用户名: 密码: 验证码:
赖氨酸乙酰化调节大肠杆菌NhoA蛋白活性的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
蛋白质的赖氨酸乙酰化是从细菌到真核生物都普遍存在的一种翻译后修饰。几十年来,研究者们发现赖氨酸乙酰化在真核生物细胞中发挥着许许多多的生物学功能。近几年,在细菌和古生菌中,也发现了这种翻译后修饰的广泛存在。尽管如此,其在原核细胞中的分布范围仍然不太清楚,这点也成为了开展原核系统中赖氨酸乙酰化修饰功能研究的障碍。
     蛋白质的赖氨酸乙酰化是一种可逆的修饰,主要由蛋白质乙酰转移酶和去乙酰化酶控制。在细菌中,研究最多的去乙酰化酶是与酵母中沉默信息调节蛋白Sir2同源的CobB蛋白。虽然近几年来有关CobB蛋白的功能研究取得了一些进展,但其底物和在细菌中的功能仍然不清楚。
     首先,我们使用蛋白质组芯片技术筛选到了十五种具有赖氨酸乙酰化修饰的蛋白质,其中的九种可以被大肠杆菌CobB催化去乙酰化,包括N-羟基芳香胺O-乙酰转移酶(NhoA)。我们使用Western blot验证了NhoA的确可以被CobB去乙酰化,并结合质谱分析技术鉴定出NhoA中三个具有可逆的乙酰化修饰的赖氨酸残基。定点突变试验显示了其中两个乙酰化赖氨酸的突变会导致NhoA乙酰化水平的降低。进一步的研究发现,NhoA的N-乙酰转移酶(NAT)活性和O-乙酰转移酶(OAT)活性都会受到这两个乙酰化赖氨酸残基突变的影响。并且,得到了直接的数据,证实CobB对NhoA的去乙酰化作用提高了NhoA在体外的NAT活性。为了进一步阐明体内的赖氨酸乙酰化修饰对NhoA活性的影响,我们对比了cobB基因敲除菌株与野生型菌株NhoA蛋白的乙酰化水平,以及对硝基芳香族化合物的诱变敏感性。结果显示,cobB基因的敲除会导致NhoA乙酰化水平的提高和OAT活性的降低。这些结果说明,可逆的赖氨酸乙酰化修饰在体外和体内条件下都能够调节NhoA的活性。并且,CobB在体外可以通过催化NhoA的去乙酰化提高其NAT活性,在体内,也很可能是通过相同的方式调节NhoA的OAT活性。
     综上所述,本研究中我们鉴定到了新的赖氨酸乙酰化修饰的蛋白质和去乙酰化酶CobB的底物,发现了赖氨酸乙酰化修饰和细菌中CobB蛋白的一个新功能,这对于原核生物中乙酰化修饰领域的研究具有十分重要的指导意义。
Protein lysine acetylation is one of the most widespread protein post-translational modifications in both eukaryotes and bacteria. In recent decades, this post-translational modification has been shown to play key roles in many biological processes in eukaryotic cells. Recently, protein acetylation has also been found to be widespread in bacteria and archaea, however, the extent of this modification in prokaryotic cells remain largely unexplored, thereby presenting a hurdle to further functional study of this modification in prokaryotic systems.
     Protein acetylation may be controlled by protein acetyltransferases and deacetylases. In bacteria, the best known deacetylase is CobB, which is a homolog of eukaryotic Sir2. Though progress has been made in functional studies of this protein in recent years, its substrates and biological functions are still largely unclear.
     Using proteome microarray technology, fifteen potential lysine-acetylated proteins and nine potential substrates of Escherichia coli CobB were screened, including N-hydroxyarylamine O-acetyltransferase (NhoA). In vitro acetylation/deacetylation of NhoA was verified by Western blotting and mass spectrometry, and three acetylated lysine residues were identified. Site-specific mutagenesis experiments showed that mutation of two of the acetylated lysines decreased the acetylation level of NhoA in vitro. Further analysis showed that variant NhoA proteins carrying substitutions at these two acetylated lysine residues are involved in both the O-acetyltransferase and N-acetyltransferase activity of NhoA. And then direct data showed that deacetylation of NhoA by CobB increased its NAT activity in vitro. To elucidate the effects of reversible acetylation on NhoA activity in vivo, we tested the acetylation level of NhoA and mutagenicity of nitro aromatic compounds in a cobB-knockout strain. Results showed that, knockout of cobB leads to increased acetylation of NhoA and decreased OAT activity. These results suggest that reversible acetylation regulates the activity of NhoA both in vitro and in vivo, and that CobB could increase the NAT activity in vitro by deacetylating NhoA, it may affect the OAT activity of NhoA in vivo through the same way.
     Taken together, we identified new lysine acetylated proteins and substrates of deacetylase CobB, and explored a new function of lysine acetylation and bacterial cobB.
引文
1.刘新生,王永录.蛋白质芯片技术及其在病毒学研究中的应用.中国农学通报,2010,26:44-47
    2.孙平,张逢春,张影.蛋白质芯片技术的研究及应用现状.北华大学学报,2009,10:115-120
    3. Allfrey VG, Faulkner R, Mirsky AE. Acetylation and Methylation of Histones and Their Possible Role in the Regulation of Rna Synthesis. Proc Natl Acad Sci U S A, 1964,51:786-794
    4. Altman-Price N, Mevarech M. Genetic evidence for the importance of protein acetylation and protein deacetylation in the halophilic archaeon Haloferax volcanii. J Bacteriol,2009,191:1610-1617
    5. Ames BN, McCann J, Yamasaki E. Methods for detecting carcinogens and mutagens with the Salmonella/mammalian-microsome mutagenicity test. Mutat Res,1975,31: 347-364
    6. Andres HH, Klem AJ, Schopfer LM, Harrison JK, Weber WW. On the active site of liver acetyl-CoA:arylamine N-acetyltransferase from rapid acetylator rabbits (Ⅲ/J). J Biol Chem,1988,263:7521-7527
    7. Andres HH, Kolb HJ, Schreiber RJ, Weiss L. Characterization of the active site, substrate specificity and kinetic properties of acetyl-CoA:arylamine N-acetyltransferase from pigeon liver. Biochim Biophys Acta,1983,746:193-201
    8. Arnesen T, Van Damme P, Polevoda B, Helsens K, Evjenth R, Colaert N, Varhaug JE, Vandekerckhove J, Lillehaug JR, Sherman F, Gevaert K. Proteomics analyses reveal the evolutionary conservation and divergence of N-terminal acetyltransferases from yeast and humans. Proc Natl Acad Sci USA,2009,106:8157-8162
    9. Aufsatz W, Stoiber T, Rakic B, Naumann K. Arabidopsis histone deacetylase 6:a green link to RNA silencing. Oncogene,2007,26:5477-5488
    10. Bannister AJ, Miska EA, Gorlich D, Kouzarides T. Acetylation of importin-alpha nuclear import factors by CBP/p300. Curr Biol,2000,10:467-470
    11. Barak R, Prasad K, Shainskaya A, Wolfe AJ, Eisenbach M. Acetylation of the chemotaxis response regulator CheY by acetyl-CoA synthetase purified from Escherichia coli. J Mol Biol,2004,342:383-401
    12. Barak R, Yan J, Shainskaya A, Eisenbach M. The chemotaxis response regulator CheY can catalyze its own acetylation. JMol Biol,2006,359:251-265
    13. Bartova E, Krejci J, Harnicarova A, Galiova G, Kozubek S. Histone modifications and nuclear architecture:a review. JHistochem Cytochem,2008,56:711-721
    14. Bell SD, Botting CH, Wardleworth BN, Jackson SP, White MF. The interaction of Alba, a conserved archaeal chromatin protein, with Sir2 and its regulation by acetylation. Science,2002,296:148-151
    15. Berndsen CE, Denu JM. Catalysis and substrate selection by histone/protein lysine acetyltransferases. Curr Opin Struct Biol,2008,18:682-689
    16. Bhakta S, Besra GS, Upton AM, Parish T, Sholto-Douglas-Vemon C, Gibson KJ, Knutton S, Gordon S, DaSilva RP, Anderton MC, Sim E. Arylamine N-acetyltransferase is required for synthesis of mycolic acids and complex lipids in Mycobacterium bovis BCG and represents a novel drug target JExp Med,2004,199:1191-1199
    17. Black JC, Choi JE, Lombardo SR, Carey M. A mechanism for coordinating chromatin modification and preinitiation complex assembly. Mol Cell,2006,23:809-818
    18. Blander G, Guarente L. The Sir2 family of protein deacetylases. Annu Rev Biochem, 2004,73:417-435
    19. Borra MT, O'Neill FJ, Jackson MD, Marshall B, Verdin E, Foltz KR, Denu JM. Conserved enzymatic production and biological effect of 0-acetyl-ADP-ribose by silent information regulator 2-like NAD+- dependent deacetylases. J Biol Chem, 2002,277:12632-12641
    20. Boyes J, Byfield P, Nakatani Y, Ogryzko V. Regulation of activity of the transcription factor GATA-1 by acetylation. Nature,1998,396:594-598
    21. Brooke EW, Davies SG, Mulvaney AW, Okada M, Pompeo F, Sim E, Vickers RJ, Westwood IM. Synthesis and in vitro evaluation of novel small molecule inhibitors of bacterial arylamine N-acetyltransferases (NATs). Bioorg Med Chem Lett,2003, 13:2527-2530
    22. Cao D, Wang Z, Zhang CL, Oh J, Xing W, Li S, Richardson JA, Wang DZ, Olson EN. Modulation of smooth muscle gene expression by association of histone acetyltransferases and deacetylases with myocardin. Mol Cell Biol,2005,25: 364-376
    23. Chen H, Lin RJ, Xie W, Wilpitz D, Evans RM. Regulation of hormone-induced histone hyperacetylation and gene activation via acetylation of an acetylase. Cell, 1999,98:675-686
    24. Choudhary C, Kumar C, Gnad F, Nielsen ML, Rehman M, Walther TC, Olsen JV, Mann M. Lysine acetylation targets protein complexes and co-regulates major cellular functions. Science,2009,325:834-840
    25. Cleland WW. Statistical analysis of enzyme kinetic data. Methods Enzymol,1979, 63:103-138
    26. Cretich M, Damin F, Pirri G, Chiari M. Protein and peptide arrays:recent trends and new directions. Biomol Eng,2006,23:77-88
    27. Dairou J, Atmane N, Dupret JM, Rodrigues-Lima F. Reversible inhibition of the human xenobiotic-metabolizing enzyme arylamine N-acetyltransferase 1 by S-nitrosothiols. Biochem Biophys Res Commun,2003,307:1059-1065
    28. Dairou J, Atmane N, Rodrigues-Lima F, Dupret JM. Peroxynitrite irreversibly inactivates the human xenobiotic-metabolizing enzyme arylamine N-acetyltransferase 1 (NAT1) in human breast cancer cells:a cellular and mechanistic study. J Biol Chem,2004,279:7708-7714
    29. Dang W, Steffen KK, Perry R, Dorsey JA, Johnson FB, Shilatifard A, Kaeberlein M, Kennedy BK, Berger SL. Histone H4 lysine 16 acetylation regulates cellular lifespan. Nature,2009,459:802-807
    30. Datsenko KA, Wanner BL. One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci USA,2000,97:6640-6645
    31. de Ruijter AJ, van Gennip AH, Caron HN, Kemp S, van Kuilenburg AB. Histone deacetylases (HDACs):characterization of the classical HDAC family. Biochem J, 2003,370:737-749
    32. Denu JM. The Sir 2 family of protein deacetylases. Curr Opin Chem Biol,2005,9: 431-440
    33. Dhalluin C, Carlson JE, Zeng L, He C, Aggarwal AK, Zhou MM. Structure and ligand of a histone acetyltransferase bromodomain. Nature,1999,399:491-496
    34. Dokmanovic M, Clarke C, Marks PA. Histone deacetylase inhibitors:overview and perspectives. Mol Cancer Res,2007,5:981-989
    35. Dormeyer W, Ott M, Schnolzer M. Probing lysine acetylation in proteins:strategies, limitations, and pitfalls of in vitro acetyltransferase assays. Mol Cell Proteomics, 2005,4:1226-1239
    36. Dyda F, Klein DC, Hickman AB. GCN5-related N-acetyltransferases:a structural overview. Annu Rev Biophys Biomol Struct,2000,29:81-103
    37. Edmondson DG, Smith MM, Roth SY. Repression domain of the yeast global repressor Tupl interacts directly with histones H3 and H4. Genes Dev,1996,10: 1247-1259
    38. Escalante-Semerena JC. Ne-Lysine Acetylation Control Conserved in All Three Different Domains. Microbe magazine,2010
    39. Espinosa-Aguirre JJ, Yamada M, Matsui K, Watanabe M, Sofuni T, Nohmi T. New O-acetyltransferase-deficient Ames Salmonella strains generated by specific gene disruption. Mutat Res,1999,439:159-169
    40. Falb M, Aivaliotis M, Garcia-Rizo C, Bisle B, Tebbe A, Klein C, Konstantinidis K, Siedler F, Pfeiffer F, Oesterhelt D. Archaeal N-terminal protein maturation commonly involves N-terminal acetylation:a large-scale proteomics survey. J Mol Biol,2006,362:915-924
    41. Frye RA. Phylogenetic classification of prokaryotic and eukaryotic Sir2-like proteins. Biochem Biophys Res Commun,2000,273:793-798
    42. Fullam E, Westwood IM, Anderton MC, Lowe ED, Sim E, Noble ME. Divergence of cofactor recognition across evolution:coenzyme A binding in a prokaryotic arylamine N-acetyltransferase. J Mol Biol,2008,375:178-191
    43. Geng H, Harvey CT, Pittsenbarger J, Liu Q, Beer TM, Xue C, Qian DZ. HDAC4 protein regulates HIF1 alpha protein lysine acetylation and cancer cell response to hypoxia. J Biol Chem,2011,286:38095-38102
    44. Grant DM, Hughes NC, Janezic SA, Goodfellow GH, Chen HJ, Gaedigk A, Yu VL, Grewal R. Human acetyltransferase polymorphisms. Mutat Res,1997,376:61-70
    45. Grubisha O, Smith BC, Denu JM. Small molecule regulation of Sir2 protein deacetylases. FEBS J,2005,272:4607-4616
    46. Gu W, Roeder RG Activation of p53 sequence-specific DNA binding by acetylation of the p53 C-terminal domain. Cell,1997,90:595-606
    47. Guzman LM, Belin D, Carson MJ, Beckwith J. Tight regulation, modulation, and high-level expression by vectors containing the arabinose pBAD promoter. J Bacteriol,1995,177:4121-4130
    48. Haigis MC, Guarente LP. Mammalian sirtuins--emerging roles in physiology, aging, and calorie restriction. Genes Dev,2006,20:2913-2921
    49. Hanna PE. N-acetyltransferases,O-acetyltransferases, and N,O-acetyltransferases: enzymology and bioactivation. Adv Pharmacol,1994,27:401-430
    50. Hase T, Wakabayashi S, Matsubara H, Kerscher L, Oesterhelt D, Rao KK, Hall DO. Complete amino acid sequence of Halobacterium halobium ferredoxin containing an Nepsilon-acetyllysine residue. J Biochem,1978,83:1657-1670
    51. Hein DW, Doll MA, Fretland AJ, Leff MA, Webb SJ, Xiao GH, Devanaboyina US, Nangju NA, Feng Y. Molecular genetics and epidemiology of the NAT1 and NAT2 acetylation polymorphisms. Cancer Epidemiol Biomarkers Prev,2000,9:29-42
    52. Hickman D, Pope J, Patil SD, Fakis G, Smelt V, Stanley LA, Payton M, Unadkat JD, Sim E. Expression of arylamine N-acetyltransferase in human intestine. Gut,1998, 42:402-409
    53. Holton SJ, Dairou J, Sandy J, Rodrigues-Lima F, Dupret JM, Noble ME, Sim E. Structure of Mesorhizobium loti arylamine N-acetyltransferase 1. Acta Crystallogr Sect F Struct Biol Gryst Commun,2005,61:14-16
    54. Hu LI, Lima BP, Wolfe AJ. Bacterial protein acetylation:the dawning of a new age. Mol Microbiol,2010,77:15-21
    55. Hubbert C, Guardiola A, Shao R, Kawaguchi Y, Ito A, Nixon A, Yoshida M, Wang XF, Yao TP. HDAC6 is a microtubule-associated deacetylase. Nature,2002,417: 455-458
    56. Hughes HB. On the metabolic fate of isoniazid. J Pharmacol Exp Ther,1953,109: 444-452
    57. Hwang CS, Shemorry A, Varshavsky A. N-terminal acetylation of cellular proteins creates specific degradation signals. Science,2010,327:973-977
    58. Imhof A, Yang XJ, Ogryzko VV, Nakatani Y, Wolffe AP, Ge H. Acetylation of general transcription factors by histone acetyltransferases. Curr Biol,1997,7: 689-692
    59. Jencks WP, Gresser M, Valenzuela MS, Huneeus FC. Acetyl coenzyme A:arylamine acetyltransferase. Measurement of the steady state concentration of the acetyl-enzyme intermediate. J Biol Chem,1972,247:3756-3760
    60. Jones JD, O'Connor CD. Protein acetylation in prokaryotes. Proteomics,2011,11: 3012-3022
    61. Josephy PD. The Escherichia coli lacZ reversion mutagenicity assay. Mutat Res, 2000,455:71-80
    62. Josephy PD, Summerscales J, DeBruin LS, Schlaeger C, Ho J. N-hydroxyarylamine O-acetyltransferase-deficient Escherichia coli strains are resistant to the mutagenicity of nitro compounds. Biol Chem,2002,383:977-982
    63. Kiernan RE, Vanhulle C, Schiltz L, Adam E, Xiao H, Maudoux F, Calomme C, Burny A, Nakatani Y, Jeang KT, Benkirane M, Van Lint C. HIV-1 tat transcriptional activity is regulated by acetylation. EMBO J,1999,18:6106-6118
    64. Kim SC, Sprung R, Chen Y, Xu Y, Ball H, Pei J, Cheng T, Kho Y, Xiao H, Xiao L, Grishin NV, White M, Yang XJ, Zhao Y. Substrate and functional diversity of lysine acetylation revealed by a proteomics survey. Mol Cell,2006,23:607-618
    65. Kitagawa M, Ara T, Arifuzzaman M, Ioka-Nakamichi T, Inamoto E, Toyonaga H, Mori H. Complete set of ORF clones of Escherichia coli ASKA library (a complete set of E. coli K-12 ORF archive):unique resources for biological research. DNA Res, 2005,12:291-299
    66. Klaidman JDAJaLK. Sirtuins, Nicotinamide and Aging:A Critical Review. Letters in Drug Design & Discovery,2007,4:44-48
    67. Koizumi A, Nomiyama T, Tsukada M, Wada Y, Omac K, Tanaka S, Mryauchi H, Imamiya S, Sakurai H. Evidence on metabolism of hydrazine in Japanese wordoers. J Gcoap (?) Med,1998,40: 217-222
    68. Kouzarides T. Histone acetylases and deacetylases in cell profiferation. Curr Opin Genet Dev,1999,9: 40-48
    69. L'Hernault SW, Roscnbaum JL. Chlamydomooas alpha-tobulin is posttranslatiooally modified by acetylation on the epsilon-amino group of a lysine. Biochemistry,1985, 24:473-478
    70. Larsen MR, Trelle MB, Thingholm TE, Jensen ON. Analysis of posttranslational modifications of proteins by tandem mass spectrometry. Biotechniques,2006,40: 790-798
    71. Latham JA, Dent SY. Cross-regulation of histone modifications. Nat Struct Mol Biol, 2007,14:1017-1024
    72. Lee KK, Workman JL. Histone acetyltransferase complexes:one size doesn't fit all. Nat Rev Mol Cell Biol,2007,8:284-295
    73. Leskovac V. Comprehensive Enzyme Kinetics. New York.Kluwer Academic/Plenum Publishers,2003:139-170
    74. Li R, Gu J, Chen YY, Xiao CL, Wang LW, Zhang ZP, Bi LJ, Wei HP, Wang XD, Deng JY, Zhang XE. CobB regulates Escherichia coli chemotaxis by deacetylating the response regulator CheY. Mol Microbiol,2010,76:1162-1174
    75. Lima BP, Antelmann H, Gronau K, Chi BK, Becher D, Brinsmade SR, Wolfe AJ. Involvement of protein acetylation in glucose-induced transcription of a stress-responsive promoter. Mol Microbiol,2011,81:1190-1204
    76. Lima BP, Huyen TT, Basell K, Becher D, Antelmann H, Wolfe AJ. Inhibition of Acetyl phosphate-dependent transcription by an acetylatable lysine on RNA polymerase. J Biol Chem,2012,287:32147-32160
    77. Lin YY, Lu JY, Zhang J, Walter W, Dang W, Wan J, Tao SC, Qian J, Zhao Y, Boeke JD, Berger SL, Zhu H. Protein acetylation microarray reveals that NuA4 controls key metabolic target regulating gluconeogenesis. Cell,2009,136:1073-1084
    78. Liotta LA, Espina V, Mehta AI, Calvert V, Rosenblatt K, Geho D, Munson PJ, Young L, Wulflcuhle J, Petricoin EF,3rd. Protein microarrays:meeting analytical challenges for clinical applications. Cancer Cell,2003,3:317-325
    79. Luger K, Richmond TJ. The histone tails of the nucleosome. Curr Opin Genet Dev, 1998,8:140-146
    80. Marks PA, Breslow R. Dimethyl sulfoxide to vorinostat:development of this histone deacetylase inhibitor as an anticancer drug. Nat Biotechnol,2007,25:84-90
    81. Marks PA, Miller T, Richon VM. Histone deacetylases. Curr Opin Pharmacol,2003, 3:344-351
    82. Marmorstein R, Berger SL. Structure and function of bromodomains in chromatin-regulating complexes. Gene,2001,272:1-9
    83. Marsh VL, Peak-Chew SY, Bell SD. Sir2 and the acetyltransferase, Pat, regulate the archaeal chromatin protein, Alba. J Biol Chem,2005,280:21122-21128
    84. Martinez-Balbas MA, Bauer UM, Nielsen SJ, Brehm A, Kouzarides T. Regulation of E2F1 activity by acetylation. EMBO J,2000,19:662-671
    85. Munshi N, Merika M, Yie J, Senger K, Chen G, Thanos D. Acetylation of HMG I(Y) by CBP turns off IFN beta expression by disrupting the enhanceosome. Mol Cell, 1998,2:457-467
    86. Mushtaq A, Payton M, Sim E. The COOH terminus of arylamine N-acetyltransferase from Salmonella typhimurium controls enzymic activity. J Biol Chem,2002,277: 12175-12181
    87. Nielsen UB, Cardone MH, Sinskey AJ, MacBeath G, Sorger PK. Profiling receptor tyrosine kinase activation by using Ab microarrays. Proc Natl Acad Sci USA,2003, 100:9330-9335
    88. Oh YH, Hong MY, Jin Z, Lee T, Han MK, Park S, Kim HS. Chip-based analysis of SUMO (small ubiquitin-like modifier) conjugation to a target protein. Biosens Bioelectron,2007,22:1260-1267
    89. Ong SE, Blagoev B, Kratchmarova I, Kristensen DB, Steen H, Pandey A, Mann M. Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics. Mol Cell Proteomics,2002,1:376-386
    90. Payton M, Auty R, Delgoda R, Everett M, Sim E. Cloning and characterization of arylamine N-acetyltransferase genes from Mycobacterium smegmatis and Mycobacterium tuberculosis:increased expression results in isoniazid resistance. J Bacteriol,1999,181:1343-1347
    91. Payton M, Mushtaq A, Yu TW, Wu LJ, Sinclair J, Sim E. Eubacterial arylamine N-acetyltransferases-identification and comparison of 18 members of the protein family with conserved active site cysteine, histidine and aspartate residues. Microbiology,2001,147:1137-1147
    92. Phillips DM. The presence of acetyl groups of histones. Biochem J,1963,87: 258-263
    93. Polevoda B, Sherman F. N-terminal acetyltransferases and sequence requirements for N-terminal acetylation of eukaryotic proteins. J Mol Biol,2003,325:595-622
    94. Posakony J, Hirao M, Stevens S, Simon JA, Bedalov A. Inhibitors of Sir2: evaluation of splitomicin analogues. J Med Chem,2004,47:2635-2644
    95. Ramagopal S, Subramanian AR. Alteration in the acetylation level of ribosomal protein L12 during growth cycle of Escherichia coli. Proc Natl Acad Sci U S A, 1974,71:2136-2140
    96. Riddle B, Jencks WP. Acetyl-coenzyme A:arylamine N-acetyltransferase. Role of the acetyl-enzyme intermediate and the effects of substituents on the rate. J Biol Chem,1971,246:3250-3258
    97. Roth SY, Denu JM, Allis CD. Histone acetyltransferases. Annu Rev Biochem,2001, 70:81-120
    98. Saito A, Yamashita T, Mariko Y, Nosaka Y, Tsuchiya K, Ando T, Suzuki T, Tsuruo T, Nakanishi O. A synthetic inhibitor of histone deacetylase, MS-27-275, with marked in vivo antitumor activity against human tumors. Proc Natl Acad Sci U S A,1999, 96:4592-4597
    99. Saito K, Shinohara A, Kamataki T, Kato R. N-hydroxyarylamine O-acetyltransferase in hamster liver:identity with arylhydroxamic acid N,O-acetyltransferase and arylamine N-acetyltransferase. J Biochem,1986,99:1689-1697
    100. Sandy J, Mushtaq A, Holton SJ, Schartau P, Noble ME, Sim E. Investigation of the catalytic triad of arylamine N-acetyltransferases:essential residues required for acetyl transfer to arylamines. Biochem J,2005,390:115-123
    101. Sandy J, Mushtaq A, Kawamura A, Sinclair J, Sim E, Noble M. The structure of arylamine N-acetyltransferase from Mycobacterium smegmatis--an enzyme which inactivates the anti-tubercular drug, isoniazid. JMol Biol,2002,318:1071-1083
    102. Santos-Rosa H, Valls E, Kouzarides T, Martinez-Balbas M. Mechanisms of P/CAF auto-acetylation. Nucleic Acids Res,2003,31:4285-4292
    103. Schweppe RE, Haydon CE, Lewis TS, Resing KA, Ahn NG. The characterization of protein post-translational modifications by mass spectrometry. Acc Chem Res,2003, 36:453-461
    104. Shahbazian MD, Grunstein M. Functions of site-specific histone acetylation and deacetylation. Annu Rev Biochem,2007,76:75-100
    105. Sim E, Lack N, Wang CJ, Long H, Westwood I, Fullam E, Kawamura A. Arylamine N-acetyltransferases:structural and functional implications of polymorphisms. Toxicology,2008a,254:170-183
    106. Sim E, Sandy J, Evangelopoulos D, Fullam E, Bhakta S, Westwood I, Krylova A, Lack N, Noble M. Arylamine N-acetyltransferases in mycobacteria. Curr Drug Metab,2008b,9:510-519
    107. Sim E, Walters K, Boukouvala S. Arylamine N-acetyltransferases:from structure to function. Drug Metab Rev,2008c,40:479-510
    108. Sim E, Westwood I, Fullam E. Arylamine N-acetyltransferases. Expert Opin Drug Metab Toxicol,2007,3:169-184
    109. Sinclair J, Sim E. A fragment consisting of the first 204 amino-terminal amino acids of human arylamine N-acetyltransferase one (NAT1) and the first transacetylation step of catalysis. Biochem Pharmacol,1997,53:11-16
    110. Sinclair JC, Sandy J, Delgoda R, Sim E, Noble ME. Structure of arylamine N-acetyltransferase reveals a catalytic triad. Nat Struct Biol,2000,7:560-564
    111. Soppa J. Protein acetylation in archaea, bacteria, and eukaryotes. Archaea,2010, 2010
    112. Spange S, Wagner T, Heinzel T, Kramer OH. Acetylation of non-histone proteins modulates cellular signalling at multiple levels. Int J Biochem Cell Biol,2009,41: 185-198
    113. Starai VJ, Celic I, Cole RN, Boeke JD, Escalante-Semerena JC. Sir2-dependent activation of acetyl-CoA synthetase by deacetylation of active lysine. Science,2002, 298:2390-2392
    114. Starai VJ, Escalante-Semerena JC. Identification of the protein acetyltransferase (Pat) enzyme that acetylates acetyl-CoA synthetase in Salmonella enterica. J Mol Biol, 2004,340:1005-1012
    115. Sterner DE, Berger SL. Acetylation of histones and transcription-related factors. Microbiol Mol Biol Rev,2000,64:435-459
    116. Sterner R, Vidali G, Allfrey VG. Studies of acetylation and deacetylation in high mobility group proteins. Identification of the sites of acetylation in HMG-1. J Biol Chem,1979,254:11577-11583
    117. Struhl K. Histone acetylation and transcriptional regulatory mechanisms. Genes Dev,1998,12:599-606
    118. Tanaka S, Matsushita Y, Yoshikawa A, Isono K. Cloning and molecular characterization of the gene rimL which encodes an enzyme acetylating ribosomal protein L12 of Escherichia coli K12. Mol Gen Genet,1989,217:289-293
    119. Tang Y, Zhao W, Chen Y, Zhao Y, Gu W. Acetylation is indispensable for p53 activation. Cell,2008,133:612-626
    120. Thao S, Chen CS, Zhu H, Escalante-Semerena JC. Nepsilon-lysine acetylation of a bacterial transcription factor inhibits its DNA-binding activity. PLoS One, 2010,5:e15123
    121. Theobald DL, Wuttke DS. Accurate structural correlations from maximum likelihood superpositions. PLoS Comput Biol,2008,4:e43
    122. Thomason LC, Costantino N, Court DL. E. coli genome manipulation by P1 transduction. Curr Protoc Mol Biol,2007, Chapter 1:Unit 117
    123. Thompson PR, Kurooka H, Nakatani Y, Cole PA. Transcriptional coactivator protein p300. Kinetic characterization of its histone acetyltransferase activity. J Biol Chem, 2001,276:33721-33729
    124. Thompson PR, Wang D, Wang L, Fulco M, Pediconi N, Zhang D, An W, Ge Q, Roeder RG, Wong J, Levrero M, Sartorelli V, Cotter RJ, Cole PA. Regulation of the p300 HAT domain via a novel activation loop. Nat Struct Mol Biol,2004,11: 308-315
    125. Tsang AW, Escalante-Semerena JC. CobB, a new member of the SIR2 family of eucaryotic regulatory proteins, is required to compensate for the lack of nicotinate mononucleotide:5,6-dimethylbenzimidazole phosphoribosyltransferase activity in cobT mutants during cobalamin biosynthesis in Salmonella typhimurium LT2. J Biol Chem,1998,273:31788-31794
    126. Tse C, Georgieva EI, Ruiz-Garcia AB, Sendra R, Hansen JC. Gcn5p, a transcription-related histone acetyltransferase, acetylates nucleosomes and folded nucleosomal arrays in the absence of other protein subunits. JBiol Chem,1998,273: 32388-32392
    127. Villen J, Beausoleil SA, Gerber SA, Gygi SP. Large-scale phosphorylation analysis of mouse liver. Proc Natl Acad Sci USA,2007,104:1488-1493
    128. Walraven JM, Trent JO, Hein DW. Computational and experimental analyses of mammalian arylamine N-acetyltransferase structure and function. Drug Metab Dispos,2007,35:1001-1007
    129. Walsh CT, Garneau-Tsodikova S, Gatto GJ, Jr. Protein posttranslational modifications:the chemistry of proteome diversifications. Angew Chem Int Ed Engl, 2005,44:7342-7372
    130. Waltzer L, Bienz M. Drosophila CBP represses the transcription factor TCF to antagonize Wingless signalling. Nature,1998,395:521-525
    131. Wang H, Liu L, Hanna PE, Wagner CR. Catalytic mechanism of hamster arylamine N-acetyltransferase 2. Biochemistry,2005,44:11295-11306
    132. Wang H, Vath GM, Gleason KJ, Hanna PE, Wagner CR. Probing the mechanism of hamster arylamine N-acetyltransferase 2 acetylation by active site modification, site-directed mutagenesis, and pre-steady state and steady state kinetic studies. Biochemistry,2004,43:8234-8246
    133. Wang J, Chen J. SIRT1 regulates autoacetylation and histone acetyltransferase activity of TIP60. JBiol Chem,2010,285:11458-11464
    134. Wang Q, Zhang Y, Yang C, Xiong H, Lin Y, Yao J, Li H, Xie L, Zhao W, Yao Y, Ning ZB, Zeng R, Xiong Y, Guan KL, Zhao S, Zhao GP. Acetylation of metabolic enzymes coordinates carbon source utilization and metabolic flux. Science,2010, 327:1004-1007
    135. Watanabe M, Sofuni T, Nohmi T. Involvement of Cys69 residue in the catalytic mechanism of N-hydroxyarylamine O-acetyltransferase of Salmonella typhimurium. Sequence similarity at the amino acid level suggests a common catalytic mechanism of acetyltransferase for S. typhimurium and higher organisms. J Biol Chem,1992, 267:8429-8436
    136. Weber WW, Cohen SN. N-acetylation of drugs:isolation and properties of an N-acetyltransferase from rabbit liver. Mol Pharmacol,1967,3:266-273
    137. Westwood IM, Holton SJ, Rodrigues-Lima F, Dupret JM, Bhakta S, Noble ME, Sim E. Expression, purification, characterization and structure of Pseudomonas aeruginosa arylamine N-acetyltransferase. Biochem J,2005,385:605-612
    138. Westwood IM, Kawamura A, Fullam E, Russell AJ, Davies SG, Sim E. Structure and mechanism of arylamine N-acetyltransferases. Curr Top Med Chem,2006,6: 1641-1654
    139. Windmill KF, McKinnon RA, Zhu X, Gaedigk A, Grant DM, McManus ME. The role of xenobiotic metabolizing enzymes in arylamine toxicity and carcinogenesis: functional and localization studies. Mutat Res,1997,376:153-160
    140. Witze ES, Old WM, Resing KA, Ahn NG Mapping protein post-translational modifications with mass spectrometry. Nat Methods,2007,4:798-806
    141. Wu H, Dombrovsky L, Tempel W, Martin F, Loppnau P, Goodfellow GH, Grant DM, Plotnikov AN. Structural basis of substrate-binding specificity of human arylamine N-acetyltransferases. JBiol Chem,2007,282:30189-30197
    142. Xie AY, Bermudez VP, Folk WR. Stimulation of DNA replication from the polyomavirus origin by PCAF and GCN5 acetyltransferases:acetylation of large T antigen. Mol Cell Biol,2002,22:7907-7918
    143. Yang XJ, Seto E. Lysine acetylation:codified crosstalk with other posttranslational modifications. Mol Cell,2008,31:449-461
    144. Yang YY, Hang HC. Chemical approaches for the detection and synthesis of acetylated proteins. Chembiochem,2011,12:314-322
    145. Yoshida M, Kijima M, Akita M, Beppu T. Potent and specific inhibition of mammalian histone deacetylase both in vivo and in vitro by trichostatin A. J Biol Chem,1990,265:17174-17179
    146. Yoshikawa A, Isono S, Sheback A, Isono K. Cloning and nucleotide sequencing of the genes riml and rimJ which encode enzymes acetylating ribosomal proteins S18 and S5 of Escherichia coli K12. Mol Gen Genet,1987,209:481-488
    147. Yu BJ, Kim JA, Moon JH, Ryu SE, Pan JG. The diversity of lysine-acetylated proteins in Escherichia coli. J Microbiol Biotechnol,2008,18:1529-1536
    148. Yue T, Haab BB. Microarrays in glycoproteomics research. Clin Lab Med,2009, 29:15-29
    149. Zeng L, Zhang Q, Li S, Plotnikov AN, Walsh MJ, Zhou MM. Mechanism and regulation of acetylated histone binding by the tandem PHD finger of DPF3b. Nature,2010,466:258-262
    150. Zhang J, Sprung R, Pei J, Tan X, Kim S, Zhu H, Liu CF, Grishin NV, Zhao Y. Lysine acetylation is a highly abundant and evolutionarily conserved modification in Escherichia coli. Mol Cell Proteomics,2009,8:215-225
    151. Zhang K, Zheng S, Yang JS, Chen Y, Cheng Z. Comprehensive Profiling of Protein Lysine Acetylation in Escherichia coli. JProteome Res,2013,12:844-851.
    152. Zhang N, Liu L, Liu F, Wagner CR, Hanna PE, Walters KJ. NMR-based model reveals the structural determinants of mammalian arylamine N-acetyltransferase substrate specificity. J Mol Biol,2006,363:188-200
    153. Zhang Q, Yao H, Vo N, Goodman RH. Acetylation of adenovirus E1A regulates binding of the transcriptional corepressor CtBP. Proc Natl Acad Sci U S A,2000,97: 14323-14328
    154. Zhang W, Bieker JJ. Acetylation and modulation of erythroid Kruppel-like factor (EKLF) activity by interaction with histone acetyltransferases. Proc Natl Acad Sci U S A,1998,95:9855-9860
    155. Zhao S, Xu W, Jiang W, Yu W, Lin Y, Zhang T, Yao J, Zhou L, Zeng Y, Li H, Li Y, Shi J, An W, Hancock SM, He F, Qin L, Chin J, Yang P, Chen X, Lei Q, Xiong Y, Guan KL. Regulation of cellular metabolism by protein lysine acetylation. Science,2010,327: 1000-1004
    156. Zhu H, Bilgin M, Bangham R, Hall D, Casamayor A, Bertone P, Lan N, Jansen R, Bidlingmaier S, Houfek T, Mitchell T, Miller P, Dean RA, Gerstein M, Snyder M. Global analysis of protein activities using proteome chips. Science,2001,293: 2101-2105
    157. Zhu H, Klemic JF, Chang S, Bertone P, Casamayor A, Klemic KG, Smith D,158. Gerstein M, Reed MA, Snyder M. Analysis of yeast protein kinases using protein chips. Nat Genet,2000,26:283-289
    158. Zhu H, Snyder M. Protein arrays and microarrays. Curr Opin Chem Biol,2001,5: 40-45
    159. Zhu H, Snyder M. Protein chip technology. Curr Opin Chem Biol,2003,7:55-63

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700