用户名: 密码: 验证码:
超临界撞击流微粒包覆工艺基础研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
微胶囊的制备技术是影响其应用的关键,其中超临界快速膨胀(RESS)法和超临界反溶剂(SAS)法是目前超临界流体过程在制备药物微胶囊领域中应用较为广泛的方法。这两种方法虽然能够克服传统方法的粒径偏大、分布范围较宽、制备过程温度较高、有机溶剂残留、团聚现象严重等缺点;但也存在着RESS法包覆不均匀、SAS法对微胶囊的壁材和芯材从有机溶剂中析出顺序要求严格等问题。
     在总结前人研究的基础上,本论文将超临界流体过程、撞击流和流化床技术相结合,提出了一种新的制备微胶囊技术—超临界撞击流技术(SFIT)。该技术既弥补了RESS法和SAS法制备药物微胶囊的不足,又承接了RESS结合流化床技术制备微胶囊过程的优点,解决了芯材在超临界流体中受溶解度限制的问题,强化了流场中相间的传递过程,使得微胶囊的包覆效率得到了显著提高,药物的适用范围得到了扩大。
     根据超临界撞击流技术原理,本论文建立了实验装置、实验程序与步骤以及分析测试手段,形成了一整套超临界撞击流实验技术。以玻璃微珠为包覆芯材、石蜡为包覆壁材,利用SFIT进行了制备微胶囊的模型实验研究,并对制得的微胶囊进行了表征和评价。结果表明,论文设计建立的实验装置完全满足SFIT实验要求,并且制备出的微胶囊具有良好的完整性,同时确定了主要操作参数(如混合器内压力、混合器内温度、撞击距离和膨胀前温度等)对微胶囊包覆效果(如微胶囊表面形态、粒径及粒径分布、表观包覆率等)的影响规律,并得到了较为适宜的操作参数。
     研究选用半衰期较短的抗生素类药物阿莫西林和生物利用度较低的降血压类药物尼群地平为包覆芯材,选用药品辅材中较为常用的聚乙二醇4000(PEG4000)为包覆壁材,利用SFIT进行包覆实验研究。应用DSC技术或XRD技术对阿莫西林/PEG和尼群地平/PEG微胶囊进行完整性和晶型的检测,并根据国家药典规定,对这两种药物微胶囊进行药物释放实验研究,进一步确定了包覆完整性和释放效果。从微胶囊表面形态、粒径及粒径分布、载药量等方面对这两种药物微胶囊进行了分析和评价;同时考察了混合器内压力、混合器内温度、撞击距离和膨胀前温度等操作参数对微胶囊包覆效果(如表面形态、粒径及粒径分布和载药量等)的影响规律,得到了较为适宜的操作参数。
     选用释放速度快、化学性质不稳定、易于分解的维生素类药物维生素C(Vc)为包覆芯材,可完全生物降解、医药制药领域中应用较为广泛的左旋聚乳酸(PLLA)为包覆壁材,利用SFIT进行包覆实验研究。选用XRD技术对Vc/PLLA微胶囊进行了晶体结构检测,并配置缓释溶液对Vc/PLLA微胶囊进行了释放实验,采用紫外-可见分光光度计分析,得到释放曲线;通过考察混合器内压力、混合器内温度、撞击距离和膨胀前温度等操作参数对微胶囊包覆效果(如表面形态、粒径及粒径分布和载药量等)的影响,得到了Vc/PLLA微胶囊制备过程较为适宜的操作参数。
     利用PIV测试技术对SFIT流场进行测试实验研究。选择喷嘴出口到撞击区为研究对象,考察了混合器内压力、混合器内温度和撞击距离对轴向速度的影响规律,得到了撞击流流场的速度矢量图。进而描述了SFIT两喷嘴间流场的整体形貌,揭示了各操作参数对撞击流流场的影响规律。
Preparation technology of microcapsules plays a key role in their application. At present, the supercritical fluid technology is usually used to produce the pharmaceutical microcapsules. The representative rapid expansion of supercritical solution (RESS) and supercritical anti-solvent (SAS) methods are able to overcome the drawbacks of the traditional preparation technologies, such as large particle diameters, wide size distributions and serious agglomerations. However, RESS fails in obtaining a uniformly coating, while SAS requires that core material must deposit before wall material.
     Herein, we presente a new technology called supercritical fluid impinging technology (SFIT) for the preparation of microcapsule base on previous studies, which involve supercritical fluid process, impinging streams technology and fluidized-bed coating technology. SFIT overcomes the disadvantages of RESS and SAS methods for microcapsule production when taking advantage of combines RESS and fluidized-bed technology. Besides, this method also avoids the restriction of core material's solubility in supercritical fluid, and strengthened the inter-phase mass transfer, which resultes in improving encapsulation efficiency and expanding the scope of micro-particles.
     According to the theory of supercritical fluid and impinging stream, we have developed an experimental facility, the corresponding experimental procedure and analysis method, and finally propose a whole set of SFIT. SFIT is investigated by using glass beads as the core material and paraffin as the wall material. The results indicate that the experimental facility satisfies the requirement of SFIT experiment completely, and the microcapsules are produced with good integrity. Furthermore, the effects of main operating parameters, such as pressure of the mixing vessel, temperature of the mixing vessel and impinging distances on the encapsulation like surface morphology, average particle size and apparent encapsulation efficiency are investigated, and thereby the optimize operating parameters are obtained.
     SFIT is further investigated by using pharmaceutical microcapsules. Amoxicillin as antibiotic medicine with a short half—life period and nitrendipine as hypotensive drug are chosen as the core materials, and PEG4000is chosen as the wall material. The integrity and crystal morphology of the amoxicillin/PEG4000and nitrendipine/PEG4000microcapsules obtaine by SFIT is tested with DSC and XRD. According to the requirements of the China Pharmacopoeia committee, the experimental study on drug release is also conducted to examine the coating integrity and drug releasing ability. In addition, this study dealt with the influence of different parameters such as pressure of the mixing vessel, temperature of the mixing vessel, impinging distance and pre-temperature on the morphology, particle size and size distribution, and drug loading capacity. The optimized operating parameters are thereby obtained.
     SFIT is also investigated using another pharmaceutical microcapsule. Vitamin C which is fast releasing, chemically unstable and easy to degrade is selected as the core material, and PLLA which is biodegradable and popular in pharmaceutical field is selected as the wall material. The Vc/PLLA microcapsule obtains by SFIT is valuated with XRD. The sustained-release experiment is conducted using a buffer solution, and the corresponding drug release rate is obtained by UV-visible spectrophotometer. In addition, the effects of different parameters such as pressure of the mixing vessel, temperature of the mixing vessel, impinging distance and pre-temperature on the characteristics such as the morphology, particle size and size distribution, and drug loading capacity of microcapsules are investigated, and thereby the optimized operating parameters for VC/PLLA microcapsule producing process are obtained.
     The flow field in SFIT process is studied with PIV. The area from the jet outlet to the impinging surface is selected to be the research zone.The effects of operating parameters such as pressure of the mixing vessel, temperature in the mixing vessel and impinging distance on the axial velocity are studied. Thus, the velocity vector diagram and the regular pattern how the parameters affect the flow fields are obtained.
引文
[1]李凤生,姜炜,付廷明等.药物粉体技术[M].北京:化学工业出版社,2007.
    [2]陈浩,钟宏,黄河等.农药微胶囊技术的研究现状与发展[J].化工技术与开发.2008,37(6):19-21.
    [3]石磊,包宗宏.阻燃剂微胶囊化的研究进展[J].化工进展,2008,27(7):1001-1006.
    [4]刘硕,张东.纳米胶囊相变材料研究进展[J].化学通报,2008,(12):906-911.
    [5]牟绍艳,路遥.密胺树脂微球微胶囊的制备及应用研究进展[J].现代化工,2011,31(2):17-20.
    [6]Rama D, Shami T C, Bhasker R K U. Microencapsulation technology and applications[J]. Defence Science Journal,2009,59(1):82-95.
    [7]周小燕,陈莉,孙卫国.微胶囊技术及其在纺织中的应用[J].纺织科技进展,2011,(5):3-5.
    [8]黄玲,姬书亮.微胶囊抗菌剂在织物整理中的应用[J].印染助剂,2012,29(2):1-5.
    [9]周文君,姜子涛,李荣.纳米微胶囊在食品中应用的最新进展[J].食品工业科技,2012,33(2):427-429.
    [10]董晓,姜子涛,李荣.微胶囊技术在生物领域中的应用及研究进展[J].农产品加工学刊,2011,(10):108-110.
    [11]曾春香,张斯汉.缓释、控释药用高分子材料的临床应用[J].中国组织工程研究与临床康复,2010,14(21):3939-3942.
    [12]Salima V, Soraya R R, Angel M, et al. Antimicrobial activity of lavandin essential oil formulations against three pathogenic food-borne bacteria[J]. Industrial Crops and Products.2013,42:243-250.
    [13]Kensuke O. Christie R J, Kazunori K. et al. Polymeric micelles from poly(ethylene glycol)-poly(amino acid)block copolymer for drug and gene delivery[J]. Journal of the royal society. 2009,6:S325-S339.
    [14]Torchilin V P. Micellar nanocarries:pharmaceutical perspectives [J]. Pharm Res.,2007,24 (1): 1-16.
    [15]袁青梅,杨红卫,张发广等.原位聚合法制备鱼藤酮微胶囊[J].应用化学,2006,23(4):382-3851.
    [16]Prasertmanakit S. Praphairaksit N, Chiangthong W.et al.. Ethyl cellulose microcapsules for protecting and controlled release of folic acid[J]. AAPS Pharmscitech,2009,10 (4):1104-1112.
    [17]刘袖洞,于炜婷,王为等.海藻酸钠和壳聚糖聚电解质微胶囊及其生物医学应用[J].化学进展,2008,20(1):126-139
    [18]Mayya K S, Bhattacharyya A, Argillier J F. Microencapsulation by complex coacervation:inflence of surfactant[J]. Polym Int.,2003,52:644-677.
    [19]孟锐,李晓刚,周小毛等.药物微胶囊壁材研究进展[J].高分子通报,2012,(3):28-37.
    [20]刘袖洞,何洋,刘群等.微胶囊及其在生物医学领域的应用[J].科学通报,2000,49(23):2476-2485.
    [21]宋健,陈磊,效军.微胶囊化技术及应用[M].北京:化学工业出版社,2001.
    [22]李思阳,郑健,骆沙曼等.10-羟基喜树碱的聚赖氨酸/海藻酸钠微胶囊的制备及其体外释药特性研究[J].中草药,2011,42(9):1724-1727.
    [23]Lahooti S, Sefton M V, Methods for Microencapsulation with HEMA-MMA[J]. Methods in Molecular Medicine,1999,8(26):331-348.
    [24]Romoser A. Ritter D, Majitha R, et al. Mitigation of quantum clot cytotoxicity by microencaps ulation[J]. PLoS One.2011.6(7):e22079.
    [25]马力,王英爽,段文琴等.脲醛/硅酸钠复合制备农药微胶囊[J].农药.2009.48(11):S-7.
    [26]Liu C H, Wu J Y, Chang J S. Diffusion characteristics and controlled release of bacterial fertilizers from modified calcium alginate capsules[J]. Bioresource Technology.2008.99(6):1904-1910.
    [27]Prakash S, Tomaro-Duchesneau C, Saha S. et al. The gut microbiota and human health with an emphasis on the use of microencapsulated bacterial cells[J]. Journal of Biomedicine and Biotechnology, 2011.2011:981214.
    [28]李晓东,冷友斌,韩露露等.婴儿配方奶粉用营养油微胶囊化的配方优化[J].中国乳品工业.2011,39(11):16-20.
    [29]Qingguo Xu, Jan T. Czernuszka. Controlled release of amoxicillin from hydroxyapatie-coated poly (lactic-co-glycolic acid) microspheres[J]. Journal of Controlled Release,2008,127:146-153.
    [30]张可达,徐冬梅,王平.微胶囊化方法[J].功能高分子学报,2001,12(4):474-480.
    [31]Frascareli E C, Silva V M, Tonon R V, et al. Effect of process conditions on the microencapsulation of coffee oil by spray drying food and bioproducts processing[J]. food and bioproducts processing,2012,90:413-424.
    [32]Shu, B, Y, ZhaoY, Liu, X. Study on microencapsulation of lycopene by spray-drying[J]. Food Eng, 2006,76:664-669.
    [33]Nunes, I L, Mercadante, A Z. Encapsulaion of lycopene using spray-drying and molecular inclusion process[J]. Braz. Arch. Biol. Technol,2007,50 (5):893-900.
    [34]Andrea Y G-L, Lidia D-A, Maria E J-F, et al. Preparation and characterization of non-aqueous extracts from chilli (Capsicum annuum L.) and their microencapsulates obtained by spray-drying[J]. Journal of Food Engineering.2012,112:29-37.
    [35]Al-asheh, S., Jumah, R., Banat, F, et al. The use of experimental factorial design for analysing the effect of spra dryer operating variables on the production of tomato powder[J]. Food Bioprod Process,2003,81 (2):81-88.
    [36]陈庆华,张强.药物微胶囊化新技术及应用[M].北京:人民卫生出版社,2008.
    [37]李和平,岳敏.不溶性硫黄的研究现状及微胶囊硫黄的研究构想[J].橡胶工业,2008,55(1):59-63.
    [38]崔正刚,殷福珊.微乳化技术及应用[M].北京:化学工业出版社,1999.02.
    [39]李凤生,杨毅等.纳米/微米复合技术及应用[M].北京:国防工业出版社.2002.08.
    [40]尹强,杨毅等.超细复合粒子制备技术研究[J].中国粉体技术,2002,8(6):40-43.
    [41]揣成智,程远,李树等.石蜡微胶囊的溶胶-凝胶法改性[J].应用化工,2011,40(2):258-261.
    [42]马千里,顺利霞.复合微球的制备性能及应用[J].离子交换与吸附,2000,16(1):89.
    [43]Wiemann L O, Buth A, Klein M, et al. Encapsulation of syntheticallyvaluable biocatalysts into polyelectrolyte multilayer systems [J]. Langmuir,2009,25(1):618-623.
    [44]Hwang Y K, Jeong U, Cho E C. Production of uniform-sized core-shellmicrocapsules by coaxial electrospraying [J]. Langmuir,2008,24(6):2446-2451.
    [45]Jacobson, G B, Shinde R, McCullough, R L, et al. Nanoparticle formation of organic compounds with retained biological activity[J]. Journal of Pharmacerutical Sciences,2010,99:2750-2755.
    [46]邓政兴,张润,李立华等.生物材料制备新方法--超临界流体技术[J].化学世界,2004,(2)99-102.
    [47]Reverchon E, Della P G, Sannino D., etal Supercritical antisolvent precipitation of nanoparticles of a zinc oxide precursor[J]. Powder Technology,1999,102:127-134.
    [48]Ernesto.R, Renata A, Giuseppe C. Supercritical assisted atomization:Performance comparison between laboratory and pilot scaleJ[]. J. of Supercritical Fluid,2006,37:298-306.
    [49]Kenji M,.Biodegradable particle formation for drug and gene delivery using supercritical fluid and dense gas[J]. Advanced Drug Delivery Reviews,2008,60:328-338.
    [50]Garay I., Pocheville A., Madariaga L.. Polymeric microparticles prepared by supercritical antisolvent precipitation[J]. Powder Technology,2010,197:211-217.
    [51]Ernesto R, Renata A, Stefano C, et al. Supercritical fluids processing of polymers for pharmaceutical and medical applications[J]. J. of Supercritical Fluids,2009,47:484-492.
    [52]Jacques F, Hubert L, Jean-Jacques L, et al. Particle generation for pharmaceutical applications using supercritical fluid technology[J]. Powder Technology,2004,141:219-226.
    [53]Romo-Hualde A., Yetano-Cunchillos A I., Gonzalez-Ferrero C,et al. Supercritical fluid extraction and microencapsulation of bioactive compounds from red pepper (Capsicum annum L.) by-products[J]. Food Chemistry,2012,133:1045-1049.
    [54]Ai-Zheng Chen, Yi Li, Foo-Tim Chau, et al. Application of organic nonsolvent in the process of solution-enhanced dispersion by supercritical CO2 to prepare puerarin fine particles[J]. J. of Supercritical Fluids.2009,49:394-402.
    [55]De Marco 1, Knauer O, Cice F, et al. Interactions of phase equilibria, jet fluid dynamics and mass transfer during supercritical antisolvent micronization:The influence of solvents[J]. Chemical Engineering Journal,2012,203:71-80.
    [56]Palakodaty S, York P. Phase behavioural effects on particle formation processes using supercritical fluids[J]. Pharm. Res,1999,16:976-985.
    [57]Marilyn C, Elisabeth R, Hubert L,et al. A new supercritical co-injection process to coat microparticles[J]. Chemical Engineering and Processing,2008,47:2228-2237.
    [58]Tom J W, Debenedetti P G.. Particle formation with supercritical fluids—a review[J]. Aerosol Sci, 1991,22:555-584.
    [59]Turk M., Hils P, Helfgen B, et al. Micronization of pharmaceutical substances by the Rapid Expansion of Supercritical Solutions (RESS):a promising method to improve bioavailability of poorly soluble pharmaceutical agents[J]. Journal of Supercritical Fluids,2002,22:75-84.
    [60]Michael T, Dennis B. Formation of submicron poorly water-soluble drugs by rapid expansion of supercritical solution (RESS):Results forNaproxen[J]. J. of Supercritical Fluids,2010,55:778-785.
    [61]Nuray Y, Sebnem T, Onur D, et al. Micronization of salicylic acid and taxol (paclitaxel) by rapid expansion of supercritical fluids (RESS)[J]. The Journal of Supercritical Fluids,2007,41(3):440-451.
    [62]Ali Z H, Feridun E. Micronization of drug particles via RESS process[J]. J. of Supercritical Fluids, 2010,52:84-98.
    [63]Ali K, Javad K S, Alborz F, et al. Preparation and characterization of raloxifene nanoparticles using Rapid Expansion of Supercritical Solution (RESS)[J]. The Journal of Supercritical Fluids,2012,63: 169-179.
    [64]Masoomeh P, Shohreh F. Alireza V, et al. Production of ultrafine drug particles through rapid expansion of supercritical solution:a statistical approach[J]. Powder Technology.2012,225:21-26.
    [65]Diego T S, Juliana Q A. Marisa M B, et al. Stabilization of anthocyanin extract from jabuticaba skins by encapsulation using supercritical CO2 as solvent[J]. Food Research Internation,2013,50 (2): 617-624.
    [66]Hamid R S. Mohammad N L. Effects of extraction temperature, extraction pressure and nozzle diameter on micronization of cholesterol by RESS process[J]. Powder Technology,2011,210:109-114.
    [67]Debenedetti P G., Tom J W.. Yeo S D., et al. Application of supersaturation fluids for the production of sustained delivery devices[J]. Control.Release,1993,24:27-44.
    [68]Kim J, Paxton T E, Tomasko D L. Microencapsulation of naproxen using rapid expansion of supercritical solutions[J]. Biotechnol. Prog,1996,12:650-661.
    [69]Michael T, Gerd U, Peter H. Formation of composite drug-polymer particles by co-precipitation during the rapid expansion of supercritical fluids [J]. J. of Supercritical Fluids,2006,39:253-263.
    [70]Pfeffer R,Wang Y L,Wei D W, et al. Extraction and precipitation particle coating using supercritical CO2[J]. Powder Technology,2002,127(1):32-44.
    [71]SHIM J J. Mathew Z Yates. et al. Polymer coating by rapid expansion of suspensions in supercritical carbon dioxde[J].Ind Eng Chem Res,1999.38:3655-3662.
    [72]Kiyoshi M, Kenji M, Ken-I,et al. Formation of Microcapsules of Medicines by the Rapid Expansion of a Supercritical Solution with a Nonsolvent[J]. Journal of Applied Polymer Science,2003,89:742-752.
    [73]Amporn S, Jumras. L. Formation of retinyl palmitate-loaded poly (1-lactide) nanoparticles using rapid expansion of supercritical solutions into liquid solvents (RESOLV) [J]. J. Supercritical Fluids,2009, 13:230-237.
    [74]Ladawan S, Amporn S. Effect of concentration and degree of saturation on co-precipitation of catechin and poly (1-lactide) by the RESOLV process[J]. J. of Supercritical Fluids,2013,75:72-80.
    [75]Tsutsumi A, Mineoa T. Nakamoto S. et al. A novel fluidized-bed of fine particles by rapid expansion of supercritical fluid solutions[J]. PowderTechnology,1995,85(3):275-278.
    [76]王亭杰,金涌.堤敦司.超临界流体快速膨胀用于细颗粒包覆技术[J].化工进展,2000,(4):42-47.
    [77]Wang T J, Atsushi T. Hideyuki H, et al. Mechanism of particle coating granulation with RESS process in a fluidized bed[J]. Powder Technology,2001.118:229-235.
    [78]Schreiber R, Brunner G. Fluidized bed coating at supercritical fluid conditions[J]. Supercritical Fluids,2002,24(2):137-151.
    [79]Krober H, Teipel U. Microencapsulation of particles using supercritical carbon dioxide【J]. Chemecal Engineering and Processing,2005,44(2):215-219.
    [80]Rosenkranz K, Kasper M M, Werther J., et al. Encapsulation of irregularly shaped Solid forms of proteins in a high-pressure fluidized bed[J]. J of Supercritical Fluids,2008,46:351-357.
    [81]Reverchon E. Supercritical antisolivent precipitation of micro-and nano-particle [J]. J. Supercrit Fluids,1999,15(1):1-21.
    [82]李志义,李文秀,刘学武等.超临界反溶剂过程制备灰黄霉素超细微粒[J].化学反应工程与工艺,2006,22(2):156-161.
    [83]Ernesto R, Iolanda D M. Mechanisms controlling supercritical antisolvent precipitate morphology[J]. Chemical Engineering,2011,169:358-370.
    [84]Yousef B, Sulaiman A, AbdelHamid Ar. Precipitation of ibuprofen sodium using compressed carbon dioxide as antisolvent[J]. European Journal of Pharmaceutical Sciences,2013,48:30-39
    [85]LI Wenfeng, LIU Guijin, LI Lixian, Et al. Effect of Process Parameters on Co-precipitation of Paclitaxel and Poly(L-lactic Acid) by Supercritical Antisolvent Process[J]. Chinese Journal of Chemical Engineering,2012,20(4):803-813.
    [86]Ribeiro I, Santos D, Richard J, et al. Microencapsulation of protein particles within lipids using a novel supercritical fluid process[J]. Interna J of Pharma,2002,242:69-78.
    [87]Montes A., Gordillo M D., Pereyra C, et al. Polymer and ampicillin co-precipitation by supercritical antisolvent process[J]. Jof Supercritical Fluids,2012,63:92-98.
    [88]Turk M., Upper G, Steurenthaler M, et al. Complex formation of Ibuprofen and β-Cyclodextrin by controlled particle deposition (CPD) using SC-CO2 [J]. J of Supercritical Fluids.2007,39:435-443.
    [89]Subramarian. Method for particle micronisation and nanonization by recrystallization from organic solutions sprayed into a compressed antisolvent[P]. US:5874029,1999-02-23.
    [90]Randolph T W, Randolph A D, MebesM, et al. Submicrometer sized biodegradable particles of poly (L-lactic acid) via the gas antisolvent spray precipitation process [J]. Am Chem Soc and Am Inst Chem Eng,1993,9:429-435.
    [91]TU L S, Dehghani F, Foster N R. Micronisation and microencapsulation of pharmaceuticals using a carbon dioxide antisolvent [J]. Powder Technology,2002.126:134-149.
    [92]Stan G, Johnson D A. Experimental and numerical analysis of turbulent opposed impinging jets [J]. AIAA Journal,2001,39(10):1901-1908.
    [93]Korusoy E, Whitelaw J H. Opposed jets with small separations and their implications for the extinction of opposed flames [J]. Experiments in Fluids,2001,31(1):111-117.
    [94]Champion M, Libby P A. Comparison between theory and experiment for turbulence on opposed streams [J]. Physics of Fluids,1993,5(9):2301-2303.
    [95]Choicharoen K, Devahastin S, Soponronnarit S. Performance and Energy Consumption of an Impinging Stream Dryer for High-Moisture Particulate Materials [J]. Drying Technology,2010, 28(1):20-29.
    [96]申圣丹.王盛民,詹源文等.珍珠超高压撞击流超微粉碎的研究[J].现代食品科技.2010.26(11):1220-1222.
    [97]Mahajan A J, Kirwan D J. Micromixing effects in a two-impinging-jets precipitator [J]. AIChE J, 1996,42(7):1801-1814.
    [98]张联节.撞击流反应器萃取电镀废水中的Cr6+[D].四川:四川大学化学工艺专业.2007.
    [99]胡立舜,王兴军,于广锁等.撞击流气液吸收特性及用于甲醇合成应用研究[J].高校化学工程学报,2009,23(3):404-410.
    [100]Tamir A. Impinging-stream Reactor-Fundamentals and Application [M]北京:化学工业出版社.1999.
    [101]伍沅.撞击流--原理·性质·应用[M].北京:化学工业出版社,2005.
    [102]李永发,张海鹏.李阳初等.撞击流吸收器吸收性能实验研究[J].石油大学学报,1999,23(4):78-80.
    [103]张小宁,徐更光.撞击流粉碎制备超细颗粒工艺的研究[J].功能材料,1999,30(6):657-659.
    [104]孙勤,杨阿三,程榕等.气-液撞击流过程中液相停留时间分布的实验测定[J].浙江工业大学学报,2005,33(2):158-161.
    [105]Luzzattok K, Tamir A, ELPERIN I. A new two-impinging-streams heterogeneo us reactor [J]. AIChE Journal,1984,30(4):600-608.
    [106]张建伟,马彦东,冯颖.现代流动测量技术用于撞击流混合器内流动特性的研究进展[J].化工进展,2012,31(2):268-273.
    [107]叶丽华,施爱平,袁银南等.生物柴油喷雾特性的PDPA试验研究[C].中国内燃机学会.燃烧净化节能分会.2007年学术年会论文集,成都.2007.
    [108]龙海军,水平撞击流干燥器撞击过程实验研究[D].江苏:东南大学热能工程专业,2005.
    [109]刘朝霞.湍流撞击流数值模拟与实验研究[D].湖北: 华中科技大学,2007.
    [110]Koched A, Pavageau M, Aloui F. Experimental Investigations of Transfer Phenomena in a Confined Plane Turbulent Impinging Water Jet [J]. Journal of Fluids Engineering.2011.133(6):1-13.
    [111]Noushin A, Yassin A. Measurements of jet flows impinging into a channel containing a rod bundle using dynamic PIV [J]. International Journal of Heat and Mass Transfer,2009,52:5479-5495.
    [112]王端,李志鹏,高正明等.T型撞击流混合器内流动特性的PIV研究[J].过程工程学报,2010,10(4):638-643.
    [113]Sergey V A, Artur V B, Vladimir M D, et al. Experimental study of an impinging jet with different swirl rates [J]. International Journal of Heat and Fluid Flow,2007,28:1340-1359.
    [114]蒋静智.超临界流体膨胀减压过程制备药物超细微粒工艺研究[D].大连理工大学博士学位论文,2008.
    [115]国家药典委员会编.中华人民共和国药典2010年版.北京:中国医药科技出版社,2010.
    [116]Langer R. New methods of drug deli very [J]. Science,1990,249(4976):1527-1533.
    [117]杨明世,崔福德,王亮等.尼群地平缓释微球的制备及其体内外相关性的研究[J].沈阳药科大学学报,2003,20(2):79-83.
    [118]李振兴,刘有智,冯霞.石蜡应用研究进展[J].精细与专用化学品.2011,19(12):46-48.
    [119]张海明,李成海,唐雅娟.石蜡应用新进展[J].天津化工,2006,20(5):14-16.
    [120]王亭杰,堤敦司,金涌.用石蜡-CO2超临界流体快速膨胀在流化床中进行细微粒包覆[J].化工学报,2001,52(1):50-55.
    [121]蒋斌波.超临界流体技术制备无载体茂金属催化剂微粒的研究[D].浙江大学博士学位论文,2001.
    [122]严瑞瑄.水溶性高分子[M].北京:化学工业出版社,1998:223-243.
    [123]粱秉文,黄胜炎,叶祖光.新型药物制剂处方与工艺[M].北京:化学工业出版社,2008.
    [124]严涵,杨延慧,崔园园等.聚乙二醇在生物材料中的应用研究[J].安徽农业科学,2011,39(25):15189-15191.
    [125]Deng Jinni, Cao Jing. Mechanical and surf ace properties of polyurethane/fluorinated multi-walled carbon nanotubes composites [J]. Journ al of Applied Polymer Science,2008,108,2023-2028.
    [126]Rowe R C, Sheskey P J, Weller P J药用辅料手册[M].郑俊民主译,北京:化学工业出版社,2004,523-529.
    [127]张玲玲,江善祥.阿莫西林药理与毒理研究进展[J].兽药与饲料添加剂,2009,14(1):20-23.
    [128]孙万峰,姜维苓,初志敏等.液中干燥法制备阿莫西林微囊的研究[J].中国药学杂志,2002,37(5):352-354.
    [129]杨万兴,何凤慈,陈亮等.阿莫西林-乙基纤维素微型胶囊的研制及缓释性的研究[J].中国药业,1998,7(4):18.
    [130]刘哲鹏,张莉,陆伟跃等.星点设计法优化阿莫西林粘附微球处方工艺.中国医药工业杂志,2003,34(6):280-282.
    [131]陈岚,张岩,李保国等.超临界流体技术制备阿莫西林缓释微囊的初探[J].中国药学杂志,2004,39(11):842-844.
    [132]陈镇生.缓释制剂体外溶出考察方法的探讨[J].中国医药工艺杂志,1997,28(1):43-47.
    [133]蔡鸿生,张先洲.尼群地平注射液的研制[J].中国药学杂志,1994,29(10):613-615.
    [134]宗莉,陈伶俐,张勇.尼群地平缓释片的研制及体外释药因素分析[J].中国医科大学学报,2004,35(6):503-507.
    [135]朱焰,王敏伟.钙拮抗剂药理研究进展[J].医学研究通讯,2000,29(2):40-41.
    [136]周延安,蔡鸿生,尹武华.尼群地平的药理及临床应用进[J].医药导报,1994,13(2):62-63.
    [137]朱兆恩.尼群地平控释片的释放度测定[J].中国医院药学杂志,1999,19(3):133-134.
    [138]陈新谦,金有豫,汤光.新编药物学[M]第15版.北京:人民卫生出版社,2003,3271.
    [139]Hasegawa G R. Drug review:nicardipine, nitrendipine and bepridil new calcium antagonists for cardiovascular disorders [J]. Clin Pharmacy,1988,7(2):97-108.
    [140]Krol G J, Lettieri J T, Yeh S C, et al. Disposition and pharmacokinetics of 14C-nitrendipine in healthy volunteers[J]. Cardiovasc Pharmacol.1987.9:122-128.
    [141]Fude Cui, Mingshi Yang, Yanyan Jiang,et al. Design of sustained-release nitrendipine microspheres having solid dispersion structure by quasi-emulsion solvent diffusion method[J]. Journal of Controlled Release,2003,91:375-384.
    [142]逢秀娟,孙淑英,张汝华等.尼莫地平固体分散物研究[J].沈阳药科大学学报,1997,14(1):5.
    [143]尹崇道.蒿甲醚固体分散体缓释制剂的研制及其体外溶出度的观察[J].中国药房.1997,8(6):251.
    [144]Craig D Q M.The mechanisms of drug release from solid dispersions in water-soluble polymers [J]. Int J Pharm.,2002,231:131
    [145]张佳良,杨秋霞,陈建明.固体分散体在缓控释制剂中的应用[J].药学实践杂志,2010,28(4):248-250.
    [146]夏延斌.食品化学[M].北京:中国农业出版社,2004:165-166.
    [147]张锦胜,郑为完,周鹏.维生素C微胶囊化技术现状与展望[J].食品研究与开发,2000,21(5):3-5.
    [148]钱燕春,冯德云.维生素C防止肿瘤作用的研究进展[J].右江医学,2008,36(6):741-743.
    [149]曹雯.大剂量维生素C预防急性心肌梗死溶栓后灌注心律失常的临床研究[J].甘肃科技,2002,1-2:96.
    [150]廖斌,秦爱平.氨基胍和维生素C调节I型糖尿病大鼠胰腺细胞iNOS的表[J].中国老年保健医学杂志,2009,7(2):97-98.
    [151]黄莉,闫文珍.维生素C对糖尿病肾病的治疗作用概述[J].中国民康医学,2008,20(12):1354.
    [152]李志惠,宋海亭.大剂量维生素C粉针治疗社区获得性下呼吸道感染[J].现代中西医结合杂志,2006,15(3):323-324.
    [153]Austria R, Semenzato A, Bettero A. Stability of vitamin C derivatives in solution and topical formulations[J]. Journal of Pharmaceutical and Biomedical Analysis,1997,15:795-801.
    [154]李书国,薛文通,李雪梅等.乙基纤维素微胶囊化VC及其活性保护的研究[J].食品工业科技,2005,26(5):143-148.
    [155]Kido T, Kodmra H, Munechika K, et al. Stable vitamin C preparation:US,6084110[P].2000-07-04.
    [156]Santiago P, Ruben H D. A Solubilization of hydrophobic drugs in octanoy-6-ascorbic acid micellar dispersions [J]. J Pharm Sci,2002,91(08):1810-1816.
    [157]金抒,缪晓琴.3-O-乙基维生素C热稳定性及抗氧化性的研究[J].日用化学工业,2003,38(6):413-416.
    [158]冯淑华,张彦文.维生素C-β-CD包合物抗热抗氧化的研究[J].天津药学,2001,13(3):34-35.
    [159]郭跃龙,刘浩,于鹏等.黄原胶和槐豆胶提高维生素C稳定性研究[J].药学与临床研究,2007,15(6):513-514.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700