用户名: 密码: 验证码:
香菇分子遗传图谱构建和数量性状座位(QTL)分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究对香菇与产量、品质密切相关的若干重要数量性状及其相互关系进行了较系统的遗传分析。同时以野生香菇菌株HW21的131个孢子单核体为作图群体,构建了包括RAPD、ISSR、SRAP和SSR标记在内的第一张香菇混合分子标记遗传连锁图谱,并对香菇双核体和单核体的主要数量性状进行了QTL定位研究,主要结果如下:
     1.以采自湖北省神农架国家自然保护区腹地的野生香菇菌株HW21为亲本双核体,用常规交配试验及OWE-SOJ技术、核迁移试验等对其所产生的238个担孢子的交配型进行了准确鉴定,从中选取分属于A1B1、A2B2、A1B2和A2B1等4种基本交配型的113个担孢子及属于次级重组体的18个担孢子,构建了一个总数为131个孢子单核体的规模较大、遗传多样性较为丰富的作图群体。同时还选取2个野生菌株、2个栽培菌株的原生质体单核体或孢子单核体作为测交单核体,与作图群体的孢子单核体交配,获得了4个系列的测交双核体,为后续的数量性状的遗传分析、分子连锁遗传图谱的构建和QTL定位分析等工作的开展奠定了良好的基础。
     2.对香菇双核体的鲜菇产量、单菇鲜重等17个数量性状进行了表型、遗传及环境的相关分析和主成分分析。由相关分析结果可知,单菇鲜重与有关单菇的其他5个性状在表型、遗传和环境等3个方面都存在极显著的正相关,与菇数存在3种极显著的负相关,与CMC酶活性、木聚糖酶活性分别呈显著和极显著遗传负相关。鲜菇产量与出菇期和原基期呈极显著的表型和遗传负相关,与菇数、两种菌丝生长速度及菇盖厚度呈极显著的遗传正相关。主成分分析结果表明,17个性状可以缩减为6个主成分,按方差贡献率大小分别命名为单菇、发育、产量、酶活、原基和转色因子,6个主成分的方差累积贡献率为80.23%。
     对单核体的菌丝长速、胞外酶活性等11个性状进行相关分析发现,单核体两种菌丝长速和抗木霉活性三个性状之间存在显著或极显著表型和遗传正相关;CMC酶活性与漆酶活性之间存在极显著表型和遗传正相关;漆酶活性与愈创木酚氧化酶活性之间也存在极显著表型和遗传正相关;两种菌丝长速与与漆酶和愈创木酚氧化酶之间有极显著遗传和表型负相关;菌丝密度、整齐度和长势之间存在极显著正相关;色素有无与菌丝整齐度、长势之间有极显著负相关,与菌丝密度无显著性相关关系。
     3.从真菌基因组计划网站(FGP)和NCBI网站数据库下载了符合条件的总长度为8.1×10~6 bp的11,150条香菇的EST(包括10条cDNA)序列,通过SSRhunter 1.3软件结合手工查找,从中发现2.83%即316条EST含有一共469个SSR,平均每17.3kb出现一个EST-SSR。在所有EST-SSR中,三碱基和六碱基SSR出现最多,分别占EST-SSR总数的38.00%和20.00%。出现较多的基序为(A)n、(T)n、(GA)n、(AG)n、(TGA)n、(GAT)n和(TCTTT)n,占所有EST-SSR的35.39%。
     基于香菇EST数据库中的SSR序列,按照引物设计指标,利用Oligo6.0软件,一共设计了87对香菇SSR引物,有67对可以扩增出清晰可见的谱带,有效引物占77.0%。扩增的谱带总数为90条,平均每对引物扩增1.34条谱带。67对引物中有36对可以在双亲和子代中扩增出有多态性的谱带41条。
     4.选取277个符合1:1分离的标记通过MapMaker 3.0软件构建了香菇混合分子标记遗传图谱,图谱中包括94个RAPD标记、53个ISSR标记、104个SRAP标记、16个SSR标记及2个交配型座位MatA、MatB。构建的连锁图分为14个连锁群,覆盖基因组总长度2944.1cM,平均每条连锁群覆盖长度210.3cM。整体来看,标记的分布较为均匀,相邻分子标记间平均图距为10.7cM,图距最小的是LG10中SSR标记F107_400与F33_170之间的距离,为0.4cM;最大的是LG8中RAPD标记S47_1290与S42_1400之间的距离,为36.8cM。连锁图中一共出现16个距离大于20cM的间隙。
     5.利用Winqtlcart 2.5软件中的复合区间作图法(CIM)对香菇30性状进行检测,以置换测试法确定不同性状的显著性阀值,在本研究构建的香菇遗传图谱中定位了28个性状的78个QTL。另外有4个QTL的LOD值≥2.5,但未等于或超过显著性阀值。
     各性状中检测出的QTL多数在1~4个之间,发现QTL最多的性状是单核体菌丝长速(PDA培养基)Mo-MGRP,一共发现8个QTL。14条连锁群中,除了LG9、LG12、LG13和LG14没有被检测到QTL外,其他连锁群均检测到数目不等的QTL,其中LG3中检测到的最多。QTL分布不均匀,主要集中在连锁群LG1、LG2、LG3和LG8上。检测出的QTL中有59个成簇分布,占全部QTL的72.0%,成簇分布QTL所控制的性状基本上都存在显著或极显著相关性。单个QTL的贡献率在6.95~63.66%之间,平均贡献率为17.29%,其中超过20%的主效QTL有23个,占全部OTL的28.05%。QTL的长度(95%置信区间)在2.8~28.7cM之间,平均11.02cM。
     用Qtlnetwork 2.0软件中的Bayesian-MCMC作图方法对香菇30个性状的QTL进行了分析以验证CIM方法发现的QTL,检测出17个性状的26个QTL,除少数几个性状的QTL外,其他QTL全部被CIM法检测到,而且,二者共同发现的QTL具有基本相同的标记区间、在连锁群上的位置以及相差不大的QTL长度、贡献率和加性效应。通过MCMC方法对香菇全基因组扫描,发现有4个性状存在6对上位性互作的QTL,贡献率在3.58~36.84%之间,平均为18.65%。
     总体上看,本研究构建的香菇分子遗传图谱与其他学者构建的香菇遗传图谱相比,具有作图群体数量和分子标记数量多、图谱覆盖基因组长、采用了新型标记ISSR、SRAP及SSR等特点,并且基于该图谱在国内外首次定位了有关香菇双核体和单核体的主要数量性状的QTL。
In this paper,systemically genetic analyses were carried out for some quantitative traits closely related to yield and quality and their relationship in Lentinula edodes. Moreover,using combined RAPD,ISSR,SRAP and SSR molecular markers,a genetic linkage map of L.edodes was constructed based on a population of 131 basidiospores derived from HW21,a wild strain of this basidiomycete,and the most quantitative trait loci of dikaryons and monokaryons were mapped.The main results are summarized as following:
     1.The mating-types of 238 basidiospores,derived from HW21,a wild strain of L. edodes,collected from hinterland of Shennongjia National Nature Reserve in Hubei Province,China,were exactly identified through normal mating test,OWE-SOJ technique and nuclear migration tests.In order to construct a molecular genetic map of L.edodes,a comparably lager scale and higher genetic diversity mapping population was created with 131 individuals,including 113 spores,belonging to 4 normal mating-types,A1B1,A2B2, A1B2 and A2B1,and 18 ones pertaining to the putative secondary recombination mating types,A2B3,A3B4 and A1B3,out of the mentioned 238 isolates.For genetic analysis of quantitative traits and mapping of quantitative traits loci,four series of tested dikaryons were produced by crossed each basidiospore of mapping population with 4 sporulated or protoplasted monokaryons respectively derived form 2 wild and 2 cultivated strains of Lentinula edodes.
     2.The correlation and principal component analyses of 17 quantitative traits of dikaryons were made in present study.The results of genetic correlation analyses showed that,fresh weight of single fruitbody(FWS) is positively correlated with other traits of single fruitbody,but negatively correlated with amount of fruitbodies(AF),CMCase activity and xylanase activity at significant or highly significant level.The genetic correlations between fresh yield(FY) and primordium forming period(PFP) and fruiting period(FP) are highly significantly negative.The genetic correlations between FY and AF, growth rates of two kinds of mycelia and pileus thickness are highly significantly positive. These results suggested that,the traits of mycelial growth rate and enzyme activities can be used as the indirect indexes for selection of single fruitbody and fresh yield in edible fungi crossbreeding.In addition,six principal components(PCs) were obtained from seventeen tested traits through the principal component analysis.According to their variance contributive percentage and the cumulative variance contributive percentage,i.e. 80.23%,these PCs were designated as single fruitbody,development,yield,enzyme activity,primordium factor and color-changing factors respectively.These PCs or their subcomponents could be selected independently to improve selective efficiency and objective pertinency for different breeding target.
     The correlation analyses of 11 quantitative traits of monokaryons were also made in this paper.The positively phenotypic and genetic correlation ship at significant or highly significant level were found among two kinds of mycelial growth rates of monokaryons and the resistance against Trichoderma,and between CMCase activity and xylanase activity,laccase activity and guaiacol oxidase activity.Two kinds of mycelial growth rates were negatively correlated with laccase activity and guaiacol oxidase activity in phenotypic and genetic pattern at significant or highly significant level.The positive correlation ship at highly significant level were also found among mycelial density(MD), regularity degree of mycelia(RDM) and mycelial growth vigor(MDV),while negative pattern in present or absent of pigment against RDM and MDV.The correlation between present or absent of pigment and MD was not significant.
     3.11,150 ESTs(including 10 cDNAs),about 8.1×10~6 bp in length,were downloaded from ESTs databases of L.edodes in Fungal Genomics Project(FGP) website and NCBI website.By searching with SSRhunter 1.3 software and handwork,469 SSRs were identified in 316 ESTs,approximately 2.83%of total ESTs.The average distance between SSRs was about 17.3kb.Trinucleotide and hexanucleotide ESR-SSRs were found to be the two most abundant repeats,accounting for 38.00%and 20.00%of the total ESR-SSRs respectively,and(A)_n,(T)_n,(GA)_n,(AG)_n,(TGA)_n,(GAT)_n and(TCTTT)_n to be the most familiar motifs,which comprised about 35.94%of all EST-SSRs.
     Based on the sequence of EST-SSR searched from ESTs databases of L.edodes,87 SSR primer pairs were designed,of which 67(77.0%) primer pairs amplified 90 distinct and denumerable DNA bands,with the average of 1.34 bands per primer pairs.There were 41 polymorphic bands produced by 36 SSR primer pairs in parental protoplast monokaryons and their sporulated progeny.
     4.A genetic linkage map of L.edodes was constructed on the basis of the 1:1 Mendelian segregation of 94 RAPD markers,53 ISSR markers,104 SRAP markers,16 SSR markers and the A and B mating-type loci among 131 random basidiospore progeny from a single fruitbody of a wild strain HW21.Fourteen linkage groups,including eight major and six minor,covering a total of 2944.1cM,about 210.3cM per linkage group, were identified with the well-proportioned markers distributing on it.The average marker interval was 10.7cM,varying from the maximum(36.8cM between S47_1290 and S42_1400 in LG8) and minimum(0.4cM between F107_400 and F33_170 in LG10) intervals.A total of 16 gaps spanning more than 20cM were observed in this map.This map covers nearly the whole genome of L.edodes.
     5.There were 78 putative QTLs controlling 28 traits of L.edodes identified in this just constructed linkage map when scanned from the whole genome for 30 traits by means of composite interval mapping(CIM) method,using Winqtlcart 2.5 software.The threshold LOD value of each trait was determined with 1000-times permutations test(P<0.05).In addition,the LOD scores of another 4 putative QTLs were equal to or higher than 2.5,in despite of no significance when respectively compared to the corresponding LOD criterion.The number of QTLs of most traits ranged between 1 to 4,in despite of one extreme example of 8 QTLs detected controlling mycelial growth rate of monokaryons in PDA medium(Mo_MGRP).More than one QTL were mapped in all linkage groups except LG9,LG12,LG13 and LG14.The distribution of QTLs were not even resulting in 59 QTLs,about 72.0%were clustered in LG1,LG2,LG3 and LG8.Most of traits controlled by clustered QTLs were closely correlated with each other.The phenotypic variation explained by a single QTL ranged between 6.59%and 63.66%,with the average of 17.29%.A total of 23 QTLs,about 28.05%of all QTLs,with more than 20% contributions were identified and could be considered to be major QTLs.The length of a single QTL,i.e.95%confidence intervals of QTL position,varied from 2.8cM to 28.7cM, with the average of 11.02cM.
     When performed repetitive mapping of QTLs for 30 traits by Bayesian-MCMC method with QTLnetwork 2.0 software,26 QTLs controlling 17 traits were identified, many of them except few QTLs were found too by CIM,sharing the same marker interval and position on LG,and the similar length,contribution to phenotypic variation and additive effect of certain QTL.Furthermore,6 pairs of epistatic QTL controlling four traits were also mapped,explaining 3.58%to 36.84%of the phenotypic variation,with the average of 18.65%.
     As a whole,the constructed genetic linkage map of Lentinula edodes in this study had more mapping population,more molecular markers,lengger map distance and new type markers(ISSR,SRAP and SSR) compared with orther genetic maps of this species. The mapping QTLs about some important quantitative traits based on this map was the first time in the world.
引文
1.蔡衍山,黄秀治.香菇新菌株Cr-20、Cr-62选育报告[J].中国食用菌,2000,19(4):8-10
    2.蔡衍山.香菇新菌株Cr-72的杂交选育及推广应用[J].中国食用菌,2004,23(2):12-15
    3.陈洪,朱立煌,徐吉臣,陈美玲.RAPD标记构建水稻分子连锁图[J].植物学报,1995,37:677-684
    4.陈军方,任正隆,高丽锋,贾继增.从小麦EST序列中开发新的SSR引物[J].作物学报,2005,31(2):154-158
    5.陈庆全.水稻抽穗开花期耐热性和重要农艺性状的遗传基础研究[D].华中农业大学博士学位论文,2007
    6.程水明,林范学,徐学锋,李安政,林芳灿.香菇交配型因子偏分离现象的遗传分析[J].自然科学进展,2005,15(4):486-490
    7.程水明,林芳灿.B交配型因子对香菇双核体核型分离比的影响[J].遗传学报,2005,32(12):1301-1304
    8.邓聚龙.灰色理论与方法[M].北京:石油工业出版社,1992
    9.藩迎捷,陈明杰,郑海歌,汪昭月,龚胜萍.香菇和平菇生长发育中漆酶,酪氨酸酶和纤维素酶活性的变化[J].上海农业学报,1991,7(2):21-26
    10.方宣钧,吴为人,唐纪良.作物DNA标记辅助育种[M].北京:科学出版社,2001,50-58
    11.付立忠,魏海龙,李海波,吴庆其,吴大丰,吴学谦.香菇SRAP扩增体系的建立与优化[J].食用菌学报,2006.13(4):10-15
    12.高用明,朱军.植物QTL定位方法的研究进展[J].遗传,2000,23(3):175-179
    13.何培新,申进文,罗信昌,杨绳桃.木耳孢子单核菌株培养性状多态性研究[J].食用菌学报,2003.10(2):1-4
    14.黄焕焕,张桂华,韩毅科,魏爱民,杜胜利,张显.黄瓜作图亲本间分子标记的多态性分析[J].华北农学报,2007,22(2):47-49
    15.黄秀治,蔡衍山.香菇单抱杂交育种技术的探讨[J].吉林农业大学学报,1998,20(增刊):172-175
    16.惠大丰,姜长鉴,莫惠栋.数量性状基因图谱构建方法的比较[J].作物学报,1997,23(2):129-136
    17.吉海莲,李新海,谢传晓,郝转芳,吕香玲,史利玉,张世煌.基于元分析的抗玉米丝黑穗病QTL比较定位[J].植物遗传资源学报2007,8(2):132-139
    18.季哲,李玉祥,薛淑玉.黄伞的交配型性状研究[J].菌物学报,2004,23(1):38-42
    19.金基强,崔海瑞,陈文岳,卢美贞,姚艳玲,忻雅,龚晓春.茶树EST-SSR的信息分析与标记建立[J].茶叶科学,2006,26(1):17-23
    20.康亚男,钟月金,练明总,蔡义进,陆勇军,张树庭,尤美莲.中国香菇交配型和基因型的分析[J].真菌学报,1992,11(4):314-323
    21.兰进好,李新海,高树仁,张宝石,张世煌.不同生态环境下玉米产量性状QTL分析[J].作物学报,2005,31(10):1553-1259
    22.兰进好.玉米强优势组合重要性状杂种优势遗传基础研究[D].沈阳农业大学博士学位论文,2005
    23.李斌,夏庆友,鲁成,周泽扬.蜜蜂EST中的微卫星分析[J].遗传学报,2004,31(10):1089-1094
    24.李成云,李进斌,周晓罡,董爱荣,许明辉.稻瘟病菌基因组中微卫星序列的频率和分布[J],中国水稻科学,2004a,18(3):269-273
    25.李成云,李进斌。周晓罡,张绍松,董爱荣,许明辉.稻瘟病菌阅读框架中SSR频率、分布及所在基因功能[J].中国水稻科学,2005b,19(2):167-173
    26.李成云,李进斌,周晓罡,张绍松,许明辉.粗糙脉孢菌基因组中的微卫星序列的组成和分布[J].中国农业科学,2004b,37(6):851-858
    27.李成云,李进斌,周晓罡,张绍松,许明辉.构巢曲霉菌基因组中的数量可变重复序列的组成和分布[J].遗传学报,2005a,32(5):538-554
    28.李成云,李进斌,周晓罡,张绍松,许明辉.玉米黑粉病菌基因组中的微卫星序列的组成和分布[C],中国植物病理学会2004年学术年会论文集,2004c,18-25
    29.李春丽,郑康乐.应用RAPD标记检测与水稻株高和抽穗期有关的QTLs[J].遗传学报,1998,25(1):34-39
    30.李杰勤,张启军,叶少平,赵兵,梁永书,彭勇,吴发强,王世全,李平,四种不同QTL作图方法的比较研究[J1.作物学报,2005,31(11):1473-1477
    31.李明芳,郑学勤.开发SSR引物方法之研究动态[J].遗传,2004,26(5):769-776
    32.李强,万建民.SSRHunter,一个本地化的SSR位点搜索软件的开发[J].遗传,2005,27(5):808-810
    33.李哲敏,刘用场.我国菌物资源保护和利用的现状及成因分析[J].中国食物与营养。2005,
    34.林范学,程水明,林芳灿,2004a.香菇不同交配型单核体亲本配合力的测定[J].华中农业大学学报,23(5):519-23
    35.林范学,程水明,潘迎捷,2004b.香菇数量性状的因子分析[J].菌物学报,23(4):502-507
    36.林范学.香菇不同交配型单核体及其杂交后代的遗传分析[D].华中农业大学硕士学位论文,1997
    37.林芳灿,高国琪,黄杰生,陆准.遗传距离测定在香菇杂交育种中的应用[J].中国食用菌,1991,10(5):8-10
    38.林芳灿,高国琪,张晓昱,闵家顺3.香菇主要数量性状遗传率及相关性研究[J].华中农业大学学报,1991,12(1):27-30
    39.林芳灿,汪中文,孙勇,蔡亚君.中国香菇自然群体的交配型因子分析[J]i菌物系统,2003,22(2):235-240
    40.林芳灿,汪中文,熊再明,代江红,闵家顺.OWE-SOJ技术及核迁移试验在香菇交配型因子鉴定中的应用[J].华中农业大学学报,2000,19(6):573-576
    41.林芳灿,张树庭.中国香菇栽培菌株不亲和性因子的分析[J].华中农业大学学报.1995,14(5):459-466
    42.林芳灿.香菇主要数量性状的遗传相关及通径分析[J].食用菌学报,1995,2(2):9-12
    43.林忠旭,张献龙,聂以春,贺道华,吴茂清.棉花SRAP遗传连锁图构建[J].科学通报,2003,48:2063-2067
    44.林忠旭,张献龙,聂以春.新型标记SRAP在棉花F2分离群体及遗传多样性评价中的适用性分析[J].遗传学报,2004,31(6):622-626
    45.刘剑锋,张沅,张勤,王立贤,张纪刚.利用Bayesian-MCMC方法进行畜禽复杂离散性状QTL 定位[J].中国科学C辑,2006,36(3):240-246
    46.刘江成.不同级别菌种对毛木耳出菇性状和产量的影响[J].中国食用菌,2004,23(6):28-29
    47.刘林,李成云,杨静,业艳芬,李进斌,周晓罡,王云月,朱有勇.灰盖鬼伞基因组中微卫星序列的组成[J1.西南农业学报,2006,19(1):131-135
    48.刘新海,王淑芳,卜庆梅,辛晓林,黄清荣.平菇液体种与固体种使用效果对比研究[J].江苏农业科学,2004,4:90-91
    49.刘勋甲,尹艳,郑用琏.分子标记在农作物遗传育种中的运用及原理[J].湖北农业科学,1998,(1):27-32
    50.卢钢,曹家树,陈杭,向殉.白菜几个重要园艺性状的QTLs分析[J].中国农业科学,2002,35(8):969-974
    51.卯晓岚.中国香菇属的种类及香菇的自然分布[J].中国食用菌,1996,15(3):34-36
    52.潘俊松,王刚,李效尊.黄瓜SRAP遗传连锁图的构建及始花节位的基因定位[J].自然科学进展,2005,15:167-172.
    53.潘迎捷,伯海英,沈宗英.香菇两个性状的广义遗传力测定[J].食用茵,1993,15(4):6-7
    54.潘迎捷,陈明杰,汪昭月,谭琦,冯志勇,贺冬梅,郑连胜,沈宗英.香菇交配型基因的遗传研究--Ⅱ香菇孢子单核体和原生质单核体形态与生化性状上的差异[J].食用菌学报,1997,4(2):1-4
    55.潘迎捷,谭琦,陈明杰,冯志勇,汪昭月.香菇遗传研究和菌种选育的现状及发展[J].食用菌学报 1998.5(3):59-64
    56.秦莲花,张红,陈明杰,谭琦,潘迎捷.微卫星(TATG)n基序在香菇菌种中的验证微生物学报,2004,44(4):474-478
    57.秦莲花.香菇菌株特异性分子标记的构建研究[D].南京农业大学博士学位论文,2005
    58.任丽娟,沈晓蓉,周淼平,张旭,马鸿翔,陆维忠,2003.3个小麦重组自交系群体抗赤霉病OTLs的SSR分析[J].中国农业科学,2003,36(10):1150-1155
    59.任鹏飞.香菇菌株的选育及综合评价[D].华中农业大学硕士学位论文,2006
    60.尚晓冬,李明容,邢增涛,曹晖,谭琦.白灵侧耳交配型遗传研究[J].食用菌学报,2006.13(2):1-4
    61.沈利.家蚕SSR标记和CAPS标记的筛选及其应用p].中国科学院研究生院硕士学位论文,2004
    62.沈利爽,何平,徐云碧,谭震波,陆朝福,朱立煌.水稻DH群体的分子连锁图谱及基因组分析[J].植物学报,1998,40(12):1115-1122
    63.沈天峰,申进文,王付才,李治锋,马向东,郭恒,程雁,高喜梅,2002.平菇菌丝体生长速度与子实体产量的相关性研究[J].中国食用菌,21(4):18-19
    64.苏顺宗,黄玉碧,杨俊品,丁仲芳,高世斌,2003.利用SSR鉴定水稻杂交种子纯度的研究[J].种子,123(1):23-25
    65.孙勇.中国香菇自然群体遗传多样性[D].华中农业大学硕士学位论文,2001
    66.谭琦,杨建明,陈明杰,贺冬梅,潘迎捷,黄为一.香菇孢子单核体与原生质体单核体遗传差异分析[J].中国食用菌,2001,20(6):3-5
    67.宛煜嵩,王珍,肖英华,吕蓓,方宣钧.一张含有227个SSR标记的大豆遗传连锁图[J].分子植物育种,2005,3(1):15-20
    68.汪中文,林芳灿.湖北省香菇自然种群交配型因子分析[J].食用菌学报,1996,3(4):4-10
    69.王健,图力古尔,李玉.香菇属真菌的研究进展兼论中国香菇属的种类资源[J].吉林农业大学学报,2001,23(2):954-962
    70.王俊玲.杏鲍菇杂交亲本的筛选及F1代菌株杂种优势的预测[D].河北农业大学硕士学位论文,2004
    71.王晓峰,崔鸿文,1999.平菇杂种优势表现及其性状构成[J].园艺学报,26(4):244-247
    72.王艳丽,Kaye C,Bordat A,Adreit H,Millazzo J,郑小波,沈瑛,Tharre,au D.稻瘟病菌株CH63和TH16杂交组合的遗传图谱构建及无毒基因定位[J].中国水稻科学,2005,119(2):160-166
    73.王毅,姚骥,张征锋,郑用琏.基于玉米综合QTL图谱的比较分析及株高OTL的统合分析[J].科学通报.2006.51(15):1776-1786
    74.王子迎,王书通.安徽野生香菇遗传多样性及杂种优势的ISSR分析[J].菌物学报,2006,25(2):211-216
    75.王子迎,王书通.安徽野生香菇遗传多样性及杂种优势的RAPD分析[J].中国农学通报,2005,21(9):31-34
    76.文雁成,王汉中,沈金雄,刘贵华,张书芬.用SRAP标记分析中国甘蓝型油菜品种的遗传多样性和遗传基础[J].中国农业科学,2006,39(2):246-256
    77.吴金红,蒋江松,陈惠兰,王石平.水稻稻瘟病抗性基因Pi-2(t)的精细定位[J].作物学报,2002,28:505-509
    78.向长萍,谢军,聂启军,汪李平,2001.23个苦瓜品种(系)农艺性状的主成分分析[J].华中农业大学学报,20(4):378-381
    79.谢福泉,谢宝贵,羿红,付瑞洲,林远崇,黄志龙,张惠珍.福建省袋栽香菇主要菌株交配型测定及品种鉴别[J].福建农林大学学报(自然科学版),2004,33(4):521-526
    80.谢吉容,向邓云,谈峰.南方红豆杉抗寒性生理指标的主分量分析[J].重庆师范学院学报(自然科学版),2002,19(2):50-53
    81.徐东辉,孙日飞,张延国,原玉香,康俊根,武剑,张慧,宋晓飞,李晓楠,宋沫,王晓武.大白菜叶色相关性状的OTL定位与分析[J].园艺学报,2007,34(1):99-104
    82.徐吉臣,朱立煌.遗传图谱中的分子标记生物工程进展[J].1992,12(5):1-3
    83.徐学锋,李安政,程水明,林范学,林芳灿.亚洲香菇Lentinula edodes系统发育学地位的重新评估与遗传多样性分析[J].自然科学进展,2005,15(10):1024-1210
    84.徐云碧,朱立煌.分子数量遗传学[M].北京:中国农业出版社,1994,22-56
    85.许志鸣,顾新伟,魏海龙。张海娟.不同氮源对杏鲍菇菌丝体生长及子实体产量的影响[J].浙江农业科学,2004,4:196-197
    86.杨新美主编.食用菌研究法[M].北京:中国农业出版社,1998
    87.杨新美主编.中国食用菌栽培学[M].北京:农业出版社,1988
    88.姚方杰,李玉.金顶侧耳交配型系统特性的研究[J].吉林农业大学学报,2002,24(2):61-63
    89.叶明,潘迎捷,陈咏萱.香菇正反双.单杂交后代的遗传分析[J].菌物系统,2001,20(1):94-99
    90.叶明.香菇非对称杂交遗传机理研究[D].南京农业大学硕士学位论文,1998
    91.易斌,陈伟,马朝芝,傅廷栋,涂金星.甘蓝型油菜产量及相关性状的QTL分析[J].作物学报,2006,32(5):676-682
    92.尹小燕,王庆华,杨继良,金德敏,王飞,王斌,张举仁.玉米大斑病抗性基因Ht2的精细定位[J1.科学通报,2002,47(23):1811-1814
    93.应正河,吴小平,谢宝贵,陈丽娜,卢启泉高巍,孙淑静香菇SRAP反应体系的优化[J].食用菌学报,2006,13(4):1-5
    94.余家林,1993.农业多元试验统计『M1.北京:农业大学出版社,188-203
    95.余四斌,周芳.植物杂种优势遗传基础的研究进展[J1.种子,1998,6:53-56
    96.詹才新,朱兰宝,杨新美.RAPD技术在金针菇杂交育种中的应用[J].食用菌学报,1995,2(1):7-11
    97.张帆,万雪琴,潘光堂,玉米分子遗传图谱的构建fJl.玉米科学,2006,14(3):6-9
    98.张立平.普通小麦品质性状遗传与QTL分析[D].中国农科院博士学位论文,2003
    99.张小村,李斯深,赵新华,范玉顶,李瑞军.小麦纹枯病抗性的QTL分析和抗病基因的分子标记[J].植物遗传资源学报,2005,6(3):276-279
    100.张正圣.陆地棉遗传连锁图谱的构建与纤维相关性状的QTL分析[D].西南农业大学博士学位论文,2005
    101.朱朝辉,陈明杰,谭琦,贺冬梅,潘迎捷.中国主要香菇栽培菌种交配型基因的遗传分析fJ].食用菌学报,2000,7(3):1-5
    102.朱坚,高巍,林伯德,孙淑静,郑昭,杨洁,谢宝贵.金针菇种质资源的SRAP分析[J].福建农林大学学报(自然科学版),2007,36(2):154-158
    103.朱军.数量性状基因定位的混合线性模型分析方法[J].遗传,20(增刊):137-138.
    104.Ahmad R,Potter D,Southwick SM.Genotyping of peach and nectarine cultivars with SSR and SRAP molecular marker[J].Journal of American Society for Horticultural Science,2004,129(2):204-210
    105.Arima T,Morinaga T.Electrophoretic karyotype ofLentinus edodes[J].Trans Mycol Soc Japan,1993,34:481-485
    106.Asada Y,Yue C,Wu J.Schizophyllum commune Aa mating-type proteins,Y and Z,form complexes in all combinations in vitro[J].Genetics,1997,147(1):117-123
    107.Baars,JJP,Sonnenberg ASM,Mikosch TSP,Griensven LJL.Development of a sporeless strain of oyster mushroom Pleurotus ostreatus[C],2000,317-323.1n LJLD.van Griensven(ed.),Science and cultivation of edible fungi,vol.A.A.Balkema,Rotterdam,The Netherlands
    108.Badrane H,May G.The divergence-homogenization duality in the evolution of the bl mating type of Coprinus cinereus[J].Mol Biol Evol,1999,16(10):975-986
    109.Banham AH,Assante-Owusu RN,Gottigens B.An N-terminal dimerization domain permits homeodoain proteins to choose compatible partners and initiate sexual development in the mushroom Coprinus cinereus[J].Plant Cell,1995,7(7):773-783.
    110.Barreneche T,Bodenes C,Lexer C,Trontin JF,Fluch S,Streiff R,Plomion C,Roussel G,Steinkellner H,Burg K,Favre JM,Glrssl J,Kremer A.A genetic linkage map of Quercus robur L.(pedunculate oak) based on RAPD,SCAR,microsatellite,minisatellite,isozyme and 5S rDNA markers[J].Theor Appl Genet,1998,97:1090-1103.
    111.Barroso G,Sonnenberg ASM,van Griensven LJLD,Labare J.Molecular cloning of a widely distributed microsatellite core sequence from the cultivated mushroom Agaricus bisporus[J].Fungal Genetics and Biology,2000,31:115-123
    112.Beckmann JS,Soller M.Toward a Unified approach to genetic mapping of eukaryotes based on sequence tagged microsatellite sites[J].Bio Technology,199,8:930-932
    113.Botstein D,White RL,Skolnick M and Davis RW.Construction of a genetic linkage map in man using restriction fragment length polymorphisms[J].Amer J Hum Genet,1980,32(3):314-33
    114.Boukara O,Konga L,Singhc BB,Murdockb L,Ohma HW.AFLP and AFLP-derived SCAR markers associaied with Striga gesnerioides resistance in Cowpea[J].Crop Sci,2004,44:1259-1264
    115.Bowden CG,Royse D.Linkage relationships of allozyme-encoding loci in shiitake Lentinula edodes [J].Genmoe,1991,34:652-657
    116.Brugmans B,van der Hulst R,Visser R,Lindhout P,van Eck H.A new and versatile method for the successful conversion of AFLP markers into simple single locus markers[J].Nucleic Acids Res,2003,31(10):e55
    117.Brunel D,Froger N,Pelletier G.Development of amplified consensusgenetic markers(ACGM) in Brassica napus from Arabidopsis thaliana sequence of known biological function[J].Genome,1999,42:387-402
    118.Budak H,Shearman R C,Parmaksiz I,Dweikat I.Comparative analysis of seeded and vegetative biotype buffalograsses based on phylogenetic relationship using ISSRs,SSRs,RAPDs and SRAPs[J].Theoretical and Applied Genetics,2004,109:280-288
    119.Byme M,Murrell JC,Allen B.An integrated genetic linkage map for eucalypts using RFLP,RAPD and isozyme markers[J].TheorAppl Genet,1995,91(6):869-875
    120.Caetano-Anolles(3,Bassam BJ,Gresshoff PM.DNA amplification Fingerprinting using very short arbitrary oligonucleotide primers[J].Bio/Technology,1991,9:553-557
    121.Callac C,Desmerger RW,Kerrigan RW,Imbernon M.Conservation of genetic linkage with map expansion in distantly related crosses of Agaricus bisporus[J].FEMS Microbiol Lett,1997,146:235-240
    122.Candle L,Ramsay L,Milboume D,Macaulay M,Marshall D,Waugh R.Computal characterization of physically clustered simple sequence repeats in plants[J].Genetics,2000,156:847-854
    123.Carlin BP,Louis TA.Bayes and Empirical Bayes methods for data analysis.2nd edition[M].London,Chapman & Hall/CRC,2000
    124.Casselton L,Olesnicky N.Molecular genetics of mating recognition in basidiomycete fungi [J].Microbiology and Molecular Biology reviews,1998,62(1):55-70
    125.Causse M,Saliba-Colombani V,Lecomte L,Duffe P,Rousselle P,Buret M.QTL analysis of fruit quality in fresh market tomato:a few chromosome regions control the variation of sensory and instrumental traits[J].Journal of Experimental Botany,2002,53:2089-2098
    126.Chardon F,Virlon B,Moreau L,Falque M,Joets J,Decousset L,Murigneux A,Charcosset A.Genetic architecture of flowering time in maize as inferred from quantitative trait loci meta-analysis and synteny conservation with the rice genome[J].Genetics,2004,168:2169-2185
    127.Cheverud JM,Routman EJ.Epistasis and its contribution to genetic variance components [J].Genetics,1995,139:1455-1461
    128.Chihara G,Maeda Y,Hamuro J,Sasaki T,Fukuoka F.Inhibition of mouse sarcoma 180 by polysaccharides from Lentinus edodes(Berk.) Sing[J].Nature,1969,222:687-688
    129.Chu ZH,Fu BY,Yang H,Xu CG,Li ZK,Sanchez A,Park YJ,Bennetzen JL,Zhang QF,Wang SP.Targeting xa13,a recessive gene for bacterial blight resistance in rice[J].Theor Appl Genet,2005,112:455-61
    130. Churchill G, Doerge A. Empirical threshold values for quantitative trait mapping [J]. Genetics, 1994, 138(3): 963-971
    131. Clark T and Anderson JB. Dikaryons of the basidiomycete fungus Schizophyllum commune: evolution in long-term culture [J]. Genetics, 2004,167:1663-1675
    132. De Vos L, Myburg AA, Wingfield MJ, Desjardins AE, Gordon TR, Wingfield BD. Complete genetic linkage maps from an interspecific cross between Fusarium circinatum and Fusarium subglutinans [J]. Fungal Genet Biol, 2007 , 44(8): 701-714
    133. Doerge RW, and Churchill GA. Permutation tests for multiple loci affecting a quantitative character [J]. Genetics, 1996,142: 285-294
    134. Donis-Keller H, Green P, Helms C, Cartinhour S, Weiffenbach B, Stephens K, Keith TP, Bowden DW, Smith DR, Lander ES, Botstein D, Akots G,Rediker K, Gravius T, Brown VA, Rising MB, Parker C, Powers JA, Watt DE, Kauffman ER, Bricker A, Phipps P, Muller-Kahle H, Fulton TR, Ng S, Suhumm JW, Braman JC, Knowlton RF, Barker DF, Crooks SM, Lincoln SE, Daly MJ, Abrahamson J. A genetic linkage map of the human genome [J]. Cell, 1987, 51(2): 319-337
    135. Dons JJM, Springer J, De Vries SC, Wessels JGH. Molecular cloning of a gene abundantly expressed during fruiting body initiation in Schizophyllum commune [J]. Journal of Bacteriology, 1984,157(3): 802-808
    136. Endo H, Kajiwara S, Tsunoka O, Shishido K. A novel cDNA, priBc, encoding a protein with a Zn(II)2Cys6 zinc cluster DNA-binding motif, derived from the basidiomycete Lentinus edodes [J]. Gene, 1994, 139(1): 117-121
    137. Eujayl I, Sledge MK, Wang L, May GD, Chekhovskiy K, Zwonitzer JC and Mian MA. Medicago truncatula EST-SSR reveal cross-species genetic markers for Medicago spp [J]. Theor Appl Genet, 2004, 108:414-422
    138. Faure S, Noyer JL, Horry JP. A molecular marker-based linkage map of diploid bananas (Musa accuminata) [J]. Theor Appl Genet, 1993, 87(4): 517-526
    139. Ferriol M, Pico B, Nuez F. Genetic diversity of some accessions of Cucurbita maxima from Spain using RAPD and SBAP markers [J]. Genetic Resources and Evolution, 2003, 50(3): 227-238
    140. Fheida H, Suzanne P, O'Shea F and Casselton LA. Multiple versions of the A mating type locus of Coprinus cinema are generated by three paralogous pairs of multiallelic homeobox genes [J]. Genetics, 1996,144: 87-94
    141. Forche A, Xu J, Vilgalys R, Mitchell TG. Development and characterization of a genetic linkage map of Cryptococcus neoformans var. neoformans using amplified fragment length polymorphisms and other markers [J]. Fungal Genetics and Biology, 2000,31: 189-203
    142. Franck P, Garnery L, Celebrano G, Solignac M, Cornuet JM. Hybrid origins of honeybees from Italy (Apis mellifera ligustica) and Sicily (A. sicula) [J], Molecular Ecology, 2000, 9(2): 907-92
    143. Frary A, Nesbitt TC, Grandillo S, Knaap E, Cong B, Liu J, Meller J, Elber R, Alpert KB, Tanksley SD[J]. fw2.2: A quantitative trait locus key to the evolution of tomato fruit size [J]. Science, 2000, 289: 85-88
    144.Fulton TM,Van der Hoeven R,Eannetta NT,Tanksley SD.Identification,analysis and utilization of conserved ortholog setmarkers for comparative genomics in higher plants[J].The Plant Cell,2002,14:1457-1467
    145.Gail M,Timmerman-Vaughana,Millsb A,Whitfieldc C,Frewa T,Butlera R,Murraya S,Lakemand M,McCalluma J,Russelle A,Wilsona D.Linkage mapping of QTL for seed yield,yield components,and developmental traits in pea[J].Crop Sci,2005,45:1336-1344
    146.Gelfand AE,Smith AFM.Sampling-based approaches to calculating marginal densities[J].JAM Stat Assoc,1990,85:398-409
    147.Giasson L,Specht CA,Milgrim C,Novotny CP,Ullrich RC.Cloning and comparison of A alpha mating-type alleles of the Basidiomycete Schizophyllum commune[J].Molecular and general genetics,1989,218:72-77
    148.Gieser PT,May G.Comparison of two bl alleles from within theA mating-type of the basidiomycete Coprinus cinereus[J].Gene,1994,146(1):167-176
    149.Godwin ID,Aitken EA,Smith LW.Application of inter simple sequence repeat(ISSR) markers to plant genetics[J].Electrophoresis,1997,18(9):1524-1528
    150.Green PJ.Reversible jump Markov chain Monte Carlo computation and Bayesian model determination[J].Biometrics,1995,82:711-732
    151.Grodzicker T,Anderson C,Sharp PA,Sambrook J.Conditional lethal mutants of adenovirus 2-simian virus 40 hybrids,I.Host range mutants of Ad2+ ND1[J].J Virol,1974,13(6):1237-1244
    152.Gupta PK,Rustgi S,Sharma S,Singh R,Kumar N,Balyan HS.Transferable EST-SSR markers for the study of polymorphism and genetic diversity in bread wheat[J].Mol gen genomics,2003,270:315-323
    153.Haley SS,Knott SA.A simple regression method for mapping quantitative trait loci in line crosses using flanking markers[J].Heredity,1992 69:315-324
    154.Hantula J,Muller M.Variation within Gremmeniella abietinain Finland and other countries as determined by random amplified microsatellites(RAMS)[J].Mycol Res,1997,101:169-175
    155.Harry DE,Temesgen B,Neale DB.Codominant PCR-based markers for Pinus taeda developed from mapped cDNA clones[J].Theoretical and Applied Genetics,1998,97:327-336
    156.Hasebe K.Genetic studies on mutants and agronomic characters in shiitake,Lentinula edodes [R].Repors of the Tottori Mycological Institutes,1991,29:1-69
    157.Hashizume T,Shimamoto I,Hirai M.Construction of a linkage map and QTL analysis of horticultural traits for watermelon[Citrullus lanatus(THUNB.) Matsum & Nakai]using RAPD,RFLP and ISSR markers[J].Theor Appl Genet,2003,106:779-785
    158.Hawksworth DL.The fungal dimension of biodiversity:magnitude,significance,and conservation [J].Mycol Res,1991,95:641-655
    159.Heun M,Helentjaris T.Inheritance of RAPDs in F1 hybrids of corn[J].TheorAppl Genet,1993,85(6):961
    160.Hori K,S.Kajiwara,T.Saito,H.Miyazawa,Y.Katayose and K.Shishido.Cloning,sequence analysis and transcriptional expression of a ras gene of the edible basidiomycete Lentinus edodes [J].Gene,1991,105:91-96
    161. Huang SW, Zhang BX, Milboume D. Development of pepper SSR markers from sequence databases [J]. Euphytica, 2000,117:163-167
    162. Hulbert SH, Hott TW, Legg EJ, Lincoln SE, Lander ES, Michelmore RW. Genetic analysis of the fungus, Bremia lactucae, using restriction fragment length polymorphisms [J]. Genetics, 1988,120: 947-958
    163. Hunt GJ, Page RE. Linkage map of the honey bet, Apis mellifera, based on RAPD markers [J]. Genetics, 1995, 139:1371-1382.
    164. Imai A, Ikeda S, Yamanaka SS, Ikeda A, Imai Y, Luan J, Watanabe A, Watanabe KN. Construction of integrated genetic map between various existing DNA and newly developed P450 related PBA markers in the diploid potato (Solanum tuberosum) [J]. Breeding Science, 2005, 55(2): 223-230
    165. Imbernon M, Callac P, Gasqui P, Kerrigan RW, and Velcko AJ Jr. BSN, the primary determinant of basidial spore number and reproductive mode in Agaricus bisporus, maps to chromosome I [J]. Mycologia 1996, 88: 749-761
    166. James TY, Liou SR, Vilgalys R. The genetic structure and diversity of the A and B mating type genes from the tropical oyster mushroom, Pleurotus djamor [J]. Fungal Genetics and Biology, 2004, 41: 813-825.
    167. Jansen RC. Interval mapping of multiple quantitative trait loci [J]. Genetics, 1993,135: 205-211
    168. Judelson HS, Spielman LJ and Shattock RC. Genetic mapping and non-Mendelian segregation of mating type loci in the Oomycete, Phytophthora infestans [J]. Genetics, 1995, 141: 503-512
    169. Judelson HS. Genetic and physical variability at the mating type locus of the Oomycete, Phytophthora infestans [J]. Genetics, 1996,144:1005-1013
    170. Jurgenson JE, Bowden RL, Zeller KA, Leslie JF, Alexander NJ, Plattner RD. A genetic map of Gibberella zeae (Fusarium graminearum) [J]. Genetics, 2002, 160:1451-1460
    171. Kamper J, Reichmann M, Romeis T. Multiallelic recognition: nonself-dependent dimerization of the bE and bW homeodomain proteins in Ustilago maydis [J]. Cell, 1995, 81(1):73-83
    172. Kaneko S, and Shishido K. Cloning and sequence analysis of the basidiomycete Lentinus edodes ribonucleotide reductase small subunit cDNA and expression of a corresponding gene in L. edodes [J]. Gene, 2001, 262: 43-50
    173. Kaneko S, Miyazaki Y, Yasuda T, Shishido K. Cloning, sequence analysis and expression of the basidiomycete Lentinus edodes gene uck1, encoding UMP-CMP kinase, the homologue of Saccharomyces cerevisae URA6 gene [J]. Gene, 1998, 211(2): 259-266
    174. Kashi Y, King D, Soller M. Simple sequence repeats as a source of quantitative genetic variation [J]. Trends Genet, 1997,13: 74-78
    175. Kaszubiak A, Klein S, de Hoog GS, Graser Y. Population structure and evolutionary origins of Microsporum canis, M. ferrugineum and M. audouinii [J]. Infection, Genetics and Evolution, 2004, 4: 179-186
    176. Katti MV, Ranjekar PK, Gupta VS. Differential distribution of simple sequence repeats in eukaryotic genome sequences [J]. Mol Biol Evol, 2001,18 (7): 1161-1167
    177. Kawabata H, Magae Y, Sasaki T. Mating type analysis of monokaryons regenerated from protoplasts of Flammulina velutipes [J]. Trans Mycol Soc Japan, 1992, 33(2): 243-247
    178.Kay E,Vilgalys R.Spatial distribution and genetic relationships among individuals in a natural population of the oyster mushroom Pleurotus ostreatus[J].Mycologia,1992,84:173-182
    179.Kaye C,Milazzo J,Rozenfeld S,Lebrun MH,Tharreau D.The development of simple sequence repeat(SSR) markers for Magnaporthe gri~ae and their integration into an established genetic linkage map[J].Fungal Genetics and Biology,2003,40:207-214
    180.Kearsey MJ,Farquhar AG.0TL analysis in plants:where are we now?[J].Heredity,1998,80:137-142
    181.Kerrigan RW,Royer JC,Bailer LM,Kohli Y,Horgen PA and Anderson JB.Meiotic behavior and linkage relationships in the secondarily homothallic fungus Agaricus bisporus[J].Genetics,1993,133:225-236
    182.Kerruish RM,Dacosta EW.Monokaryotization of culture ofLenzites trabea(Pers.) Fr.and other wood-destroying basidiomycetes by chemical agents[J].Ann Bot,1963,27:653-669
    183.Kirk PM,Cannon PF,David JC,Stalpers JA.Ainsworth & Bisby's Dictionary of the fungi(ninth edition)[M].CAB1 Bioscience CAB international,2001
    184.Knott SA,Haley CS.Aspects of Maximum likelihood methods for the mapping of quantitative trait loci in line crosses[J].Genet Res,1992,60:139-151
    185.Kojima T,Nagaoka T,Noda K.Genetic linkage map of ISSR and RAPD markers in Einkorn wheat in relation to that of RFLP markers[J].TheorAppl Genet,1998,96:37-45
    186.KoltinY.Genetic structure of incompatibility factors-the ABC of sex.In Schwalb MN and Miles PG (Eds),Genetics and Morphogenesis in the Basidiomycetes[J].New York:Academic Press,1978:31-54
    187.KoltinY.Genetic structure of incompatibility factors--the ABC of sex.In Schwalb MN and Miles PG (Eds).Genetics and Morphogenesis in the Basidiomycetes[C].New York:Academic Press,1978:31-54
    188.Kondoh O,Muto A,Kajiwara S,Takagi J,Saito Y,Shishido K.A fruiting body-specific cDNA,mfoAc,from the mushroom Lentinus edodes encodes a high-molecular-weight ceil-adhesion protein containing an Arg-Gly-Asp motif[J].Gene,1995,154(1):31-37
    189.Konieczny A,Ausubel FM.A procedure for mappingArabidopsis mutations using co-dominant ecotype-specific PCR-based markers[J].The Plant Journal,1993,4(2):403-410
    190.Knnishi S,Izawa T,Lin SY,Ebana K,Fukuta Y,Sasaki T,Yano M.An SNP caused loss of seed shattering during rice domestication[J].Science,2006,312:1392-1396
    191.Korhonen K.Interstefility groups of Heterobasidion annosum Seloste[M].Juurikaavan Risteytymissuhteet,Commun Inst For Fenn,1978,94(6):1-25
    192.Kiies U and Liu Y.Fruiting body production in Basidiomycetes[J].Appl.Microbiol.Biotechnol,2000,54:141-152
    193.Kiies U,Casselton LA.The origin of multiple mating types in mushrooms[J].Journal of Cell Science,1993,104:227-230
    194.Kiies U,James TY,Vilgalys R,Challen MP.The chromosomal region containingpab-1,mip,and the A mating type locus of the secondarily homothallic homobasidiomycete Coprinus bilanatus[J].Curt Genet,2001,39(1):16-24.
    195.Kues U,Rachel NAO,Mutasa ES,Pardo EH,O'Shea SF,Gottgens B,Casselton LA.Two classes of homeodomain proteins specify the multiple A mating types of the mushroom Coprinus cinereus [J].Plant Cell,1994a,6(12):1467-1475.
    196.Kiies U,Tymon AM,Richardson WV,May G,Gieser PT,Casselton LA.A mating type factor of Coprinus cinereus has variable numbers of specificity genes encoding two classes of homeodomain proteins[J].Mol Gen Genet,1994b,245(1):45-52.
    197.Kiies U.Life history and developmental processes in the basidiomycete Coprinus cinereus [J].MicrobiolMolBiolRev,2000,64(3):316-353.
    198.Kiies,U,Richardson WVJ,Tymon AM,Mutasa ES,Gottgens B,Gaubatz,S,Gregoriades A,Casselton LA.The combination of dissimilar alleles of the Aa and Aβ gene complexes,whose proteins contain borneo domain motifs,determines sexual development in the mushroom Coprinus cinereus[J].Genes Dev,1992,6,568-577
    199.Kunzler P,Matsuo K,Schaffner W.Pathological,physiological,and evolutionary aspects of short unstable DNA repeats in the human genome[J].Biol Chem Hoppe Seyler,1995,4:201-211
    200.Kwan HS and Xu HL.Construction of a genetic linkage map of shiitake mushroom Lentinula edodes strain L-54[J].J Biochem Mol Biol,2002,35(5):465-47
    201.Kwan HS,Chiu SW,Pang KM,Cheng SC.Strain typing in Lentinula edodes by polymerase chain reaction[J].Experimental Mymlogy,1992,14:143-146
    202.Lander ES,Botstein D.Mapping mendelian factors underlying quantitative traits using RFLP linkage maps[J].Genetics,1989,121:185-199
    203.Larraya LM,Idareta E,Arana D,Ritter E,Pisabarro AG,Ramirez L.Quantitative trait loci controlling vegetative growth rate in the edible basidiomycete Pleurotus ostreatus[J].Appl Environ Microbiol,2002,68(3):1109-14
    204.Larraya LM,Perez G,Pefias MM,Baars JP,Mikosch TSP,Pisabarro AG,Ramirez L.Molecular karyotype of the white rot fungus Pleurotus ostreatus[J].Appl Environ Microbiol,1999,65:3413-3417
    205.Larraya LM,Perez G,Ritter E,Pisabarro AG,Ramirez L.Genetic Linkage Map of the Edible Basidiomycete Pleurotus ostreatus[J].Appl Environ Microbiol,2000,66(12):5290-5300
    206.Larraya,LM,Perez G,Iribarren I,Blanco JA,Alfonso M,Pisabarro AG,Ramirez L.Relationship between monokaryotic growth rate and mating type in the edible basidiomycete Pleurotus ostreatus [J].Appl Environ Microbiol,2001,67:3385-3390
    207.Leister D,Ballvora A,Salamini F,Gebhardt C.A PCR-based approach for isolating pathogen resistance genes from potato with potential for wide application in plants[J].Nature Genetics,1996,14:421-429
    208.Li AZ,Xu XF;Lin FX,Cheng SMi,Lin FC.Cloning and identification of partial DNA fragment for the B mating-type factor in Lentinula edodes using degenerate PCR[J].World Journal of Microbiology and Biotechnology,2007,23(3):411-415
    209.Li G,Quiros CF.Sequence-related amplified polymorphisim(SRAP),a new marker system based on a simple PCR reaction:Its application to mapping and gene tagging in Brassica[J].Theor Appl Genet,2001,103:455-46
    210.Li WG,Shen JJ,Wang JB.Genetic diversity of the annual weed Monochoria vaginalis in southern China detected by random amplified polymorphic DNA and inter-simple sequence repeat analysis [J].Weed Res,2005.45(6):424-430
    211.Lian C,Hogetsu T,Matsushita N,Guerin-Laguette A,Suzuki K,Yamada A.Development of microsatellite markers from an ectomycorrhizal fungus,Tricholoma matsutake,by an ISSR-suppression-PCR method[J].Mycorrhiza,2003,13:27-31
    212.Lin,FC,Wang ZW,Yang XM.Cultivation of the black oak mushroomLentinula edodes in China [C].Van Griensen LJLD,Science and Cultivation of Edible Fungi.Rotterdam:Balkema Publishers,2000,955-958
    213.Lind M,Dalman K,Stenlid J,Karlsson B,Olson,A.Identification of quantitative trait loci affecting virulence in the basidiomycete Heterobasidion annosum s.l.[J].Current Genetics,2007,52(1):35-44
    214.Liu BH.Statistical Genomics:Linkage,Mapping,and OTL Analysis[M].CRC Press,1998:404-409
    215.Lugones LG,Bosscher JS,Scholtmeyer K,De Vries OMH,Wessels JGH.An abundant hydrophobin (ABH1) forms hydrophobic rodlet layers in Agaricus bisporus fruiting bodies[J].Microbiology,1996,142(5):1321-1329
    216.Luo ZW,Wu CI,Kearsey MJ.Precision and high-resehition mapping of quantitative trait loci by use of recurrent selection,backcross or intercross schemes[J].Genetics,2002161:915-929
    217.Lyttle T W,Segregation distorters[J].Annu Rev Genet,1991,25:511-557
    218.Magae Y,Novotny CP,Ullrich RC.Interaction of theAa Y and Z mating-type homeodomain proteins of Schizophyllum commune by the two-hybrid system[J].Biochem Biophys Res Commu,1995,211(10):1071-1076
    219.Maria RE,Huang JC,Fung E,Nielsen K,Heitman J,Vilgalys R,Mitchell TG.A genetic linkage map of Cryptococcus neoformans variety neoformans serotype D(Filobasidiella neoformans)[J].Genetics,2004,167(2):619-3
    220.May G,Le Chevanton L,Pukkila PJ.Molecular analysis of the Coprinus cinereus mating type-A factor demonstrates an unexpectedly complex structure[J].Genetics,1991,128(7):529-538
    221.May G,Matzke E.Recombination and variation at the A mating-type of Coprinus cinereus[J].Mol.Bio.Evol,t995,12(5):794-802
    222.McCouch SR,Chen X,Panaud O.Microsatellite marker development,mapping and applications in rice Genetics and breeding[J].PlantMolBio,1997,35:89-99
    223.McFadden HG,Lehmensiek A,Lagudah ES.Resistance gene analogues of wheat:molecular genetic analysis of ESTs[J].TheorAppl Genet,2006,113(6):987-1002
    224.Miao XX,Xub S J,Li MH,Li MW,Huang JH,Dai FY,Marino SW,Mills DR,Zeng P,Mita K,Jia SH,Zhang Y,Liu WB,Xiang H,Guo QH,Xu AY,Kong XY,Lin HX,Shi YZ,Lu G,Zhang X,Huang W,Yasukochi Y,Sugasaki T,Shimada T,Nagaraju J,Xiang ZH,Wang SY,Goldsmith M R,Lu C,Zhao GP,Huang YP.Simple sequence repeat-based consensus linkage map of Borabyx mori [C].Proceedings of the National Academy of Sciences of the United States of America,2005,102:16303-16308
    225.Mitchell-Olds T.Interval mapping of viability loci causing heterosis inArabidopsis[J].Genetics,1995,140:1105-1109
    226. Miyazaki K, Neda H, Shiraishi S. Tetrad analyses of mating types in shiitake (Lentinula edodes) [J]. Bulletin of FFPRI, 2005, 396(3): 217-223
    227. Miyazaki Y, Jojima T, Ono T, Yamazaki T, Shishido K. A cDNA homologue of Schizosaccharomyces pom.be cdc5(+) from the mushroom Lentinula edodes: Characterization of the cDNA and its expressed product [J]. Biochimicat Biophysica Acta, 2004, 1680 (2): 93-102
    228. Miyazaki Y, Kaneko S, Sunagawa M, Shishido K, Yamazaki T, Nakamura M, Babasaki K. The fruiting-specific Le.flp1 gene, encoding a novel fungal fasciclin-like protein, of the basidiomycetous mushroom Lentinula edodes [J]. Current Genetics, 2007, 51(6): 367-375
    229. Miyazaki Y, Sakuragi Y, Yamazaki T, Shishido K. arget genes of the developmental regulator PRIB of the mushroom Lentinula edodes [J]. Bioscience, Biotechnology and Biochemistry, 2004, 68(9): 1898-1905
    230. Miyazaki Y, Tsunoka O, Shishido K. Determination of the DNA-binding sequences of the Zn(II)2Cys6 zinc-cluster-containing PRIB protein, derived from the basidiomycete Lentinus edodes [J]. Journal of Biochemistry, 1997,122(6): 1088-1091
    231. Moncada P, Martinez CP, Borrero J, Chatel M, Gauch Jr H, Guimaraes E, Tohme J, McCouch SR. Quantitative trait loci for yield and yield components in an Oryza sativaxOryza rufipogon BC2F2 population evaluated in an upland environment [J]. Theor Appl Genet, 2001, 102: 41-52
    232. Moquet F, Desmerger C, Mamoun M, Ramos-Guedes-Lafargue M, Olivier J-M. A quantitative trait locus of Agaricus bisporus resistance to Pseudomonas tolaasii is closely linked to natural cap color [J]. Fungal Genet Biol, 1999, 28: 34-42
    233. Morgante M, Hanafey M, Powell W. Microsatellites are preferentially associated with nonrepetitive DNA in plant genomes [J]. Nat Genet, 2002,30(2): 194-200
    234. Mori K, Zennyozi A, Kugimiya N. Analysis of the incompatibility factors in natural population of Lentinus edodes [J]. Jap J Genet, 1972,47(5): 359
    235. Moxon ER, Wills C. DNA microsatellites: agents of evolution? [J]. Sci Am, 1999, 280: 94-99
    236. Muraguchi H, Ito Y, Kamada T and Yanagia SO. A linkage map of the basidiomycete Coprinus cinereus based on random amplified polymorphic DNAs and restriction fragment length polymorphisms [J]. Fungal Genetics and Biology, 2003, 40: 93-102
    237. Murakami S and Takemaru T. "Puff " mutation induced by UV irradiation in Lentinus edodes (Berk.) Sing. [R]. Rept Tottori Mycol, Inst, 1975,12: 47-51
    238. Nadeau JH, Frankel WN. The roads from phenotypic variation to gene discovery: mutagenesis versus QTLs[J]. Nat Genet, 2000,25(4): 381-384
    239. Nakai Y. Cytological studies on shiitake, Lentinus edodes (Berk) Sing. [R]. Reports of the Tottori Mycological Institutes, 1986, 24: 1-202
    240. Nakazawa T, Miyazaki Y, Kaneko S, Shishido K. Developmental regulator Le. CDC5 of the mushroom Lentinula edodes: analyses of its amount in each of the stages of fruiting-body formation and its distribution in parts of the fruiting bodies [J]. FEMS Microbiology Letters 2006, 261(1): 60-3
    241. Ng WL, Ng TP, Kwan HS. Cloning and characterization of two hydrophobin genes differentially expressed during fruit body development in Lentinula edodes [J]. FEMS Microbiology Letters, 2000, 185(2): 139-145
    242.Nilza de Lima Pereira Sales,Sebasio Carlos da Silva Rosado,Dulcineia de Carvalho e Anderson Marcos de Souza.Breeding of monokaryotics genitors of symbiotic fungus Pisolithus microcarpus for genetic studies[J].Cerne,Lavras,2003,9(2):205-212
    243.Nishizawa H,Miyazaki Y,Kaneko S,Shishido K.Distribution of hydrophobin 1 gene transcript in developing fruiting bodies of Lentinula edodes[J].Bioscience,Biotechnology and Biochemistry,2002,66(9):1951-1954
    244.Noenplab A,Vanavichit A,Toojinda T,Sirithunya P,Tragoonrung S,Sriprakhon S,Vongsaprom C.QTL mapping for leaf and neck blast resistance in Khao Dawk Mall105 and Jao Horn Nin recombinant inbred lines[J].Science Asia,2006,32:133-142
    245.Ohsawa R,Tsutsumi T,Uehara H,Namai H,Ninomiya S.Quantitative evaluation of common buckwheat(Fagopyrum esculentum Moench) kernel shape by elliptic fourier descriptor[J].Euphytica 1998,101:175-183
    246.O'Leary MC,Boyle TH.Segregation distortion at isozyme locus Lap-1 in Schlambergera(Cactaceae)is caused by linkage with the gametophytic self-incompatibility[J].Locus J Hered,1998,89:206-210
    247.Olivier J-M,Mamoun M,and Munsch P.Standardization of a method to assess mushroom blotch resistance in cultivated and wild Agaricus bisporus strains[J].Can.J.Plant Pathol,1997,19:36-42
    248.Olson A.Genetic linkage between growth rate and the intersterility genes S and P in the basidiomycete Heterobasidion annoswn s.lat[J].MycologicalResearch,2006,110(8):979-984
    249.Olson M,Hood L,Cantor C,Botstein D.A common language for physical mapping of the human genome[J].Science,1989,245:1434-1435
    250.Palmer MA,Stewart EL.Variation among isolates ofSphaeropsis sapinea in the North Central United States[J].Phytopathed,1987,77:944-948
    251.Papazian liP.The incompatibility factors and related gene in Schizophyllum commune[J].Genetics,1951,36:441-459
    252.Paran I,Michelmore RW.Development of reliable PC'R-based markers linked to downy mildew resistance genes in lettuce[J].Theor Appl Genet,1993,85:985-993
    253.Park SK,Penas MM,Ramirez L,Pisabarro AG.Genetic linkage map and expression analysis of genes expressed in the lamellae of the edible basidiomycete Pleurotus ostreatus[J].Fungal Genet Biol,2006,43(5):376-8
    254.Paterson AH,Lander ES,Hewitt JD,Peterson S,Lincoln SE,Tanksley SD.Resolution of quantitative traits into Mendelian factors by using a complete linkage map of restriction fragment length polymorphisms[J].Nature,1988,335:721-726.
    255.Peberdy JF.Is,olation and properties of protoplasts from filamentous fungi,In microbial and plant protoplasts[C].Edited by Peberdy JF,Dose AH,Rogers HJ,Cocking EC.New York:Academic Press,1976,39-50
    256.Piepho HP.A mixed-model approach to mapping quantitative trait loci in barley on the basis of multiple environment data[J].Genetics,2000,156(4):2043-50
    257.Postlethwait JH,Johnson SL,Midson CN,Talbot WS,Gates M,Ballinger EW,Africa D,Andrews R,Carl T,Eisen JS,Home S,Kimmel CB,Hutchinson M,Johnson M,Rodriguez A.A genetic linkage map for the zehrafish[J].Science,1994,264:699-703
    258.Provan J,Powell W,Waugh R.Microsatellite analysis of relationships within cultivated potato (Solanum tubercsum )[J].Theoretical and Applied Genetics,1996,92(8):1078-1084
    259.Pukkila and Casselton.Molecular Genetics of the agaric Coprinus cinereus[C].In:Bennett JW and Lasure LL,Editors,More Gene Manipulations in Fungi,San Diego:Academic Press,1991,126-150
    260.Raper CA.B mating-type genes influence survival of nuclei separated from heterokaryons of Schizophyllum[J].Exs Mycol,1985,9:149-160
    261.Raper CA.Sexuality and breeding.In:Chang ST,Hayes WA.(Eds),The Biology and Cultivation of Edible Mushroom[M].Academic Press,New York,San Francisco,London,1978:83-117
    262.Raper JR,Baxter M,Middleton RB.The genetic structure of the incompatibility factors in Schizophyllum commune Proc[J].Nat ACA Sci USA,1958,44:889-900
    263.Raper JR,Baxter MG,Ellingboe All.The genetic structure of the incompatibility factors of Schizophyllum commune:theA factor[J].Proc.Natldlcad.Sci.USA.,1960,46:833-842
    264.Raper JR,Raper CA.Genetics regulation of sexual morphologenesis in Schizophyllum commune[J].J.Elisha Mitchell Sci Soc,1968,84(3):267-273
    265.Raper JR.Genetics of Sexuality in Higher Fungi[M].New York:Ronald Press,1966
    266.Rosa VD,Reverbefi M,Fabbri AA,Fanelli C,Urbanelli S.Isolation and characterization of microsatellite loci in the species Pleurotus eryngii(DC:Fr) Quel and P.ferulae(DC:Fr) Quel using a biotin/streptavidin enrichment technique[J].In:6th European Conference on Fungal Genetics,abstract book,Pisa,Italia,2002,P:Ⅳp8
    267.Royse DJ and May B.Use of isozyme variation to identify genotypic clas-ges ofAgaricus brunttesces [J].Mycologia,1982,74(1):93-102
    268.Saha S,Kanaca M,Jenkins JN,Zipf,AE,Reddy OUK,Pepper AE,Kantety R.Simple sequence repeats as useful resoures to study transcribed genes of cotton[J].Euphytica,2003,130:355-364
    269.Saiki RK,Scharf S,Faloona F,Mullis KB,Horn GT,Edich HA,Arnheim N.Enzymatic amplification of beta-globin genomic sequences and restriction site analysis for diagnosis of sickle cell anemia[J].Science,1985,230(4732):1350-1354
    270.Salmones D,Gaitan-Hernandez R,Perez R,Guzman G.Studies on genus Pleurotus VIII.interaction between mycelial growth and yield[J].Rev lberoam Micol,1997,14:173-176
    271.Satagopan JM,Yandell BS,Newton MA,Osborn TC.A bayesian approach to detect quantitative trait loci using Markov chain Monte Carlo[J].Genetics,1996,144:805-816
    272.Sax K.The association of size differences with seed-coat pattern and pigmentation in Phaseolus vulgaris[J].Genetics,1923,8:552-560
    273.Schubert D,Lengeler KB Kothe E.Identification of mating-type dependent genes by non-radioactive,arbitrarily primed PCR in Schizophyllum commune[J].Basic Microbiol,2000,40(1):65-70
    274.Shen GP,Park DC,Ulldch RC.Cloning and characterization of a Schizophyllum gene with A.B6mating-type activity[J].Curt Genet,1996,29(1):136-142
    275.Sicard D,Legg E,Brown S,Babu HK,Ochoa O,Sudarshana P and Michelmore RW.Genetic map of the lettuce downy mildew pathogen,Bremia lactucae,constructed from molecular markers and avirulence genes[J].Fungal Genetics and Biology,2003,39:16-30
    276.Sillanpaa MJ,Arjas E.Bayesian mapping of multiple quantitative trait loci from incomplete outhred offspring data[J].Genetics,1999,151:1605-1619
    277.Simchen G,and Jinks JL.The determination of dikaryotic growth gate in the basidiomycete Schizophyllum commune:a biometrical analysis[J].Heredity,1964,19:629-649
    278.Simchen G.Independent evolution of a polygenic system in isolated populations of fungus Schizophyllum commune[J].Evolution,1967,21:310-315
    279.Simchen G.Monokaryotic variation and haploid selection in Schizophyllum commune[J].Heredity,1966,21:241-263
    280.Soller M,Brody T,Genizi A.On the power of experimental design for the detection of linkage between marker loci and quantitative loci in crosses between inbred lines[J].Theor Appl Genet,1976,47:35-39.
    281.Song WY,Wang GL,Chen LL,Kim HS,PiLY,Holsten T,Gardner J,Wang B,Zhai WX,Zhu LH,Fauquet C,Ronald P.A receptor kinase-like protein encoded by the rice disease resistance gene,Xa21[J].Science,1995,270:1804-1806
    282.Stankis MM,Specht CA,Yang H,Giasson L,Ullrich RC,Novotny CP.The Aa mating locus of Schizophyllum commune encodes two dissimilar multiallelic homeodomain proteins[J].Proc Natl Acad Sci USA,1992,89(11):7169 -7173
    283.Steimel J,Chen W,Harrington TC.Development and characterization of microsatellite markers for the poplar rust fungi Melampsora medusae and Melampsora larici-populina[J].Molecular Ecology Notes,2005,5:484-486
    284.Stephens DA,Fisch RD.Bayesian analysis of quantitative trait locus data using reservible jump Markov chain Monte Carlo[J].Biometrics,1998,54(4):1334-1347
    285.Suenaga K,Khairallah M,William HM,Heisington DA.A new intervarietal linkage map and its application for quantitative trait locus analysis of "gigas" features in bread wheat[J].Genome,2005,48:65-75
    286.Sun SJ,Gao W,Lin SO,Zhu J,Xie BG,Lin ZB.Analysis of genetic diversity in Ganoderma population with a novel molecular marker SRAP[J].Appl Microbiol Biotechnol,2006,72(3):537-43
    287.Sun X,Cao Y,Yang Z,Li X,Wang S,Zhang O.Xa26,a gene conferring resistance to Xanthomonas oryzae pv.oryzae in rice,encodes an LRR receptor kinase-like protein[J].Plant J,2004,37(4):517-27
    288.Sunnucks P,England PR,Taylor AC,Hales DF.Microsatellite and chromosome evolution of parthenogenic Sitobion aphids in Australia[J].Genetics,1996,144,747-756
    289.Taillon-Miller P,Gu Z,Hillier L,Kwok,PY.Overlapping genomic sequences:a treasure troveof single-nucleotide polymorphisms[J].Genome Res,1998,8(7):748-754
    290.Takemaru T,Suzuki M,Mgaki N.Isolation and genetic of auxotrophic mutants in Flammuliua velutipes[J].Trans Mycol Soc Japan,1995,36(1):152-157
    291. Takemaru, T. Genetic studies on fungi IX. The mating system in Lentinus edodes (Berk.) Sing [R]. Rept. Tottori Mycol. Inst, 1961,1: 61-68
    292. Tan YD, Wan C, Zhu Y, Lu C, Xiang Z, Deng HW. An amplified fragment length polymorphism map of the silkworm [J]. Genetics, 2001,157(3): 1277-1284
    293. Tanaka A, Miyazaki K, Murakami H, Shiraishi S. Sequence characterized amplified region markers tightly linked to the mating factors of Lentinula edodes [J]. Genome, 2004, 47(1): 156-162
    294. Tanksley SD. Mapping polygenes [J]. Annu Rev Genet, 1993,27: 205-233
    295. Tanner MA, Wong HW. The calculation of posterior distributions by data augmentation [J]. J AM StatAssoc, 1987,82: 528-549
    296. Terashima K, Matsumoto T, Hayashi E, Fukumasa-Nakai Y. A genetic linkage map of Lentinula edodes (shiitake) based on AFLP markets [J]. Mycological Research, 2002,106(8): 911-917
    297. The Complex trait consortium. The nature and identification of quantitative trait loci: A community's view[R]. Nat Rev Genet, 2003,
    298. Thoday JM. Location of polygenes [J]. Nature, 1961,191: 368-370.
    299. Thomas DC, Gauderman WJ. Gibbs sampling methods in Genetics, in Markov Chain Monte Carlo in Practice, edited by Gilks WR, Richardson S and Spiegelhalter DJ [C]. London: Chapman & Hall, 1995,419-440
    300. Thompson EA. Monte Carlo likelihood in genetic mapping [J]. Statist Sci, 1994,9(3): 355-366
    301. Tokimoto K, Komatsu M, Takemaru T. Incompatibility factors in the natural population of Lentinus edodes in Japan [R]. Rept Tottori Mycol Inst, 1973,10: 371-376
    302. Toop JMH, Mooibroek H. Advances in genetic analysis and biotechnology of the cultivated button mushroom (Agaricus bisporus) [J]. Appl Microbiol Biotechnol, 1999, 52 (4): 474-483
    303. Toth G, Gaspari Z, Jurka J. Microsatellites in different eukaryotic genomes: survey and analysis [J]. Genome Res, 2000,10 (7): 967-981
    304. Tsivileva OM, Nikitina VE, Garibova LV, Ignatov VV. Lectin activity of Lentinus edodes [J]. International Microbiology, 2001,4(1): 41-45
    305. Tulsieram LK, Glaubitz JC, Kiss G, Carlson JE. Single tree genetic linkage mapping in conifers using haploid DNA from megagametophytes [J]. Bio/Technology, 1992, 10: 686-690
    306. Tymon AM, Kues U, Richardson WVJ. A fungal mating type protein that regulates sexual and asexual development contains a POU-related domain [J]. EMBO J, 1992,11(6): 1805-1813
    307. Tzeng TH, Lyngholm LK, Fordtv CK and Bronson CR. A restriction fragment length polymorphism map and electrophoretic karyotype of the fungal maize pathogen Cochliobolus heterostrophus [J]. Genetics, 1992,130: 81-96
    308. Uimari P, Hoeschele I. Mapping-linked quantitative trait loci using Bayesian analysis and Markov chain Monte Carlo algorithms [J]. Genetics, 1997,146: 735-743
    309. Vaillancourt IJ, Raudaskoski M, Spetch CA. Multiple genes encoding pheromones and a pheromone receptor define the BRl, mating-type specificity in Schizophyllum commune [J]. Genetics, 1997, 146: 541-551
    310. Vainio EJ, Hantula J. Variation of RAMS markers within the intersterility groups of Heterobasidion annosum in Europe [J]. Forest Pathology, 1999, 29: 3, 231-246
    311.Van Wetter MA,Wosten HA,Sietsma JH,Wessels JG.Hydrophobin gene.expression affects hyphal wall composition in Schizophyllum commune[J].Fungal.Genet.Biol.,2000,31(2):99-104
    312.Wang DL,Zhu J,Li ZK Paterson AH.Mapping QTLs with epistatic effects and QTL environment interactions by mixed linear model approaches[J].Theor Appl Genet,1999,99:1255-1264
    313.Wang O,Pan J,Li X,He H,Wu A,Cai R.Construction of a cucumber genetic linkage map with SRAP markers and location of the genes for lateral branch traits[J].Sci China C Life Sci.2005,48(3):213-20
    314.Wang S,Miao X,Zhao W,Huang B,Fan M,Li Z,Huang Y.Genetic diversity and population structure among strains of the entomopathogenic fungus,Beauveria bassiana,as revealed by inter-simple sequence repeats(ISSR)[J].Mycological Research,2005,109(Part 12):1364-1372
    315.Wang SS,Anderson NA.A genetic analysis of sporocarp production in Pleurotus sapidus [J].Mycologia,1972,64,(3):521-528
    316.Weissenbach J.The human genome object:from mapping to sequencing[J].Clin Chem Lab Med,1998,36:511-514
    317.Weller JI.Maximum likelihood techniques for the mapping and analysis of quantitative trait loci with the aid of genetic markers[J].Biometrics,1986,42:627-640
    318.Welsh J and McClelland M.Fingerprinting genomes using PCR with arbitrary primers[J].Nucl Adics Res,1990,18(24):7213-7218
    319.Welsh J,Petersen C,McCleiland M.Polymorphisms generated by arbitrarily primed PCR in the mouse:application to strain identification and genetic mapping[J].Nucleic Acids Res,1991,19(2):303-306
    320.Wendland J,Vaillancourt LJ,leguer B.The mating-type locus Bat of Schizophyllum commune contains a pheromone-receptor and putative pheromone genes[J].EMBO J,1995,14(18):5271-5278
    321.Williams JG,Kubelik AR,Livak KJ,Rafalski JA,Tingey SV.DNA polymorphism amplified by arbitrary palmers are useful as genetic marker[J].Nucleic Acids Res,1990,18(22):6531-6535
    322.Wu KK,Burnquist W,Sorrells ME,Tew TL,Moore PH,Tanksley SD.The detection and estimation of linkage in polyploids using single-dose restriction fragments[J].Theor Appl Genet,1992,83:294-300
    323.Wu KS,Tanksley SD.Abundance,polymorphism and genetic mapping of microsatellite in rice [J].Mol Gen Genet,1993,241:225-235
    324.Xu J,Kerrigan RW,Horgen PA and Anderson JB.Localization of the mating type gene inAgaricus bisporus[J].Appl..Environ.Microbiol,1993,59:3044-3049
    325.Xu JR,Leslie JF.A Genetic Map of Gibberella Fujikuroi Mating Population a(Fusarium Moniliforme)[J].Genetics,1996,143(1):175-189
    326.Xu SJ,Singh RJ,Hymowitz T.Establishment of a cytogenetic map of soybean:progress and prospective[J].Soybean Genet,Newsier,1997,24:121-122
    327.Xu SZ.Mapping quantitative trait loci using multiple families of line crosses[J].Genetics,1998,148:517-524
    328.Yamamoto T,Kuboki Y,Lin SY,Sasaki T,Yano M.Fine mapping of quantitative trait loci Hd-1,Hd-2 and Hd-3,controlling heading date of rice,as single Mendelian factors[J].Theor Appl Genet,1998,97:37-44
    329.Yang J,Zhu J and Williams RW.Mapping the genetic architecture of complex traits in experimental populations[J].Bioinformatics,2007,23:1527-1536
    330.Yano M,Sasaki T.Genetic and molecular dissection of quantitative traits in rice[J].Plant Mol Biol,1997,35:145-153
    331.Yi N,Xu S,Allison DB.Bayesian model choice and search strategies for mapping interacting quantitative trait loci[J].Genetics,2003,165:867-883
    332.Yi NJ,Xu SH.Bayesian mapping of quantitative trait loci for complex binary traits[J].Genetics,2000,155:1391-1403
    333.Yoshioka Y,lwata H,Ohsawa R,Nimomiya S.Quantitative evaluation of flower colour pattern by image analysis and principal component analysis of Primula sieboldii E[J].Morren.Euphytica,2004,139:179-186
    334.Yue C,Osier M,Novotny CP.The specificity determinant of the Y mating-type proteins of Schizophyllum commune is also essential of Y-Z protein binding[J].Genetics,1997,145(1):253-260
    335.Zabean M,Vos P.Selective restriction fragment amplification:a general method for DNA Fingerprinting[P].European Patent Application,92402629.7(Publication No.:0534858A1),European Patent Office,Pads,1993
    336.Zeng ZB.Precision mapping of quantitative trait loci[J].Genetics,1994,136:1457-1468.
    337.Zhang YS,Luo LJ,Xu CG,Zhang QF,Xing YZ.Quantitative trait loci for panicle size,heading date and plant height co-segregating in trait-performance derived near-isogenic lines of rices(Oryza sativa)[J].Theor Appl Genet,2006,113:361-368
    338.Zhao J,Kwan,HS.Characterization,molecular cloning,and differential expression analysis of laccase genes from the edible mushroom Lentinula edodes[J].Appl.Environ.Microbiol.,1999,65:4908-4913
    339.Zhao J,Zhang ST.Monokaryotization by protoplasting heterothallic species of edible mushroom [J].World Journal of Microbiology and Biotechnology,1993,(9):538-543
    340.Zietkiewicz E,Rafalski A,Labuda D.Genome fingerprinting by simple sequence repeat (SSR)-anchored polymerase chain reaction amplification[J].Genomics,1994,20:176-183

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700