用户名: 密码: 验证码:
离子交换树脂分离米格列醇的应用基础研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
米格列醇作为一种重要的糖尿病治疗药物,可利用化学全合成法和化学与生物组合法进行制备,而化学与生物组合法合成米格列醇路线因具有流程短、条件温和、收率高等优势受到重视。同时,高纯度分离是作为原料药物使用的前提,因此针对化学与生物组合法特点开展的米格列醇分离工艺过程研究是十分关键的课题,但鉴于米格列醇及其相关物质特殊的化学结构,其分离和纯化方面的基础数据相对欠缺。本文以米格列醇和离子交换树脂间的相互作用作为对象,研究米格列醇吸附分离纯化过程的基本规律及工艺条件。主要研究内容及结论如下:
     1.通过对波长、吸光度与浓度间关系等分光光度计测试条件研究,确立了可用于工艺过程监控的米格列醇及N-羟乙基葡萄糖胺浓度简便测试方法,通过准确度和精密度分析,证明了该测试方法的可行性。
     2.研究米格列醇吸附平衡规律,获得了吸附介质类型、浓度、温度和溶液pH值对离子交换吸附平衡影响关系,并运用热力学、平衡吸附模型、SEM和孔结构测试去分析米格列醇与树脂间的吸附平衡行为。结果表明:米格列醇在树脂D001上具有较高的吸附量,不同米格列醇初始浓度下的等温吸附平衡遵循Langmuir方程。该离子交换过程为放热过程,温度越高,越不利于米格列醇在树脂D001上的吸附。相同起始浓度下的吸附平衡研究发现:随着温度的升高,树脂表面覆盖分数(0)值逐渐下降。相同温度条件下,随着米格列醇溶液浓度的增加,树脂表面覆盖分数0值逐渐加大。米格列醇溶液在中性条件下,树脂对其具有较高吸附量且树脂吸附后表面积增大,而树脂内孔面积、孔容和孔直径呈下降趋势。
     3.通过考察米格列醇浓度、温度和震荡速率外在因素去研究米格列醇在树脂D001上的离子交换过程。结果表明:米格列醇在D001树脂上吸附交换3h即可达到吸附平衡。溶液初始浓度越大,吸附速率越快,树脂平衡吸附量也越大。温度越高,离子交换达到吸附平衡的时间越短。恒温振荡器的震荡速率越快,吸附速率越大,但震荡速率对吸附过程的影响有临界值。动力学模型拟合分析表明该离子交换过程符合类型1的伪二级动力学模型。米格列醇在树脂D001上的离子交换过程为膜扩散控制,溶液浓度、温度和震荡速率值的改变对米格列醇在D001树脂上的吸附传质扩散过程控制影响较弱。相关物质N-羟乙基葡萄糖胺相对米格列醇在树脂上具有更强的离子交换吸附能力,该等温吸附平衡过程也符合Langmuir吸附方程,且两者都具有相似的离子交换动力学方程。
     4.考察米格列醇上样液浓度、流速、温度、高径比、床层堆积高度以及洗脱剂类型、浓度和流速影响因素去研究固定床中米格列醇的吸、脱附规律。结果表明:随着上样液浓度的增大,达到树脂吸附平衡饱和点的时间缩短,固定床传质区高度(MTZ)增大,固定床树脂吸附率(A)变小,上样液浓度为8mg/mL和流速为0.7mL/min时的吸附量最大。动力学模型对离子交换过程拟合分析结果显示:Thomas模型和Yoon-Nelson模型对其具有较好的拟合度。上样液的溶液温度对吸附过程影响较小。固定床高径比(H/D)越小,对应的固定床吸附效率(AE)和A值越大。床层堆积高度越大,吸附量越大。BDST模型拟合度高,对应的理论计算值N0和Ka与实验值相差小。筛选氨水作为洗脱剂,当氨水浓度越大,流速越低时所对应的物质洗脱量越大。固定床堆积高度为1.5cm时,洗脱剂的洗脱效率(EE)达到最大。
     5.以上样液混合物的不同流速、固定床高径比、床层树脂堆积高度以及洗脱剂浓度和流速等影响因素来研究米格列醇和N-羟乙基葡萄糖胺不同质量比下混合物在固定床上的离子交换分离过程。结果表明:随着上样混合溶液中米格列醇含量的提高,AE值逐渐增大,而A值下降。上样液流速较大时具有较小的固定床MTZ值,其对应的AE值和A值都明显增大。固定床高径比越大,其对应的固定床树脂吸附量越小,AE和A值都较小。固定床堆积高度越大,树脂吸附量、AE值和A值都增大。对于米格列醇与N-羟乙基葡萄糖胺质量比固定的混合物上样液,在设定吸附条件下进行洗脱,结果显示:氨水浓度越大,流速越小,洗脱混合物中米格列醇与N-羟乙基葡萄胺质量比值越大。针对不同质量比下的混合物吸附洗脱实验发现:上样液混合物中米格列醇质量比值越高,氨水对其洗脱影响越明显,当上样液混合物中米格列醇与N-羟乙基葡萄糖胺质量比值为9:1时,经过氨水洗脱后可使洗脱混合物溶液中两者质量比值提高到62.6,米格列醇由最初纯度90.0%提高到98.0%以上。同样以氨水对固定床树脂不同堆积高度下吸附米格列醇的洗脱实验研究结果表明:氨水对固定床树脂堆积高度为1.5cm的床层树脂上吸附离子洗脱效果较好,这时洗脱液中米格列醇与N-羟乙基葡萄糖胺质量比值达到最大。同时通过明显提高固定床层高度下的洗脱实验研究,优化了米格列醇与N-羟乙基葡萄糖胺间的洗脱曲线,建立了洗脱动力学模型,归纳了组分间的分离规律。
Chemical method and chemical-biological method are mainly used to synthesize miglitol as an important diabetes drug, The chemical-biological method synthesis route of miglitol is paid more attention due to superiority of the short of synthesis route.mild conditions and the higher yield. Meanwhile, high purity of the product is application prerequisite as raw drug. Therefore, it is an important key issue to study separation process of miglitol for characteristics of chemical-biological method. In view of the special chemical structure of miglitol and related substance, the basic data in the separation and purification is relative lack. In this paper, the basic rules and the technology conditions of the adsorption purification process are investigated with the interaction of miglitol and ion exchange resin as object.The main research contents and conclusions are as follows:
     1. The test conditions of wavelength, absorbency and concentration in spectrophotometer were investigated to establish simpler test method for the monitoring technology process of miglitol and N-hydroxyethyl glucosamine concentration.The test method is proved feasible by the method of the accuracy and precision analysis.
     2. In the adsorption equilibrium experiment, the types of adsorption medium, initial concentrations of miglitol, temperatures, pH values were discussed to study adsorption equilibrium effects for miglitol adsorbed onto resin. Furthermore, adsorption thermodynamics, equilibrium adsorption models, scanning electron microscope and pore structure analysis were investigated to analysize adorption behaviors of miglitol and resins.The results showed that there is high adsorption capacity of D001resin as separation medium.The adsorption equilibrium at different initial concentrations of miglitol is followed by Langmuir model. The higher is the temperature, the more is unfavourable to miglitol adsorbed onto the resin D001.and the ion exchange process is exothermic chemical process.The values of surface coverage fraction of resin(θ) gradually decline with increasing temperature.The values of θ gradually increase with increasing miglitol concentration.There is high adsorption capacity of resin for miglitol in neutral condition and the surface of absorbed resin increases, and meanwhile, the values of the pore area,pore volumn and pore diameter fall.
     3. The external effect factors of resin adsorption capacity including initial concentration of miglitol, temperature and stirring rates were investigated respectively to study ion exchange process of miglitol onto resin. The results showed that the adsorption time for miglitol onto D001resins continues3hours and can reach adsorption equilibrium.The greater is the initial concentration, the faster is absorption rate and equilibrium adsorption capacity of resin is also bigger. The higher are the temperature and stirring rate, ion exchange equilibrium time is shorter and the adsorption rate is faster correspondingly. Nevertheless, there is a critical value for stirring rate on effect of ion exchange adsorption process.In addition, the ion exchange process is in accord with typel pseudo-second order kinetic model and is mainly controlled by film diffusion.The value changes of concentration, temperature and stirring rate are affected weakly to control mass transfer diffusion process during the ion exhange process. The related substance N-hydroxyethyl glucosamine is more easy to be adsorbed onto resins D001in contrast to that of miglitol, the adsorption equilibrium at different initial concentrations of N-hydroxyethyl glucosamine is also followed by Langmuir mathmetics model. Meanwhile, their ion exchange kinetic models are similar.
     4. The factors of concentration, flow rate, temperature, height to diameter ratio (H/D), fixed bed stacking height and the types of eluents, concentration and flow rate of eluent were separately discussed to study adsorption and elution law of miglitol in the fixed bed.The results showed that the saturation point of time is shortened with increasing influent concentration, height of mass transfer zone (MTZ) increases and the value of adsorption ratio (A) decreases. The influent concentration8mg/mL and flow rate0.7mL/min for adsorption capacity is the maximum. The kinetic model fitting analysis for the ion exchange process in the fixed bed shows that Thomas model and Yoon-Nelson model has better fitting degree.The solution temperature on effect of adsorption process is weak. The value of height to diameter ratio is smaller, the corresponding adsorption efficiency (AE) and value of A is larger. The higher is the stacking height of the fixed bed, the greater is the adsorption capacity of resin. The ion exchange process is fitted by bed depth service time (BDST) model and reachs good fit degree, the calculated value of the volume adsorption capacity (No) and rate constant of BDST model (Ka) differ little. The ammonia water is selected as eluent, the greater is concentration of ammonia water and the flow rate is lower, the elution quantity is also biger. In addition, the stacking height of the fixed bed is1.5cm and the value of elution efficiency reaches the largest.
     5. The ion exchange separation process in the fixed bed for the different mass ratios of miglitol to N-hydroxyethyl glucosamine was discussed by influent concentrations, flow rate, height to diameter ratio, stacking height, concentration and flow rate of eluent, respectively. The results showed that the values of adsorption efficiency gradually increases and the values of adsorption ratio declines with increasing miglitol concentration. There is a small value of mass transfer zone with the greater flow rate, the corresponding values of adsorption efficiency and adsorption ratio obviously augments. The greater is the value of height to diameter ratio and corresponds with the small value of D001resin adsorption capacity, the values of adsorption efficiency and adsorption ratio are all smaller. The bigger is the stacking heigh in fixed bed. the adsorption capacity, the values of adsorption efficiency and adsorption ratio are all increasing. The adsorbed ions were eluted for the fixed mass ratio mixture. The results showed that there are a higher mass ratio of miglitol to N-hydroxyethyl glucosamine in effluent solution mixture with a greater concentration and a lower flow ratio of ammonia water.The different mass ratios mixture were eluted and investigated by ammonia water, it was found that the adsorbed samples are eluted more obvious with the higher miglitol mass ratio in the influent mixture.The mass ratio of miglitol to N-hydroxyethyl glucosamine in the effluent solution mixture reaches62.6:1when the influent mass ratio of miglitol to N-hydroxyethyl glucosamine is9:1,the purity of miglitol is from90.0%to over98.0%. In addition, the adsorbed samples in different fixed bed stacking heights were also eluted and found that the elution results is better when the stacking height is1.5cm in the fixed bed, the mass ratio of miglitol to N-hydroxyethyl glucosamine in effluent solution mixture is the best. The elution curves of miglitol and N-hydroxyethyl glucosamine are obviously optimized by prolonging the stacking height in the fixed bed, establishs elution kinetic model and summarizes the separation law of the matters.
引文
[1]田治科,侯国枝.一种治疗Ⅱ型糖尿病的米格列醇口腔崩解片及其制备方法[P].中国专利:CN1615862A,2005-05-18
    [2]赵志全,彭立增.一种工业化生产米格列醇的方法[P].中国专利:CN1740166A.2006-03-01
    [3]Zimmet P., McCarthy D. The NIDDM epidemic:global estimates and projections:a look into the crystal ball[J]. IDF Bulletin,1995,40(3):8-16
    [4]向栋生,脱鸣富.阿拉尔地区糖尿病人群的分布及病因特征[J].临床合理用药杂志,2008,1(73):73-74
    [5]安英,张慧英,张玲玲.一种二甲双胍/米格列醇降糖口服制剂组合物及其制备[P].中国专利:CN101756980,2009-03-13
    [6]赵志全,王玉广.一种米格列醇微囊片剂及其制备方法[P].中国专利:CN101574323A,2009-11-11
    [7]De F. A. Pharmacologic therapy for type 2 diabetes mellitus[J]. Annals of Internal Medicine,1999,131(4): 281-303
    [8]詹世伟,邓天德,余柏松等.米格列醇的生产方法[P].中国专利:CN101029321A,2007-09-05
    [9]赵志全.米格列醇关键中间体的制备方法[P].中国专利:CN101492380A,2009-07-29
    [10]陈代杰编著.微生物药物学[M].上海:华东理工大学出版社,1999
    [11]Scott L.J.,Spencer C. M. Miglitol, a review of its therapeutic potential in type 2 diabetes mellitus[J]. Drugs,2000,59 (3):521-549
    [12]胡三明,陶正利,孙新强.米格列醇晶体及其制备方法[P].中国专利:CN101289418A.2008-10-22
    [13]赵志全.含有胰岛素增敏剂和米格列醇的药物组合物[P].中国专利:CN101121004A,2008-02-13
    [14]KoskiR R. Practical review of oral antihyperglycemic agents for type2 diabetes mellitus[J]. Diabetes Educator,2006,32(6):869-876
    [15]Fukaya N., Mochizuki K., Tanaka Y., et al. The alpha-glucosidase inhibitor miglitol delays the development of diabetes and dysfunctional insulin secretion in pancreatic beta-cells in OLETF rats[J]. European Journal of Pharmacology,2009,624(1-3):51-57
    [16]Heinz G., Komjati M., Korn A., et al. Reduction of postprandial blood glucose by the a-glucosdase inhibitor Miglitol(BAY m 1099) in Type II diabetes[J]. European Journal of Clinical Pharmacol,1989, 37(1):33-36
    [17]Joubert P. H., Foukaridis G. N.,Bopape M. L. Miglitol may have a blood glucose lowering effect unrelated to inhibition of alpha-glucosidase[J]. European Journal of Clinical Pharmacol,1987,31(6):723-724
    [18]杜良栋,戴云.新型抗糖尿病药—米格列醇化学合成的研究[J].云南化工,2010,37(2):14-21
    [19]Zhang X.,Wu B.,Wang B.,et al.Facile and stereo-controlled synthesis of 2-deoxynojirimycin,Miglustat and Miglitol[J]. Tetrahedron Letters,2011,52(29):3802-3804
    [20]周苗,孙新强,胡三明.高纯度米格列醇的生产方法[P].中国专利:CN101302549A,2008-11-12
    [21]孙蓓.催化氢化联合生物转化合成米格列醇工艺的研究探索[D].西安:西北大学,2008
    [22]陈丽萍.活性白土吸附去除苯酚废水的实验研究[J].内蒙古师范大学学报(自然科学汉文版),2009, 38(4):430-434
    [23]黄坤,刘昌会,洪正源等.竹基活性炭吸附葛根素性能的研究[J].广州化工,2009,37(2):81-82
    [24]朱翠萍,刘国庆,罗敏等.大孔吸附树脂对大豆皂苷的吸附研究[J].离子交换与吸附,2003,19(4):318-323
    [25]王娟,沈平孃,沈永嘉.葛根中有效成分的微波辅助萃取研究[J].中国医药工业杂志,2002,33(8):382-386
    [26]邹妹妹,王贵学.中药苦参中苦参碱类成分超声波提取工艺[J].重庆大学学报,2007,30(7):130-133
    [27]王成章,郁青.溶剂萃取银杏萜内酯的因子研究[J].天然产物研究与开发,1999,11(2):53-57
    [28]朱慧,李克,翟云霞.血清蛋白质组学研究中乙腈沉淀法去除清蛋白的实验研究[J].临床检验杂志,2011,29(1):16-18
    [29]李红兵,康振生.适于小麦叶片蛋白质组分析的样品提取方法研究[J].西北植物学报,2011,31(3):0632-0638
    [30]胡天桥,蒋智华,覃健等.人血清小分子蛋白质分离中等电点沉淀法的探索[J].中国卫生检验杂志,2009,19(2):366-367
    [31]蒋福龙.生物技术产品分离纯化技术研究进展[J].化学纵横,2000.(12):13-16
    [32]李良智,成漠,王伟等.离子交换树脂纯化发酵液中的核糖醇[J].应用化工,2009,38(3):328-331
    [33]严优芍,李卫民.益母草酸醇提取液不同精制方法的比较研究[J].时珍国医国药,2007,18(11):2748-2749
    [34]付永前,黄和,李霜等.碱性树脂吸附富马酸及富马酸与葡萄糖的分离[J].过程工程学报,2009,9(1):138-140
    [35]陆九芳,李总成,包铁竹著.分离过程化学[M].北京:清华大学出版社,1993
    [36]顾觉奋主编.离子交换与吸附树脂在制药工业上的应用[M].北京:中国医药科技出版社,2008
    [37]Friedrich G. H. Models and physical reality in ion-exchange kinetics[J]. Reactive Polymers,1990,13 (1-2):191-194
    [38]Bauista L.F., Martinez M., Aracil J. Modeling of the adsorption of a-amylase in batch stirred tank[J]. Industial &Engineering Chemistry Research,2000,39(11):4320-4325
    [39]姜志新主编.离子交换分离工程[M].天津:天津大学出版社,1992
    [40]靳朝辉.离子交换动力学的研究[D].北京:清华大学,2005
    [41]宋峰.牛磺酸相平衡和动力学研究及天然牛黄酸的纯化[D].广州:华南理工大学,2007
    [42]胡宇杰.高浓度钨酸钠溶液离子交换的动力学[D].长沙:中南大学,2005
    [43]陆耘,张柱,曾汉民.弱酸型阳离子交换纤维聚丙烯纤维接枝聚丙烯酸共双丙烯酸二甘醇酯交换吸附性能的研究(I.与过渡金属离子的作用)[J].离子交换与吸附,1992,8(2):117-122
    [44]Gareia A.A., King C.J. The use of basic Polymer sorbents for the reeovery of acetic acid from dilute aqueous solution[J]. Industial &Engineering Chemistry Research,1989,28(2):204-212
    [45]Bhandari V.M.,Yonemoto T., Juvekar V.A. Investigating the differences in acid separation behavior on weak base ion exchange resins[J]. Chemical Engineering Science,2000,55(24):6197-6208
    [46]Li C.H., Shi P.F., Yu Z.Z., et al. Adsorption of β-naphthalenesulfonic acid or sulfuric acid from their solution by Weakly basic resin[J]. Chinaese Journal of Chemical Engineering,2003,11(1):38-41
    [47]Husson S.M., King C.J. Multi-acid equilibria in adsorption of carboxylic acids from dilute aqueous solution[J]. Industial &Engineering Chemistry Research,1999,38(2):502-511
    [48]黄祥斌,于淑娟,高大维等.几种离子交换树脂用于糖浆脱色的比较研究[J].食品科学,2001,22(4):11-13
    [49]彭荣华,杨明平,李国斌.弱酸型酚醛树脂对重金属离子的吸附[J].材料保护,2003.36(11):51-52
    [50]魏瑞霞,陈连龙,陈金龙.三种不同树脂对硫辛酸吸附行为的研究[J].环境化学,2004, 23(4):387-392
    [51]Jansen M.L., Hofland G.W., Houwers J., et al. Effect of pH and concentration on column dynamics of weak electrolyte ion exchange[J]. AIChE Journal.1996,42(7):1925-1937
    [52]李国兴,施青红,朱岩.离子色谱固定相最新进展[J].化学分析计量,2005,14(6):58-60
    [53]杨军,郝雅琳,元英进.紫杉醇和三尖杉磷碱在多孔硅胶上的吸附及扩散研究[J].中草药,1999,30(10):735-739
    [54]Koh J.H, Wankat P.C, Wang N-H. L. Pore and surface diffusion and bulk-phase mass transfer in packed and fluidized beds[J]. Industial &Engineering Chemistry Research,1998,37 (1):228-239
    [55]Bautista L.F, Martinez M., Araeil J. Adsorption of a-amylase in a fixed bed:Operating efficiency and kinetic modeling[J]. AIChE Journal,2003,49(10):2631-2641
    [56]孔毅,吴梧桐,吴如金.新型离子交换柱分离蛋白质类药物的研究[J].药物生物技术,2001,8(1):33-35
    [57]李红艳,李亚新,李尚明.水的硬度对氢离子交换树脂软化处理水的影响[J].太原理工大学学报,2010,41(1):56-60
    [58]张澄信,黄玉辉.001×7强酸性阳离子交换树脂钠离子交换的工作性能[J].工业水处理,1986,6(6):28-32
    [59]袁菊丽.大孔吸附树脂在中药研究中应用近况[J].中国中医药信息杂志,2011,18(8):103-105
    [60]刘喜纲,刘翠哲,王栋.离子交换树脂在医药方面的应用[J].承德医学院学报,2004, 21(3):243-244
    [61]秦为辉,张晓琳,陈新.多杀菌素发酵提取液的脱色工艺研究[J].中国抗生素杂志,2011,36(1):48-54
    [62]宋簧梅,平其能,张志燕等.曲马多药物树脂速释混悬剂的研制[J].中国药科大学学报,2000,31(1):18-20
    [63]顾觉奋.离子交换树脂药物载体在给药系统中的应用[J].离子交换与吸附,2010,26(1):89-96
    [64]Liu H.F., Su X.Y., Li Y., et al. Development of prolonged release microspheres of metformin hydrochloride using ion exchange resins[J]. Journal of Chinese Pharmaceutical Science,2006,15(3):155-161
    [65]Sriwongjanya M., Bodmeier R. Effect of ion exchange resins on the drug release from matrix tablets[J]. Europe Journal of Pharmacy Biopharm,1998,46(3):321-327
    [66]王端好.高活力山梨醇脱氢酶氧化葡萄糖酸杆菌选育及生物催化合成米格列醇的研究[D].西安:西北大学,2010
    [67]王峰,周晋.向大雄等HPLC-MS/ESI测定人血浆中米格列醇[J].中国药学杂志,2005,40(1):51-53
    [68]李莲春,尹华国.张旭等.HPLC-ELSD水性柱测定米格列醇含量[J].中国抗生素杂志,2007,32(10):593
    [69]肇丽梅,孙亚欣,邱枫等.液相色谱-串联质谱法测定健康人体血浆中米格列醇浓度及其药代动力学研究[J].中国临床药理学杂志,2006,22(3):209-212
    [70]郝光启,郁树涛,孙彦余.HPLC同时测定米格列醇片有关物质和含量的方法改进研究[J].天津药学,2011.23(2):11-]4
    [71]郝光启,李进启,葛梅等.米格列醇片溶出度HPLC检测方法改进研究[J].天津药学,2011,23(1):16-18
    [72]朱明华,胡坪.仪器分析[M].北京:高等教育出版社,2008
    [73]刘约权.现代仪器分析[M].北京:高等教育出版社,2005
    [74]陈思,马云,屈撑囤等.对变色酸分光光度法分析采气污水中甲醇含量的改进[J].西安石油大学学报(自然科学版),2011,26(6):70-74
    [75]刘英红,蒋丽,贾海红等.碱性高锰酸钾光度法测定水中的苯胺类物质[J].淮海工学院学报,2009,18(2):50-52
    [76]王振华.高锰酸钾法测定苯酚含量[J].中国环境监测,1998,14(2):25-26
    [77]肖卫强,倪永年.动力学分光光度法测定药物中的华法林[J].南昌大学学报,2008,3(4):382-384
    [78]Ibrahim F. A., Ali F. A., Ahmed S. M., et al. Kinetic determination of acarbose and miglitol in bulk and pharmaceutical formulations using alkaline potassium permanganate[J]. International Journal of Biomedical Science,2007,1(3):20-30
    [79]Dang V.B., Doan H.D., Dang-Vu T., et al.Equilibrium and kinetics of biosorption of cadmium(Ⅱ) and copper(Ⅱ) ions by wheat straw[J]. Bioresource Technology,2009,100(1):211-219
    [80]汪正范.色谱定性与定量[M].北京:化学工业出版社, 2000
    [81]褚维盘,赵高长.概率论与数理统计[M].北京:世界图书出版公司,1995
    [82]张广平.离子交换树脂在分离操作中的应用[J].四川化工与腐蚀控制,1998,1(2):61-62
    [83]马晓轩,范代娣,薛文娇等.类人胶原蛋白Ⅱ的离子交换吸附平衡研究[J].2010,38(2):66-69
    [84]宋峰,李忠夏,启斌.牛磺酸和甘氨酸在D290树脂上的离子交换平衡[J].离子交换与吸附,2007,23(2):144-150
    [85]张敏,刘宝鉴,任其龙.乙酰丙酸、甲酸、葡萄糖在碱性树脂上的静态吸附性能[J].江南大学学报,2006,5(2):211-215
    [86]Bilge A., Sevil V. Kinetics and equilibrium studies for the removal of nickel and zinc from aqueous solutions by ion exchange resins[J]. Journal of Hazardous Materials,2009,167(1-3):482-488
    [87]Suresh G., Babu B.V. Removal of toxic metal Cr(Ⅵ) from aqueous solutions using sawdsts as adsorbent: Equilibrium, kinetics and regeneration studies[J]. Chemical Engineering Journal,2009,150(2)352-365
    [88]Borba C.E., Silva E.A., Spohr S., et al. Application of the mass action law to describe ion exchange equilibrium in a fixed-bed column[J]. Chemical Engineering Journal,2011,172(1):312-320
    [89]Sreejalekshmi K.G., Anoop K.K., Anirudhan T.S. Adsorption of Pb(Ⅱ) and Pb(Ⅱ)-citric acid on sawdust activated carbon:Kinetic and equilibrium isotherm studies[J]. Journal of Hazardous Materials,2009, 161(2-3):1506-1513
    [90]EI-Kamash A. M. Evaluation of zeolite A for the sorptive removal of Cs+and Sr2+ ions from aqueous solutions using batch and fixed bed column operations[J]. Journal of Hazardous Materials,2008,151(2-3): 432-445
    [91]Xiong C.,Meng Y.,Yao C., et al. Adsorption of erbium(Ⅲ) on D113-Ⅲ resin from aqueous solutions:batch and column studies[J]. Journal of Rare Earths,2009,27(6):926-930
    [92]张拿慧,裘俊红.201×7强碱性阴离子交换树脂吸附浓海水中溴的热力学研究[J].离子交换与吸附,2011,27(1):26-32
    [93]Alok M., Lisha K., Jyoti M. Freundlich and Langmuir adsorption isotherms and kinetics for the removal of Tartrazine from aqueous solutions using hen feathers[J]. Journal of Hazardous Materials,2007, 146(1-2):243-248
    [94]李振华,皮洪琼,何炳林.钙阻抗剂的离子交换反应动力学和热力学研究[J].功能高分子学报,2000.13(1):1-5
    [95]唐嘉英,李鑫,应汉杰.离子交换树脂吸附TP5的热力学和动力学研究[J].南京工业大学学报,2006,28(5):79-83
    [96]张星.大孔弱酸树脂对西索米星的吸附行为研究[D].福州:福州大学,2003
    [97]陈刚,邱家山,赵红卫等.新型离子交换树脂CG-6对人凝血酶原复合物的吸附行为分析及研究[J].离子交换与吸附,2007,23(2):166-174
    [98]Oualid H. Removal of copper(Ⅱ)from aqueous phase by purolite C100-MB cation exchange resin in fixed bed columns:Modeling[J]. Journal of Hazardous Materials,2009,161(2-3):737-746
    [99]杨莉丽,康海彦,李娜等.离子交换树脂吸附镉的动力学研究[J].离子交换与吸附,2004,20(2):138-143
    [100]Nadir D., Bulent K., Hulusi B. Sorption of Ni(Ⅱ) ions from aqueous solution by Lewatit cation-exchange resin[J]. Journal of Hazardous Materials,2009,167(1-3):915-926
    [101]Liu Y.,Liu Y. Biosorption isotherms,kinetics and thermodynamics[J]. Separation and Purification Technology,2008,61(3):229-242
    [102]Suresh G., Babu B.V. Removal of toxic metal Cr(Ⅵ)from aqueous solutions using sawdust as adsorbent: Equilibrium,kinetics and regeneration studies[J]. Chemical Engineering Journal,2009,150(2):352-365
    [103]Hameeda B.H., El-Khaiary M.I. Malachite green adsorption by rattan sawdust:Isotherm, kinetic and mechanism modeling[J]. Journal of Hazardous Materials,2008,159(2):574-579
    [104]马红梅,朱志良,张荣华等.弱碱性环氧阴离子交换树脂去除水中铜的动力学研究[J].离子交换与吸附,2006,22(6):519-526
    [105]Nibou D., Mekatel H., Amokrane S., et al. Adsorption of Zn2+ ions onto NaA and NaX zeolites:kinetic, equilibrium and thermodynamic studies[J]. Journal of Hazardous Materials,2010,173(1-3):637-646
    [106]Anirudhan T.S.,Divya L., Suchithra P.S. Kinetic and equilibrium characterization of uranium(IV) adsorption onto carboxylate-fnctionalized poly(hydroxyethylmethacrylate)-grafted lignocellulosics[J]. Journal of Environmental Management 2009,90(1):549-560
    [107]刘军深,何争光,贾淑华.CL2P204萃淋树脂吸萃铟(Ⅲ)的离子交换动力学[J].稀有金属,2003,27(1):104-107
    [108]Tsz-Him S., Anthony M., Vinci K. C., et al. Kinetics of zinc ions removal from effluents using ion exchange resin[J]. Chemical Engineering Journal.2009,146(1):63-70
    [109]Ahmed E. N. Potential of pomegranate husk carbon for Cr(VI) removal from wastewater:Kinetic and isotherm studies[J]. Journal of Hazardous Materials,2009,161(1):132-141
    [110]Sabir H., Hamidi A. A., Mohamed H. I., et al. Physico-chemical method for ammonia removal from synthetic wastewater using limestone and GAC in batch and column studies[J]. Bioresource Technology, 2006,98(4):874-880
    [111]Anirudhan T.S., Ramachandran M. Adsorptive removal of tannin from aqueous solutions by cationic surfactant-modified bentonite clay[J]. Journal of Colloid Interface Science,2006,299(1):116-124
    [112]Rengaraj S., Kyeong-Ho Y,. Seung-Hyeon M. Removal of chromium from water and wastewater by ion exchange resins[J]. Journal of Hazardous Materials,2001,87(1):273-287
    [113]Mehmet E. A. Use of clinptilolite for the removal of nickel ions from water:Kinetics and thermodynamics[J]. Journal of Hazardous Materials,2008,150(3):587-595
    [114]Michelson L. D., Gideon P. G., Pace E. G., et al. Removal of soluble mercury from wastewater by complexing technique, US Department of Industry, Office of Water Research and Technology, Bulletin No.74,1975
    [115]Lee J. W., Park H. C., Moon H. Adsorption and desorption of cephalosporin C on nonionic polymeric sorbents[J]. Separation and Purification Technology,1997,12(1):1-11
    [116]范云鸽,施荣富.离子交换树脂对三七叶总皂苷的脱色精制研究[J].中国中药杂志,2008,33(20):2319-2322
    [117]刘辉,陈宁.离子交换法从发酵液中提取L-亮氨酸[J].离子交换与吸附,2008,24(3):240-245
    [118]赵肖为,郑重鸣,杨深.柠檬酸在D354树脂上的动态交换过程[J].离子交换与吸附,1996,12(6):493-499
    [119]李良智,成漠,王伟.离子交换树脂纯化发酵液中的核糖醇[J].应用化工,2009,38(3):328-331
    [120]Afsaneh S., Habibollah Y., Alireza B. Functionalized SBA-15 mesoporous silica by melamine-based dendrimer amines for adsorptive characteristics of Pb(Ⅱ), Cu(Ⅱ) and Cd(Ⅱ) heavy metal ions in batch and fixed bed column[J]. Chemical Engineering Journal,2011,168(2):505-518
    [121]Nese O.,Duygu K. Adsorption of boron from aqueous solutions using fly ash:Batch and Column studies[J]. Journal of Hazardous Materials,2005,127(1):81-88
    [122]Hasan S.H., Ranjan D., Talat M. Agro-industrial waste wheat bran for the biosorpeive remediation of selenium through continuous up-flow fixed-bed column[J]. Journal of Hazardous Materials,2010,181 (1-3):1134-1142
    [123]Suleman Q., Anwar R. S., Muhammad U.Biosorption of lead from aqueous solution by Ficus religiosal leaves:Batch and column study [J]. Journal of Hazardous Materials,2009,166(2):998-1005
    [124]Han R., Zou L. Zhao X., et al.Characterization and properties of iron oxide-coated zeolite as adsorbent for removal of copper(II) from solution in fixed bed column[J]. Chemical Engineering Journal,2009, 149(1-3):123-131
    [125]Calero M., Hernainz F., Blazquez G., et al. Study of Cr(III) biosorption in a fixed-bed column[J]. Journal of Hazardous Materials,2009,171(1-3):886-893
    [126]Ronbanchob A., Prasert P. Batch and column studies of biosorption of heavy metals by Caulerpa lentillifera[J]. Bioresource Technology,2008,99(8):2766-2777
    [127]Shafei G.M., Moussa N.A. Adsorption of some essential amino acids on hydroxypatite[J]. Journal of Colloid and Interface Science,2001,238(1):160-166
    [128]Vijayaraghavana K., Jeganb J.. Palaniveluc K., et al.Batch and column removal of copper from aqueous solution using a brown marine alga Turbinaria ornate[J], Chemical Engineering Journal,2005, 106(2):177-184
    [129]张加余.阳离子树脂纯化益母草总碱和苦参总碱的工艺研究[D].山东:山东中医药大学,2005
    [130]Amuri K., Frans C., Koen P., et al.The synthesis of 6-azido and 6-amino analogues of 1-deoxynojirimycin and their conversion to bicyclic derivatives[J]. Tetrahedron,2000,56(7):1005-1012
    [131]Peter S.,Patrice M.,Staffan T.,et al.Asymmetric synthesis of (+)-1-deoxynojirimycin and (+)-castanospermine [J]. Tetrahedron,2003,59(8):1293-1299
    [132]Daniel L. C., Alan B. F. Enantiopure 2,3-dihydro-4-pyridones as synthetic intermediates:asymmetric synthesis of 1-deoxynojirimycin[J]. Tetrahedron Letters,2001,42(39):6839-3841
    [133]刘江.层析技术在天然产物高纯度精制中的应用和相关理论研究[D].清华大学,2006
    [134]刘宝鉴.乙酰丙酸分离纯化的理论及工艺研究[D].浙江大学,2007
    [135]贺杠.磷脂酶D催化合成磷脂酰丝氨酸(PS)的色谱分离研究[D].西北大学,2011
    [136]张颖颖.高含量磷脂酰胆碱制备方法研究[D].浙江大学,2005
    [137]祝春进.KL-Ⅲ型吸附剂在固定床吸附器中的吸附特性研究[D].郑州大学,2005
    [138]Gu T., Tsai G. J., Tsao G. T. Modeling of Nonlinear Multicomponent Chromtography[J]. Advances in Biochemical Engineering and Biotechnology,1993,49:45-71
    [139]Sun L. M., Meunier F. An improved finite difference method for fixed-bed multicomponent adsorption[J]. AICHE Journal,1991,37(2):244-254
    [140]杨春育,韩占生,焦玉海等.固定床吸附器透过曲线参数优化方法[J].化学工程,1995, 23(1):70-73
    [141]杨骏,李永旺,秦张峰等.液固体系固定床吸附器流出曲线预测模型——活性炭吸附水中酚的研究[J].化工学报,1996,47(2):178-183
    [142]叶振华.化工吸附分离过程[M].北京:中国石化出版社,1992

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700