用户名: 密码: 验证码:
大体积桥塔既有裂纹在温度疲劳荷载下扩展概率研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
混凝土导热性能极差,体积庞大的混凝土桥塔暴露于自然环境中时,会因外界环境因素变化的影响产生非线性温度分布,从而导致拉压循环的温度疲劳应力,同时由于桥塔的结构要求,常规的设置伸缩缝消散温度应力的方式难以奏效。而裂纹是混凝土不可避免的问题,在裂纹尖端存在的应力集中现象,使混凝土抗疲劳性能大为劣化,裂纹继续扩展的可能性非常大。目前因为结构设计中混凝土抗拉强度假设为零以及混凝土不受拉的通行结构设计理念,使得关于带裂纹的混凝土拉压循环疲劳性能研究还鲜有涉足。本文对带预裂纹的混凝土拉压循环疲劳特性进行了试验研究与分析处理,并结合某斜拉桥大体积桥塔的温度观测与温度应力计算,对桥塔即有裂纹在温度疲劳荷载下的扩展概率进行分析。在国家自然科学基金项目(50908184)资助下,全文作了如下研究工作:
     (1)在对混凝土拉压疲劳试验方法深入了解的基础上,设计并进行了带有预制裂纹混凝土试件的拉压循环疲劳试验,对疲劳试验的结果进行了分析整理,作出了S-N、P-N、P-S-N疲劳曲线。并使用极大似然法测定疲劳性能曲线,对试验结果可靠性进行了验证。将指数形式S-N表达式变形整理为更为直观的疲劳应力S与疲劳寿命对数值lgN之间一次、二次、三次多项式形式,确立带预裂纹混凝土疲劳应力与疲劳寿命的对应关系。并采用Goodman直线与Gerber二次抛物曲线形式,给出了带预制裂纹C50混凝土的等寿命疲劳图。
     (2)由试验过程中测得的试件变形量与疲劳荷载循环次数的a-N关系曲线,将带预制裂纹混凝土裂纹开展划分为四个阶段,对各个阶段的开裂机理进行分析,得出了骨料质量(强度与形状)对带裂纹混凝土疲劳寿命有着极为重要的意义。
     (3)提出潜行裂纹面和等效潜行裂纹假说,解决了因混凝土材料自身的离散性,难以准确把握不同位置处裂纹开展真实情况的问题,同时得出可以忽略初始裂纹深、宽度的简化公式,使试验与分析结果更能适用于初始裂纹深度与宽度不确定的实际工程应用。
     (4)使用割线法与最小二乘法得到疲劳裂纹扩展速率与应力强度因子变程之间的关系,给出了混凝土在不同存活率下,Pairs裂纹扩展模型中重要疲劳参数C、m值的取值范围。
     (5)针对体积较大的混凝土桥塔温度应力分析,做了六条基本假定,对系统进行适当的简化,建立能反映温度场和温度应力的主要影响因素和内在规律、即满足实际需要又切实可行的分析模型。进行了第三类边界条件与第一类边界条件的分析比对,选用适当的边界条件对桥塔进行温度应力分析。
     (6)使用ABAQUS有限元分析软件,按为期四个月的桥塔实测外界自然环境为基础,对所选桥塔节段进行了温度场与温度应力场分布的计算,并由有限元分析得到的温度场与温度应力分布结果,并依此作出温度疲劳荷载谱。
     (7)使用MATLAB软件编辑了使用雨流法处理温度应力疲劳荷载谱的程序流,得到均值与幅值循环数分布,及均值幅值联合概率密度图。证明温度疲劳荷载循环中的均值与幅值均近似服从正态分布,荷载均、幅值循环服从高斯分布。
     (8)利用Lin-Yang裂纹扩展模型,引入随机变量过程,导出裂纹扩展概率密度公式。使用无限寿命安全可靠性模型定性分析裂纹扩展到须处理标准的可能性并基于裂纹扩展随机性的安全可靠性模型,得到裂纹扩展到须处理标准随时间的累积概率。
With the poor heat conduction performance and the influence of external environment factors, the mass concrete bridge tower, exposing to the natural environment, is in nonlinear temperature distribution and leading to tension and compression cycle temperature fatigue stress. Furthermore, the conventional way by establishing expansion joints to dissipate temperature stress doesn't work because of the bridge tower structure requirement. At the same time, the crack is an inevitable problem of concrete, and the stress concentration phenomenon existing in the crack tip makes the concrete fatigue performance greatly degrade and the crack extension possibility is very large. At present, the research of pre-crack concrete fatigue performance is very few because the structure design concept is that the concrete tensile strength is zero. Based on the research and analysis of pre-crack concrete fatigue characteristic test in combination with observation and calculation of the temperature stress of the cable-stayed bridge tower, the reliability analysis of crack extension is done. With the national natural science fund project (50908184), the following researches are carried out:
     (1) A tension and compression fatigue test of pre-crack concrete is designed and carried out based on the in-depth understanding of existing concrete fatigue test methods. The fatigue test results are analyzed earnestly and the S-N, P-N, P-S-N fatigue curves are plotted. Furthermore, the maximum likelihood method of fatigue performance curves is used to verify the reliability of test results. The pre-crack concrete fatigue stress (S) and fatigue life (N) corresponding formula is established by deforming the index form S-N expression to more intuitive linear, quadratic, cubic polynomials on the fatigue stress (S) and fatigue life logarithm form (lgN).
     (2) By analyzing the a-Ncurve of the deformation and fatigue loading cycle times, the crack propagation process of pre-crack concrete is divided into four stages and it is concluded that the aggregate quality (strength and shape) plays a very important role in pre-crack concrete fatigue life.
     (3) The equivalent hidden crack model is put forward to solve the problem that it is difficult to accurately grasp the true propagation process of the cracks at different locations because of the discreteness of concrete material itself. Meanwhile the simplified formula that can ignore the initial crack depth and width is obtained and the analysis results are more applicable in the actual engineering projects in which the initial crack depth and width is variable.
     (4) By using the secant method and the least square method, the relationship between the fatigue crack propagation rate and the stress intensity factor variation is established and the important fatigue parameters in Pairs formula, C and m, at different survival rates are given. The constant life fatigue diagram of C50pre-crack concrete is drawn by the means of the Goodman linear and Gerber quadratic parabolic curve.
     (5) To felicitously simplify the system and build a feasible model, the six fundamental assumptions, which can be used to report the influencing factors and inherent laws on the temperature field and stress of mass concrete bridge tower, are supposed. By comparing the third boundary condition and the first boundary condition, the appropriate boundary conditions on the bridge tower temperature stress analysis is chosen.
     (6) According to the observation of the external natural environment for four months, the temperature and stress field distribution analysis of the selected bridge tower segment is calculated by using ABAQUS finite element analysis software. The temperature fatigue load spectrum is made based on the temperature and stress field distribution results.
     (7) To get mean and amplitude cycle number distribution and mean-amplitude joint probability density diagram, the process flow of the temperature fatigue load spectrum, performed by the rain flow method, is edited by using MATLAB software. It can be proved that both the mean and amplitude cycle number distribution of temperature fatigue loading obey the normal distribution and the load cycle characteristics are in two-parameter lognormal distribution.
     (8) The crack propagation probability density formula is derived by using Lin-Yang crack propagation model and introducing random variable process. The possibility of cracks extending to the damaging level is analyzed with infinite life safety reliability model and the cumulative probability of crack extension over time is founded on the safety reliability model of crack extension randomness.
引文
[1]罗国强,罗刚,罗诚.混凝土与砌体结构裂缝控制技术[M].北京:中国建材工业出版社,2006
    [2]Cornelissen H A W. Fatigue failure of concrete intension[J].Heron,1984,29(4):1—68
    [3]高镇同,傅惠民,梁美训.S-N曲线拟合法[J].北京航空学院学报.1987(1):115-119
    [4]徐灏.疲劳强度[M].北京:高等教育出版社.1988
    [5]Xiong J J, Shemoi R A. A Practical Randomization Approach of Deterministic Equation to Determine Probabilistic Fatigue and Fracture Behaviours Based on Small Experimental Data Sets. Intermational Journal of Fracture.2007.145:273-283
    [6]熊峻江.疲劳断裂可靠性工程学[M].北京:国防工业出版社.2008
    [7]熊峻江,高镇同.疲劳损伤概率分布及疲劳寿命统计[J].中国科学.1997,27(2):91-101
    [8]李永强,车惠民.在等幅重复应力作用下混凝土弯曲疲劳性能研究[J].铁道学报,1999,21(2):76-79
    [9]董毓利,谢和平,赵鹏.不同应变率混凝土受压全过程的实验研究及其本构模型[J].水利学报,1997,(7):72-77
    [10]尚仁杰.混凝土动态本构行为研究[D].大连:大连理工大学,1994
    [11]张建宇,费斌军.疲劳裂纹扩展随机过程相关参数的估计[J].北京航空航天大学学报.June 1998, Vol.24 No.3:308-310
    [12]Rutzel S, Lee S I, Raman A. Nolinear Dynamics of Atomic-force-microscope Probe Driven in Leonard-Jones Potential[J]. Proceeding of the Royal Society in London.2003,459(2036): 1925-1948
    [13]Yu R, Ruiz G. Explicit Finite Element Modeling of Static Crack Propagation in Reinforced Concrete[J]. International Journal of Fracture.2006(3):357-372.
    [14]王恒.疲劳破坏随机预测模型的研究及应用[J].土木工程学报.1999,32(2):71-74
    [15]曹伟大,宋玉普.多级加载下混凝土疲劳寿命的分岔现象探讨[J].大连理工大学学报.2003,43(5):659-662
    [16]李朝阳.钢筋混凝土结构的疲劳性能研究[D].大连:大连理工大学.2000.11
    [17]杨树桐.基于断裂力学的钢筋、FRP与混凝土界面力学特性研究[D].大连:大连理工大学.2008.
    [18]Li-Ping Guo.Wei Sun,Ke-Ren Zheng, Study on the flexural fatigue performance and fractal mechanism of concrete with high proportions of ground granulated blast-furnace slag [J], Cement and Concrete Research,2007 (37) 242-250
    [19]Andrea Carpinteri, Andrea Spagnoli, Sabrina Vantadori. A multifractal analysis of fatigue crack growth and its application to concrete[J]. Engineering Fracture Mechanics.77 (2010) 974-984
    [20]Santosh G. Shah, J.M. Chandra Kishen. Use of acoustic emissions in flexural fatigue crack growth studies on concrete[J]. Engineering Fracture Mechanics.87 (2012) 36-47
    [21]杨建辉.侧压下混凝土静态受拉与受压疲劳性能研究[D].大连:大连理工大学,2003
    [22]曹伟.定侧压下混凝土三轴疲劳性能试验与理论研究[D].大连:大连理工大学,2004
    [23]宋玉普.多种混凝土材料的本构关第和破坏准则[M].北京:中国水利水电出版社,2002
    [24]Fidelis Rutendo Mashiri,Xiao-Ling Zhao. Square hollow section (SHS) T-joints with concrete-filled chords subjected to in-plane fatigue loading in the brace[J]. Thin-Walled Structures 48(2010)150-158
    [25]王瑞敏,宋玉普,赵国藩.混凝土的受压疲劳性能研究[J].土木工程学报.1991,24(4):38-47
    [26]王瑞敏.混凝土结构的疲劳性能研究[D].大连:大连理工大学,1989
    [27]Hui Li,Mao-hua Zhang, Jin-ping Ou. Flexural fatigue performance of concrete containing nano-particles for pavement[J]. International Journal of Fatigue 29 (2007) 1292-1301
    [28]刘长虹,沈梦月.多级加载下混凝土疲劳寿命的分岔现象探讨[J].大连理工大学学报.2001,20(6):894-896
    [29]吴佩刚,赵光仪,白利明.高强混凝土抗压疲劳性能研究[J].土木工程学报,1994,27(3):33-40
    [30]S. Goel, S.P. Singh, P. Singh. Flexural fatigue strength and failure probability of Self Compacting Fibre Reinforced Concrete beams[J]. Engineering Structures 40 (2012) 131-140
    [31]Considere, M. Infuence des armatures metalligues sr les proprieties des mortiers et betons[J]. Compte Rendu de I'academie Des Sciences.1989,127:992-995.
    [32]Graf O and Brenner E. ExPeriments for investigating the resistance of conerete under often repeated compression loads [J].Deutseher Ausschuss for Eisenbeton. Bulletins.1934,1(76):17-25
    [33]Graf O and Brenner E.Experiments for investigating the resistance of concrete under often repeated compression loads[J]. Deutscher Aussehuss fur Eisenbeton.Bulletins,1936,2(83):45-53
    [34]Satio M and ImaiS. Direet tensile fatigue of conerete by the use of friction Grips[J]. ACIJ., 1983,80(5):431-438
    [35]William G B, Mark J M, Jamshid Metal.Fatigue reliability reassessment Applications:Stata-of-the-art paper. Journal of Structural Engineering,1997,23(3)
    [36]Surya K R, Fred M, and Charles G S.Reliability calibration of fatigue evaluation and design procedures. Journal of Struetural Engineering,1990,116(5)
    [37]MeCall J T. Probability of fatigue of plain concrete[J]. ACI. Journal, Proeeedings.1958, 55(2):233-444
    [38]zielinsk A J, Reinhard H W. and Kormeling H A.Experiments on concrete under repeated unlaxial impact tensile loading[J].Materials and Structures,1981,14(81):163-169
    [39]宋玉普.混凝土结构的疲劳性能及设计原理[M].北京:机械工业出版社.2006
    [40]ACI Committee215. Considerations for design of concrete structure subjected to fatigue loading. Journal of ACI. Proceedings 71(3).1974
    [41]AASHTO. Standard Specification for Highway Bridge[S].1977
    [42]CEB Bluuetin D. Information No.196:CEB-FIP Model Code 1990[S].1990
    [43]中华人民共和国国家标准.铁路桥涵设计规范TBJ-85.北京:中国铁道出版社,1985
    [44]中华人民共和国国家标准.铁路土程结构可靠度设计统一标准GB50216-94.北京:中国计划出版社,1994
    [45]吴佩刚,赵光仪,白利明.高强混凝土抗压疲劳性能研究[J].土木工程学报.1994,27(3):3340
    [46]俞茂宏,赵均海,郑树俊.复杂应力下混凝士疲劳强度的试验研究[J].西安交通大学学报,1998,32(3):1-8
    [47]姜海波,车惠民.即有铁路混凝土梁疲劳与承载力可靠性评估[J].土木工程学报.2000,33(1)27-31
    [48]赵东拂.混凝土多轴疲劳破坏准则研究[D].大连:大连理工大学.2002
    [49]吕培印.混凝土单轴、双轴动态强度和变形试验研究[D]大连:大连理工大学.2001
    [50]曹伟.定侧压下混凝土三轴疲劳性能试验与理论研究[D].大连:大连理工大学.2004
    [51]宋玉普,吕培印.混凝土轴心拉-压疲劳性能研究[J].建筑结构学报.2002,23(4):36-41
    [52]Miner M. A. Cumulative fatigue damage[J]. Journal of the Applied Mechanics. 1945,67(12):159-164
    [53]Corten H.Y. Cumulative fatigue damage[J]. Proceed of the Inter. Confer on Fatigue of Materials. ME and ASME,1956
    [54]Manson S.S. Application of a double linear damage rule to cumulative fatigue[J]. ASTM STP415.1967
    [55]Shah S.P..Predictions of cumulative damage for concrete and reinforced concrete[J]. Materials and constructions.1984,17(97):65-68
    [56]吴佩刚,赵光仪.高强混凝土抗压疲劳性能研究[J].土木工程学报.1994,27(3):3340
    [57]Enrique Castillo, Alfonso Fernandez-Canteli. A general regression model for lifetime evaluation and prediction[J]. International Jouranl of Fracture.2001,107:117-137
    [58]John T. Probability of fatigue failure of plain concrete[J]. Journal of the American Concrete Institution.1958,30(2):233-244
    [59]E.Hansen, K. Willam. A two-surface anisotropic damage plasticity model for plain concrete[J]. Fracture Mechanics of Concrete Materials.2001:540-556
    [60]D.Yang. Adistribution function for the fatigue life of concrete[J]. Magazine of Concrete Research.1994,46(168):215-221
    [61]董聪.疲劳寿命分布模型的统一描述[J].强度与环境.1996,3:1-7
    [62]李靖华,李果,刘刚.混凝土疲劳寿命规律预测新方法[J].大连理工大学学报.1997,37(1) 115-121
    [63]宋玉普.多种混凝土材料的本构关系和破坏准则[M].北京:中国水利水电出版社.2002
    [64]Priestley M J N. The thernnal response of concrete bridges[J]. In:Cope R J. Concrete Bridge Engineering:Performance and Advances. London:Elsevier APPlied Seience Publishers Ltd. 1987:143-187
    [65]Kennedy J. B, Soliman M.H. Temperature distribution in composite bridges[J]. Journal of Structural Engineering. ASCE.1987,113(3):475-482
    [66]Ariyawardena N, Ghali A, Elbadry M. ExPerimental Study on thermal cracking in reinforced conerete members[J]. Structural Journal. ACI.1997,94(4)
    [67]Dilger W. H, Amin Ghali, Chan Metal. Temperature stress in composite box girder bridges[J]. Journal of Structural Engineering. ASCE.1983,109(6):1460-1479
    [68]Thurston S. JPriestley M. J. N, Cooke N. Influence of Cracking on Thermal response of remforced concrete bridses[J]. Concrete Intenational. ACI.1984,6(8):36-43
    [69]Rahman F, George K.P. Thermal stresses in skew bridge by model test[J]. Journal of the Structural Division. ASCE.1980,106(1):39-58
    [70]JTGD62-2004.公路钢筋混凝土及预应力混凝土桥涵设计规范
    [71]铁道部第四工程局科研所等.空心高桥墩温度应科学试验阶段报告.长沙.1976
    [72]铁道部科学研究院西南研究所桥梁室温度应力专题组.九江大桥混凝土箱形梁日照温度场与温度应力的实验研究报告.成都.1984
    [73]铁道部科学研究院西南研究所桥梁室温度应力专题组.红水河斜拉桥双室箱梁日照温度场及温度应力电算分析.成都.1984
    [74]雷笑,叶见曙,王毅,吴文清.基于长期观测的混凝土箱梁温度与应变分析[J]江苏大学学报.2000,31(2):230-234
    [75]刘兴法.预应力混凝土箱梁温度应力计算方法[J].土木工程学报.1986,19(1):44-54
    [76]张建荣,周元强.太阳辐射对混凝土箱梁温度效应的影响[J].同济大学学报(自然科学版).2008,Vo136(11):1479-1484
    [77]张建荣,周元强.混凝土箱梁温度作用效应的时程分析[J].湖州职业技术学院学报.2008,1:1-6
    [78]彭友松,朱晓文,强士中.混凝土箱梁温度应力三维分析[J].铁道学报.2009,Vol39(3):116-121
    [79]彭友松,强士中.公路混凝土箱梁三维温度应力计算方法[J].交通运输工程学报.2007,Vol7(1):63-67
    [80]Repfers R, Kutti T. Fatigue strength of plain, ordimary and lightweight concrete [J]. ACI J.May,1979:635-652
    [81]Conelissen H A W, Reinhardt H U. Umiaxilal tensile fatigue failure of concrete under constant amplitude amd program loading[J].Mag Of Concrete Research, Dec.1984,36(129): 216-227
    [82]宋玉普.混凝土结构的疲劳性能及设计原理[M].北京:机械工业出版社,2005
    [83]吕培印.混凝土单轴、双轴动态强度和变形试验研究[D].大连:大连理工大学,2011
    [84]赵东拂.混凝土多轴疲劳破坏准则研究[D].大连:大连理工大学.2002
    [85]混凝土结构构造手册[S].中国建筑工业出版社.2005
    [86]高镇同,《疲劳应用统计学》,北京,国防工业版社,1984
    [87]余寿文,冯西桥.损伤力学[M].北京:清华人学出版社,1997
    [88]宋玉普,赵国藩.混凝土内时损伤本构模型[J].大连理工大学,1990,30(5):577-583
    [89]李朝阳.钢筋混凝土结构的疲劳性能研究[D].大连:大连理工大学,2000
    [90]Grrzybowski M and Meyer C.Damage accumulation in concrete with and without fiber reinforcement[J].ACI Materials Jounal,1993,90(6):594-604
    [91]宋玉普,赵顺波,王瑞敏等.钢筋混凝土疲劳性能的非线性有限单元法分析[J].海洋学报,1993,15(3):116-125
    [92]A-Gadhib A H, Balueh M H, Shaalan A etal. Damage model for monotonic and fatigue response of high strength conerete[J]. International Journal of Damage Mechanics.2000, 9(l):57-78
    [93]赵少汴.抗疲劳设计[M].北京:机械工业出版社,1994
    [94]张行.断裂与损伤力学[M].北京:北京航空航天大学出版社,2009
    [95]王金来.混凝土双K断裂参数的确定[D].大连:大连理工大学.1999
    [96]Park S W, Xiao and Zhou M. Dynamic behavior of conerete at high strainrates and pressures [J].International Journal of Impact Engineering,2001,25(9):887-910
    [97]Subramaniam K V, Popovies J S and Shah S P. Fatigue response of concrete subjeeted to biaxial stresses in the compression-tension region[J]. ACT Materials Journal,1999,96(6):663-669
    [98]Buyukozturko and Tseng T M. Conerete in biaxial cyclic compression[J]. Journal of structural engineering,1984,110(3):461 — 476
    [99]欧进萍,林燕清.混凝土疲劳损伤的强度和刚度衰减试验研究[J].哈尔滨建筑大学学报.1998,31(4):1-8
    [100]张秀芳.混凝土裂缝扩展全过程的新GR阻力曲线理论和能量转化分析[D].大连:大连理工大学,2006
    [101]Van Mier J G M. Mode I fracture of concrete:Discontinuous crack growth and crack interface grain bridging[J]. Cement and Concrete Research,1991,21(1):1-15.
    [102]Shah S P, Ouyang C. Measurement and Modeling of frature processes in concrete[M]. Materials Science of concrete, edited by Scalny J, Amercian Ceramic Society, Westerville OH, 1992.
    [103]Mindess S. Fracture Process Zone Detection. Fracture Mechanics Test Method for Concrete, Report of Techincal Committee 89-FMT, RILEM,Chapman and Hall,1991.
    [104]Shum K M, Hutchinson J W. On Toughening by microcracks, Mechanics of Materials, 1990,9:83-91.
    [105]Hillerborg A. A Analysis of Crack Formation and Crack Growth in Conerete by means of Fracture Mechanies and Finite Elements[J]. Cement and Conerete Researeh,1976,6:773-782.
    [106]Hillerborg A. The theoretical basis of method to determine the fracture energy G of conerete [J].Materials and Structures,1985,18(106):291-296
    [107]Bazant Z P. Size effect in blunt frature:concrete, rock, metal[J].Joumal of Engineering Mechanics, ASCE,1984,110(4):518-535.
    [108]Nelson D V. Review of fatigue-crack-growth prediction methods[J]. Experimental Mechanics, Journal of the Society for Expreimental Stress Analysis.1977.2:41-49
    [109]宋玉普.混凝土结构的疲劳性能及设计原理[M].北京:机械工业出版社.2006
    [110]范天佑.断裂理论基础[M].八日京:科学出版社.2003
    [111]邱崇光,吕运冰,张汉兴.岩石混凝土断裂力学[M].武汉:武汉工业大学出版社.1991
    [112]赵建生.断裂力学及断裂物理[M].武汉:华中科技大学出版社.2003
    [113]F.W.Smith, The elastic analysis of the part-circular surface flaw problem by the alternation method[S], The Surface Crack. ASME. New York.1972
    [114]R.C.Shah, A. S. Kobayashi. On the surface flaw problem[S]. The Surface Crack. ASME. New York,1972
    [115]F.W.Smith, A.S.Kobayashi, A.F. Emery, Stress intensity factors for semi-circular crack[J]. J. Appl. Mcch.1967,Vol.34,953-959
    [116]NEWMAN J C, RAJU I S.Stress Intensity Factor Equations for Cracks in Three Dimensional Finite Bodies[J]. Fracture Mechanics Vol.1:Theory and Analysis, ASTM STP 791. 1982:238-269
    [117]PARMERTER R R. Stress Intensity Factors for Three Dimensional Problems[M]. AD A0250802.1976
    [118]张行.断裂力学中应力强度因子的解法[M].北京:国防工业出版社.1992
    [119]郑荣跃,徐永春,林安珍.a-N曲线的微分方程拟合法[J].Steel Construction. 2004(6),Vol.19:31-33
    [120]G.R.Irwin, Crack-extension force for a part-through crack in a plate[J]. J.AppMeoh.1962,Vol.29,651-654
    [121]陈传尧.疲劳与断裂[M].武汉:华中科技大学出版社.2002
    [122]Shah. S. P. Predictions of cumulative damage for concrete and reinforced concrete[J]. Materials and Construction,1984,17(97)56-68:
    [123]Oh, Byung Hwam. Cumulative damage theory of concrete under variable-amplitude fatigue loadings[J], ACI Materials Journal.1991,88(l):41-48.
    [124]Corten H. T.,Cumulative fatigue damage[J]:Proceed. Of the Inter. Confer on Fatigue of Materials, IME and ASME,1956
    [125]平安.疲劳载荷谱编制准则与寿命疲劳研究[D].吉林:东北工学院,1992
    [126]Enrique Castillo, Alfonso Fernandez-Canteli. A general regression model for lifetime evaluation and prediction[J]. International Jouranl of Fracture.2001,107:117-137
    [127]赵镇南,传热学[M],高等教育出版社,2003
    [128]顾骏强,科技通报[S],浙江大气透明度分析1998,11,30-34
    [129]方先金.中国大气透明度系数研究[J].南京气象学院学报,1995,8(3),293—305
    [130]黄厚诚,王秋良.热传导问题的有限元分析[M].北京:科学出版社,2011
    [131]刘兴法.预应力混凝土箱梁温度应力计算方法[J].土木工程学报,1986,19(1):44-54
    [132]Priestley M J N.The themal response of concrete bridges[J].In:Cope R J.Concrete Bridge Engineermg:Performance and Advances. London:Elsevier Applied Seience Publishers Ltd., 1987:143-18
    [133]Kennedy J. B,Soliman M.H. Temperature distribution in composite bridges[J]. Journal of Struetural Engineering, ASCE,1997,113(3):475-482
    [134]张钥,胡兆同,贾润中.钢筋混凝土连续弯箱梁桥的温度梯度[J].长安大学学报(自然科学版),2006,26(4):58-62
    [135]庄茁.基于ABAQUS的有限元分析和应用[M].北京:清华大学出版社,2007
    [136]曹金凤,石亦平ABAQUS有限元分析常见问题与解答[M].北京:机械工业出版社,2009
    [137]叶见曙,贾琳,钱培舒.混凝土箱梁温度分布观测与研究[J].东南大学学报,2002,32(5):188-193
    [138]张元海,李乔.桥梁结构日照温差二次力及温度应力计算方法研究[J].中国公路学报2004,17(1):49-52
    [139]林建筑.泉州后渚大桥温度场测试与温度内力分析[J].福州大学学报(自然科学版),2005,33(5):654-660
    [140]Tindal T. T, Yoo C. H. Thermal effects on skewed steel highway bridges and bearing orientation[J] Jouranl of Bridge Engineering, ASCE,2003,8(2):57-65
    [141]Chang S. P, Im C. K. Thermal behavior of composite box-girder bridges[J]. Proc. of the Instn Civ. Engrs Structs & Blds,2000,140, May,117-126
    [142]张元海,李乔.预应力混凝土连续箱梁桥的温度应力分析[J].土木工程学报,2006,39(3):98-102
    [143]张德川..MATLAB概率与数理统计分析[M].北京:机械工业出版社,2010
    [144]周品,何正风.MATLAB数值分析[M].北京:机械工业出版社,2009
    [145]赵楠,刘治远.雨流法在寿命损耗实时计算模型中的应用[J].煤炭技术,2010,29(11):40-42
    [146]SONG Yupu, LI Chaoyang, WANGLicheng. Rain-Flow and Reverse Rain-Flow Counting Method for the Compilation of Fatigue Load Spectrum[J]. China Ocean Engineering,2001, Vol 15(3):429-435
    [147]T Kadir, A Zisserman, M Brady. An affine invariant salient region detector[J]. Lecture Notes in Computer Science.2004:228-241
    [148]D. G. Lowe. Distinctive image features from scale-invariant keypoints[J]. International Journal of Computer Vision.2004, Vol 60(2):91-110
    [149]K Mikolajczyk, C Schmid. Scale& affine invariant interest point detectors[J]. International Journal of Computer Vision.2004, Vol 60(1):63-86
    [150]攀玲,张晓玲.基于联合多目标概率密度模型的多目标检测前跟踪算法[J].计算机应用,2012,Vol 32(7):2066-2069
    [151]漆志鹏,李园庭,毕公平.正态分布的概率密度函数的一个应用[J].南昌航空大学学报(自然科学版)2011,Vol 25(2):20-22
    [152]金奕山,李琳.雨流循环均值-幅值二维联合概率密度的实用算法[J].振动与冲击,2003,Vol 22(4):54-58
    [153]L Yin, R Yang, M Gabbouj. Weighted median filters:a tutorial[J]. IEEE Transactions on Circuits and Systems Ⅱ:Analog and Digital Signal Processing.1996,43(3):157-192
    [154]周太全.桥梁构件局部热点应力分析及其疲劳损伤累积过程模拟[D].江苏:东南大学,2003
    [155]D Barash, D Comaniciu. A common framework for nonlinear difiusion, adaptive smoothing, bilateral filtering and mean shift[J]. Image and VisionComputing.2004,22(1):73-81

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700