,Lin Jian,et al.High-yield expression of recombinant sars ravirus nucleocaapsid protein in methylotrophic yeast pichia pastors[J].World Journal of Gasiroenterology,2004,10(24):3602-3607.
    Mahanta I C.Efficacy of new fungicide luster 37.5se against sheath blight disease caused by Rhizoctonia solani in orissa [J].Pestology,2007,31(3):10-15.
    Marshall D S,Rush M C.Relation between infection by Rhizoctiona solani and R.oryzae and disease, severity in rice[J]. Phytopathology,1980,70:941-946.
    Masahara MNDA,Hideomi UCHIDA.Effects of aigao ducks herding on weeding and pest control of duck free ranged in paddy fields[J]. Jpn.Poult.Sci,1993,30:365-370.
    Masahara MNDA."Aigamo" rice farming in Asia[J]. Farming Japan,1996,130:1-4.
    Nikodinovic J,Barrow K D,Chuck J A.High frequency transformation of the amphotericin producing bacterium Streptomyces nodosus[J].J Microbiol Methods,2003,55:273-277.
    Ord M M.A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the princpipple of proteindye binding [J].Anal Biochem,1976,72:248-254.
    Pandiarajan L.Rice-fish-duck farming:a case study[J].Indian Farming,1995,45(9): 10-11.
    Rajbir Singh,Sinha A P.Management of rice sheath blight by Pseudomonas fluorescens and grain yield [J].Annals of plant protection sciences,2005,13(2): 410-414.
    Sarker D K, Sharme N R, Shahjahan A K.Antagonistic soil bacteria for biological control of rice sheath blight disease [J].International Rice Research Newsletter, 1992,17:22-23.
    Schierack P,WielerL H,Taras D.Bacillus cereus var.toyoi enhanced systemic immune response in piglets[J].Veterinary immunology and immunopathology,2007, 118(1):1-11.
    Seishu TOJO,Masahiro Y O,et al.Eating habits and behaviour of aigamo ducks in paddy field[J].Weed research,1999,44(1):1-8.
    Sharma V K, Nowak J.Enhancement of verticillium wilt resistance in tomato transp lants by in vitro co-culture of seedlingswith a p lant growth promoting rhizobacterium Canadian[J].Journal of microbiology,1998,44(6):528-537.
    Shrestha C L,Mew T W.Chitinase levels in rice cultivars correlate with resistance to the sheath blight pathogen Rhizoctonia solani[J].Eur J Plant Pathol,2008, 120:69-77.
    Someya N,Nakajima M,Watanabe K.Synergistic antifungal activity of the culture filtrates of Serratia marcescens strain B2 and chemical fungicides against the sclerotial viability of the rice sheath blight pathogen,Rhizoctonia solani[J]. Biocontrol science,2005,10(3):97-100.
    Syed R A.Augmenting the family income through integrated fish-duck farming[J].World Poultry,2002,18(4):21.
    Takashi H A.Latest developments of the duck rice combined system in Japan[J].Farming Japan,2007,41(3):11-17.
    Tanaka K,Masuda R, Sugimoto T,et al.Water deficiency induced changes in the contents of defensive substances against active oxygen in spinach leaves[J]. Agric Bwl Chem,1990,54:26-29.
    Teo S S.Evaluation ofdifferent duck varieties for the control of the golden applesnail in transplanted and direct seeded rice[J].Crop Protection,2001,20(7):599-604.
    Wang Y.Studies on ecological benefits of planting and breeding model in rice fields[J].Acta Ecol Sinica,2000,20(2):311-316.
    Wiwattanapatapee R,Chumthong A,Pengnoo A.Effervescent fast- disintegrating bacterial formulation for biological control of rice sheath blight[J].Journal of Controlled Release,2007,119(2):229-235.
    Xiang L,Koji Takayama.Water pH,water temperature,and soil elements in the paddy fields under the integrated Azolla-Duck-Rice farming system and its manuring effects[J]. Japanese Society of Livestock Management,1998,34(2):51-56.
    Xiang P A, Huang H, Huang M,et al. Studies on technique of reducing methane emission in a rice-duck ecological system and the evaluation of its economic significance[J].Sci Agric Sinica,2006,5(10):758-766.
    Xie L Q,Chen S G,Liao X L,et al.Ecological and economical effect of rice-duck complex system[J].Hunan Agric Sci,2005,4:93-95.
    Zhang J E;Ouyang Ying.Characterization of nitrous oxide emission from a rice-duck farming system in south china[J].Arch Environ Contam Toxicol, 2008,54:167-172.
    Zhang J F, Xue Q Z.The activity dynamics of main protective enzymes in rice plants under feeding stresses of Sogatella furcifera and Nilaparvata lugens[J].Scientia Agricultura Sinica,2004,37 (10):1487-1491.
    Zheng Y H, Deng GB, Lu GM.Eco-economic benefits of rice-fish-duck complex ecosystem[J].Chin Appl Ecol,1997b,8(4):431-434.
    Zhu C,Fu Y P,Sun Z X. Relationship between leaf senescence and activated oxygen metabolism in super high yielding rice during flowering and grain formation stage[J].Chinese Journal of Rice Science,2002,16(4):326-330.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700