用户名: 密码: 验证码:
渤海西岸两类强对流系统的结构演变及闪电活动特征的诊断研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
中国的强对流天气主要有两类:一类以对流性暴雨为主,影响范围大;另一类以冰雹、雷暴大风为主,变化剧烈,影响范围小。对应前者的重要强对流系统之一是α-中尺度对流系统(MαCS,α-Mesoscale Convective System),生命史可超过6小时;对应后者较多的是多单体雷暴或超级单体雷暴,为p或γ中尺度对流系统(Mβ CS或MγCS),生命史大多只有0.5-4小时。这两类强对流系统在发生发展的环境条件上有显著的差异(即MαCS需要有充足的水汽供应,而雷暴系统则需要较强的对流有效位能和垂直风切变);在空间、热力动力结构及组织演变机制方面有不同的特点。另外,在组成强对流系统的最小单元—对流单体中,存在着动力场、微观场和电活动。本文大量利用观测资料,运用统计分析和个例诊断相结合的方法,对渤海西岸地区特殊的地理环境下,准圆形M a CS和多单体雷暴的多尺度结构演变及其形成机制开展了系统研究,特别是对这两类强对流系统内部闪电活动特征、电荷结构与系统结构的定量化关系进行了探索。主要研究内容和结论如下:
     1、来自黄海、渤海的偏东风气流对天津地区大雨以上天气过程影响显著。黄海、渤海的存在促使准圆形M α CS造成的对流性暴雨中心的范围扩大、强度增强。对流系统或单体的触发与倾斜的海风锋锋面上(向海洋一侧倾斜)的中尺度垂直环流有关;海风辐合线携带的水汽、辐合抬升等因素与其他对流系统合并,会促使原来的对流系统强烈地发展。
     2、准圆形MαCS的高层(中心在200hPa)是正涡度、辐散、冷性、反气旋中尺度扰动环流;其下部(400hPa-900hPa)主要为负涡度、辐合、暖心。在发展至成熟期,其云顶具有准圆形、边界光滑、结构紧实的特征与200hPa上存在的中尺度反气旋扰动流场有关,而此时700hPa的中尺度气旋扰动环流不明显,甚至没有。成熟期至消散期的MαCS,其准圆形云顶范围扩大、出现絮状云、边界模糊等特征,这与200hPa上中尺度扰动流场呈放射状出流有关;而此时在700hPa出现了中尺度气旋扰动环流。多单体雹暴合并时的类型不同其物理原因也不同。
     3、在多单体雹暴中,总闪频数与Set11的相关系数达到0.79。在强降水单体内地闪频数、云闪频数与upV40-6的相关系数在0.63-0.97。在旺盛阶段,固安强降水单体的H(即正电荷高度)不同于其他单体,H较低且正地闪的比例最大。
     4、无论是MβCS间的合并,还是嵌于MβCS内的M γ CS间的合并,还是对流单体间的合并,均可以通过雷达参量(upV40-6、upFV40-6、downFV40-6)表征,合并后,整个系统的强度和范围增强,而合并瞬间(6-12min)上升气流的强度受到消弱。合并瞬间,H有所下降,但闪电频数只是略有变化。
There are mainly two types of severe convective weather in China:one is mainly with the convective torrential rain, which the influence scope is broad, and the other is mainly with hail and thunderstorm wind, changing dramatically and influencing small scope. The α-Mesoscale Convective System (MαCS), one of the systems corresponding to the former, lasts for more than six hours long. The multi-cell thunderstorm or supercell thunderstorm (i.e. α or γ Mesoscale convective system, MβCS or MγCS), most of the systems corresponding to the later, continues only for0.5-4hours long. The environmental condition of two kinds of severe convective weather is different significantly. MaCS needs adequate water supply, while the thunderstorm system requires severe convection effective potential and shear of vertical wind. Moreover, the two types can be distinguished from the view of space, thermal and dynamic structure and organization evolution mechanism. In addition, the severe convective system is composed of convection cell, in which existing the dynamic field, the microscopic field and the electric field having interaction between each other, respectively. In this paper, basing on observation data, using statistical analysis and diagnostic analysis of the case, in the particular geographical environment along the Bohai Sea, the multi-scale structure and formation mechanism of quasi-circle MaCS and multi-cell thunderstorms are researched, especially lightning activity characteristic, charge structure and its relationship with structure change of the severe convective system are analyzed. The content and conclusions of the study are as follows:
     1. Easterly airflow from the Yellow Sea and the Bohai Sea isa close relationship between the easterly winds and the heavy rain occurred in Tianjin. It is proved that the presence of the Yellow Sea and the Bohai Sea promotes the larger center range and the strengthener magnitude of the convective rainstorm, causing by the quasi-circle M a CS. It can be classified into two types including the triggering type and the touching type, and the landing sea breeze matches with unstable region triggering or strengthening the thunderstorm system. The original convection system will be strongly developed causing by merging with other convective system as a result of vapor, convergence uplift and so on.
     2. There are positive vorticity, divergence, cold, anti-cyclone mesoscale disturbance circulation in the MaCS high level (center in200hPa), while negative vorticity, convergence, warm heart below400hPa-900hPa. The cloud top of the mature MaCS is characterized by quasi-circle, clear and smooth boundary and compact structure relating to the mesoscale anticyclone disturbance flow field existing at200hPa. However, there is not clear and complete mesoscale cyclone disturbance flow field at700hPa. The physical reasons are diverse for different merge types.
     3. The correlation coefficient between total flash frequency (ground lightning and cloud flash) with Set11is0.79in multi-cell hailstorm. The correlation coefficient of ground flash frequency, cloud flash frequency and upV40-6is between0.63-0.97. In the exuberant phase, H of GUAN convection cell is different with others, the H is lower and positive CG has larger proportion.
     4. Regardless of the merger between MβCS, or the merger between MγCS within MβCS, or the merger between convective cells during multi-cell thunderstorm evolution, all of them can be described by the radar parameters (upV40-6, upFV40-6, down FV40-6). The strength and scope of the whole system enhancements after the merger, and the strength of updraft weaken at the moment (6-12min) with the system collapsing. Along with the merger, the height (H) of main positive charge region declines while lightning frequency changes slightly.
引文
·Atkins N T,C S Bouchard,R W Przybylinski,et al..Damaging Surface Wind Mechanisms within the 10 June 2003 Saint Louis Bow Echo during BAMEX.Mon.Wea.Rev.,2005,133:2275-2296
    ·Barker B,E R Jayaratne,et al..The influence of diffusional growth rate on the charge transfer accompanying rebounding collisions between ice crystals and hailstorm.QJR Meteor.Soc.,1987,113: 1193-1215
    ·Baker M B,H J Christian,and J Latham.A computational study of the relationships linking lightning fequeney and other thunder cloud Parameters.Quar.J.Meteor.Sci.,1995,121:1525-1548
    ·Banta R M,L Dollvier and D H Leviason.Evolution of the Montery sea-breeze layer as observed by pulsed Doppler radar.Atmos.Sci.,1993,50:3959-3982
    ·Bartels D L,R A Maddox.Midlevel cyclonic vortices generataed by meso-scale convective systems. Mon. Wea.Rev.,1989,118:109-127
    ·Bartels, D L,R A Maddox.Midlevel Cyclonic Vortices Generated by Mesoseale Convective Systems. Mon.Wea.Rev.,1991,119:104-118
    ·Blanchard D O.Meso-scale convective patterns of the Southern High Plain.Bull.Amer.Meteor.Soc. 1990,71(7):994-1005
    ·Bluestein D O,M H Jain.Formation of mesoscale lines of precipitation:Severe squall lines in Oklahoma during the spring.J.Atmos.Sci.,1985,42 (11):2719-2717
    ·Bluestein H B,D R MacGorman.Evolution of Cloud-to-Ground Lightning Characteristics and Storm
    Structure in the Spearman,Texas,Tornadic Supercells of 31 May 1990.Mon.Wea.Rev.,1998,126: 1451-1467
    ·Blyth A M,H J Christian,K Driscoll,et al..Determination of ice precipitation rates and thunderstorm anvil ice contents from satellite observations of lightning.Atmos.Res.,2001,59-60:217-229
    ·Brown R A,C A Kaufman,and D R MacGorman.Cloud-to-ground lightning associated with the evolution of a multicell storm.J. Geophys. Res.,2002,107(D19),4397, doi:10.1029/2001 JD000968
    ·Browing K A,F H Ludlam.Airflow in convective storms.Quart.J.R.Met.Soc.,1962,88:117-135
    ·Browing K A.The evolution of tornadic storm. J. Atmos.Sci.,1965,22:664-668
    ·Bruning E C,W D Rust,T J Schuur,et al..Electrical and Polarimetric Radar Observations of a Multicell Storm in TELEX.Mon.Wea.Rev.,2007,135:2525-2544
    ·Bruning E C,W D Rust,D R Macgorman,et al..Formation of Charge Structures in a Supercell. Mon.Wea.Rev.,2010,138:3740-3761
    ·Cotton W R,M S Lin,R L Mcanelly,et al..A composite model of mesoscale convective complexes. Mon.Wea. Rev.,1989,117:765-783
    ·Carey L D,S A Rutledge.A multiparameter radar case study of the microphysical and kinematic evolution of a lightningproducing storm.Meteor.Atmos.Phys.,1996,59:33-64
    ·Carey L D,S A Rutledge.Electrical and multiparamerter radar observations of a severe hailstorm. J.Geophys.Res.,1998,103:13979-14000
    ·Carey L D,S A Rutledge.The Relationship between Precipitation and Lightning in Tropical Island Convection:A C-Band Polarimetric Radar Study. Mon.Wea.Rev.,2000,128:2687-2710
    ·Carey L D,S A Rutledge,and W A Petersen.The relationship between Severe Storm Reports and
    Cloud-to-Ground Lightning Polarity in the Contiguous United States from 1989 to 1998. Mon.Wea. Rev.,2003,131:1211-1228
    ·Carey L D,M J Murphy,T L McCormick,et al..Lightning location relative to storm structure in a leading-line,trailing-stratiform mesoscale convective system.J.Geophys.Res.,2005,110,D03105, doi:10.1029/2003 JD004371
    ·Cunning J B,R L Holle,P T Gannon,etal..Convective evolution and merger in the FACE experimental mesoscale con vection and boundary layer interactions.J.Meteor.,1982,21:953-977
    ·Cummins K L,M J Murphy.E A Bardo.et al..A combined TOA/MDF technology upgrade of the U.S. National Lightning Detection Network.J.Geophys.Res.,1998,103:9035-9044
    ·Dotzek N,R M Rabin,L D Carey,et al..Lightning activity related to satellite and radar observations of a mesoscale convective system over Texas on 7-8 April 2002.Atmos.Res.,2005,76:127-166
    ·Dennis A S,C A Jameson,and A Koscielski.Characterristics of hailstorms of western South Dakota. J. Appl.Meteor.,1970,9:127-135
    ·Ely B L,R E Orville,L D Carey,et al..Evolution of the total lightning structure in a leading-line, trailing-stratiform mesoscale convective system over Houston,Texas.J.Geophys.Res.2008,113, D08114,doi:10.1029/2007JD008445
    ·Edwards R,R L Thompson.Nationwide Comparisons of Hail Size with WSR-88D Vertically Integrated Liquid. Weather Forecasting,1998,13:277-288
    ·Forbes G S,R M Wakimoto.A concentrated outbreak of tornadoes, downbursts and micro-bursts, and implications regarding vortex classification. Mon. Wea. Rev.,1983,111:220-244
    ·Fritsch J M,J D Murphy, and J S Kain.Warm core vortex amplification over land. J. Atmos. Sci., 1994,51:1781-1806
    ·Gauthier M L,W A Rutledge,L D Carey,et al..Relationship between cloud-to-ground lightning and precipitation ice mass:A radar study over Houston.Geophy.Res.Lett.,2006,doi:10.1029/2006 GL027244
    ·Gauthier M L,W A Walter, and L D Carey.Cell mergers and their impact on cloud-to-ground lightning over the Houston area. Atmos.Res.,2010,96:626-632
    ·Goodman S J,D E Buechler,P D Wright,et al..Lightning and precipitation history of a microburst-producing storm..Geophys.Res.Lett.,1988,15,1185-1188
    ·Hodapp C L, L D Carey,R E Orville.Evolution of radar reflectivity and total lightning characteristics of the 21 April 2006 mesoscale convective system over Texas.Atmos.Res.,2008,89:113-137
    ·Hansen A E,H E Fuelberg,and K E Pickering.Vertical distributions of lightning sources and f lashes over Kennedy Space Center, Florida.J.Geophys.Res.,2010,115, doi:10.1029/2009JD013143
    ·Houze R A. Structure and dynamics of a tropical squall-line system. Mon.Wea.Rev.,1977,105: 1540-1567
    ·Houze R A,S A Rutledge,M I Biggerstaff,et al..Interpretation of Doppler radar displays of mid-latitude mesoscale convective lines.Bull.Amer.Meteor.Soc.,1989,70(6):608-619
    ·Houze R A,J B F Smull,and P Dodge.Mesoscale organization of springtime rainstorms in Oklahoma. Mon.Wea.Rev.,1990,118;613-654
    ·Houze R A.Mesoscale convective systems. Rev. Geophys.,2004,42,RG4003,doi:10.1029/2004 RG000150
    ·Holle R L,R E Lopez, W L Hisccox.Relationships between Lightning Occurrences and Radar Echo Characteristics in South Florida.1983
    ·Holle R L,A I Watson,R E Lopez, et al..The life cycle of lightning and severe weather in a 3-4 June 1985 PRE-STORM mesoscale convective system.Mon.Wea.Rev.,1994,122:1798-1808
    ·Hunter S M,T J Schuur,T C Marshall,et al.. Electric and kinematic structure of the Oklahoma mesoscale convective system of 7 June 1989.Mon.Wea.Rev.,1992,120:2226-2239
    ·Jirak I L,W R Cotton,R L Mcanelly.Satellite and radar survey of mesoscale convective system development.Mon. Wea.Rev.,2003,131 (10):2428-2449
    ·Jorgensen D P,B F Smull.Mesovortex circulations seen by airborne Doppler radar within a bow-echo mesoscale convective system. Bull.Amer.Meteor.Soc.1993,74(11):2146-2158
    ·Kawasaki Z I, K Yamamoto,K Matsuura,et al..SAFIR operation and evaluation of it's performance. Geophys.Res.Lett.,1994,21:1133-1136
    ·Kingsmill D K.Convection initiation associated with a sea-breeze front,a gust front,and their collision.Mon. Wea.Rev.,1995,123:2913-2933
    ·Klemp J B and R B Wilhelmson.The simulationg of Three-Dimensional Convective Storm Dynamics. J.Atmos.Sci.,1978,35(6):1070-1096
    ·Keighton S J, H B Bluestein, and D R. MacGormanThe evolution of a severe mesoscale convective system:Cloud-to-ground lightning location and storm structure.Mon. Weather Rev.,1991,119: 1533-1556
    ·Krehbiel P R,M Brook.and R A McCrog.Analysis of the charge structure of lightning discharge to ground. J.Geophys.Res.,1979,84:2432-2456
    ·Lee J, M Wada, Z I Kawasaki,et al..Lightning activity during winter thunderstorm season observed by SAFIR.Electr.Eng. Jpn.,2000,132 (1):30-37
    ·Lee B D,B F Jewett,B Robert.The 19 April 1996 Illinois tornado outbreak. Part Ⅱ:cell mergers and associated tornado incidence. Weather Forecasting,2006,21:449-464
    ·Lang T J,S A Rutledge,J E Dye,et al..Anomalously low negative cloud-to-ground lightning flash rates in intense convective storms observed during STERAO-A. Mon.Wea.Rev.,2000,128:160-173
    ·Lang T J,L J Miller,M Weisman,et al.The Severe Thunderstorm Electrification and Precipitation Study (STEPS).Bull.Amer.Meteor.Soc.,2004,85:1107-1125
    ·Lang T J,S A Rutledge.Inematic, microphysical, and electrical aspects of an asymmetric bow-echo mesoscale convective system observed during STEPS 2000.J.Geophys.Res.,2008,113, D08213,doi:10.1029/2006JD007709
    ·Lang T J,W A Lyons,S A Rutledge,et al..Transient luminous events above two mesoscale convective systems:Storm structure and evolution.J. Geophys. Res.,2010,115,A00E22, doi:10.1029/2009 JA014500
    ·MacGorman,W D Rust,et al..Lightning location relative to storm structure in a supercell storm and a multicell storm. J.Geophys. Res.,1987,92:5713-5724
    ·MacGorman D R,D W Burgess.Positive cloud-to-ground lightning in tornadic strom and hailstorms. Mon. Wea.Rev.,1994,122:1671-1697
    ·MacGorman D R,W D Rust,and P Krehbiel,et al..The electrical structure of two supercell storms during STEPS.Mon.Wea.Rev.,2005,133:2583-2607
    ·MacGorman D R, C D Morgenstern.Some characteristics of cloud-to-ground lightning in mesoscale convective systems. J.Geophys.Res.,1998,103(12):14011-14023
    ·Marshall T C,W D Rust,M Stolzenburg.Eletrical structure and updraft speeds in thunderstorms over the southern Great Plains.J. Geophys. Res.,1995,100 (D1):1001-1016
    ·Marshall T C,M Stolzenburg.Voltages inside and just above thunderstorms.J.Geophys.Res.,2001 106(D5):4757-4768,doi:10.1029/2000JD900640
    ·Marshall T C,M Stolzenburg,C R Maggio,et al..Observed electric fields associated with lightning initiation.Geophys.Res.Lett.,2005,32,L03813,doi:10.1029/2004GL021802
    ·Mansell E R,D R MacGorman,C L Ziegler,et al.Charge structure and lightning sensitivity in a simulated multicell thunderstorm.J.Geophys.Res.,2005,110(D12),doi:10.1029/2004 JD005287
    ·Marwitz J D.The structure and motion of severe hailstorm Part:supercell storms.J.Appl.Meteor, 1972a,11:166-179
    ·Marwitz J D.The structure and motion of severe hailstorm Part Ⅱ:multicell storms. J.Appl.Meteor, 1972b,11:180-188
    ·Marwitz J D.The structure and motion of severe hailstorm Part Ⅲ:Severely Sheared Storms. J.Appl.Meteor,1972c,11:189-201
    ·Mazur V,W D Rust.Lightning propagation and flash density in squall lines as determined with radars.J.Geophys.Res.,1983,88:1495-1502
    ·Mazur V,L H Ruhnke.Common physical processes in natural and artificially triggered lightning. J.Geophys.Res.,1993,98:12913-12930
    ·Mazur V,E Williams,and R Boldi,et al..Initial comparison of lightning mapping with operational time-of-arrival and interferometric systems. J.Geophys.Res.,1997,102(D10):11071-11085
    ·Maddox R A.Mesoscale convective complexes.Bull.Amer.Meteor.Soc.,1980,61(11):1374-1387
    ·Maddox R A,D J Perkey,and J M Fritsch.Evolution of upper tropospheric features during the development of a mesoscale convective complex.J.Atmos.Sci.,1981,38:1664-1674
    ·Maddox R A.Large-scale meteorological conditions associated with midlatitude,mesoscale convective complexes.Mon.Wea.Rev.,1983,111:1475-1492
    ·McCaul E W,C Cohen.The impact on simulated storm structure and intensity of variations in the mixed layer and moist layer depths. Mon.Wea.Rev.,2002,130:1722-1748
    ·McAnelly R L,W R Cotton.Meso-p-scale characteristics of an episode of meso-a-scale convective complexes.Mon. Wea.Rev.,1986,114:1740-1770
    ·McAnelly R L,W R Cotton.The precipitation life cycle of mesoscale convective complexes. Mon. Wea.Rev.,1992,120:1740-1850
    ·McAnelly R L,J E Nachamkin,and W R Cotton.Early growth of mesoscale convective complexes:A meso-β-scale cycle of convective precipitation? Mon.Wea.Rev.,1992,120:1851-1877
    ·McAnelly R L,W R Cotton.Upscale evolution of mcss:doppler radar analysis and analytical investigation. Mon.Wea.Rev.,1997,125:1083-1110
    ·Montanya J,N Pineda,V March,et al..Experimental evaluation of the Catalan Lightning Location Network. In 19th Int. Lightning Detection Conf.,Tucson,Arizona,USA,2006a,24-25 April
    ·Montanya J,N Pineda,S Soula,et al..Total lightning activity and electrostatic field in a hail-bearing thunderstorm in catalonia.In 19th Int. Lightning Detection Conf.,Tucson,Arizona,USA,2006b,24-25
    ·Moller A R.The operational recognition of supercell thunderstorm environment and storm structure. Weather and Forecasting,1994,9:327-347
    ·Mitsumoto S,H Ueda,and H Ozoe.A laboratory experiment on the dynamics of the land and sea breeze.J.Atmoa.Sci.,1983,40:1228-1240
    ·Menard R D,J M Fritsch.A meso-scale convective complex-generated inertially stable warm core vortex.Mon.Wea.Rev.,1989,117:1237-1261
    ·Miller D,J M Fritsch.Mesoscale convective complexes in the western pacific region. Mon.Wea.Rev.,1991,119:2978-2992
    ·Orvill H D,Y H Kuo,R D Farley,et al..Numerical simulation of cloud interaction.J.Rech.Atmos.,1980, 14:499-516
    ·Orville R E,R W Henderson.Global distributions of midnight lightning:September 1977 to August 1978.Mon.Wea.Rev.,1986,14:2640-2653
    ·Orville R E,R W Henderson,and L F Bosart.Bipole patterns revealed by lightning locations in mesoscale storm systems.Geophys. Res. Lett.,1988,15:129-132
    ·Orville R E.Cloud-to-ground lightning flash characteristics in the contiguous United States:1989-1991.J.Geophys.Res.,1994,99:10833-10841
    ·Orville R E, and A C Silver.Lightning ground flash density in the contiguous UnitedStates: 1992-1995. Mon.Wea.Rev.,1997,125:631-638
    ·Orianski L.A rational subdivision of scales for atmospheric processes. Bull.Amer.Meteor.Soc., 1975,56:527-530
    ·Oroctor D E.Lightning and precipitation in a small multicellular thunderstorm.J.Geophys.Res.,1983, 88:5421-5440
    ·Parker M D,R H Johnson.Organizational modes of mid-latitude meso-scale convective systems. Mon.Wea.Rev.,2000,128(10):3413-3436
    ·Parker M D,S A Rutledge,and R H Johnson.Cloud-to-ground lightning in linear mesoscale convective systems.Mon. Wea.Rev.,2001,129:1232-1242
    ·Piepgrass M V,E P Krider,and C B Moore.Lightning and surface rainfall duringFlorida thunderstorms. J.Geophys.Res.,1982,87(C13):11193-11201
    ·Reap R M,and D M MacGorman.Cloud-to-ground lightning:Climatological characteristics and relationships to model fields, radar observations and severe localstorms. Mon.Wea.Rev.,1989,117: 518-535
    ·Rutledge S A,D R MacGorman.Cloud-to-ground lightning activity in the 10-11 June 1985 Mesoscale Convective System observed during the Oklahoma-Kansas PRE-STORM Project.Mon.Wea. Rev.,1988,116:1393-1408
    ·Rutledge S A,C Lu,and D R MacGorman.Positive cloud-to-ground lightning in mesoscale convective system.J.Atmos.Sci.,1990,47:2085-2100
    ·Rutledge S A,E R Williams,and W A Petersen.Lightning and electrical structure of mesoscale convective system.Atmos.Res.,1993,29:27-53
    ·Rutledge,S A,W A Petersen.Vertical Radar Reflectivity Structure and Cloud-to-Ground Lightning in the Stratiform Region of MCSs:Further Evidence for In Situ Charging in the Stratiform Region. Mon. Wea. Rev.,1994,122:1760-1776
    ·Rust W D,D R MacGorman.Possibly inverted-polarity electrical structures in thunderstorms during STEPS.Geophys.Res.Lett.,2002,29(12),1571, doi:10.1029/2001GL014303
    ·Rust W D,D R MacGorman,and E C Bruning,et al..Inverted-polarity electrical structures in thunderstorms in the Severe Thunderstorm Electrification and Precipitation Study (STEPS). Atmos.Res.,2005,76(1-4):247-271
    ·Saunders C P R,W D Keith,and R P Mitzeva.The effect of liquid water on thunderstorm charging. J.Geophys.Res.,1991,96:11007-11017
    ·Saunders C P R. A review of thunderstorm electrification processes. J. Appl. Meteor.,1993,32:642-655
    ·Saunders C P R and S L Peck.Laboratory studies of the influence of the rime accretion rate on charge transfer during crystal/graupel collisions.J.Geophys.Res.,1998,103(D12):13949-13956
    ·Sartor D.Electric field perturbations in terrestrial clouds and solar flare events.Mon.Wea. Rev.,1980,108:499-505
    ·Schuur T J,B F Smull,and W D Rust,et al..Electricaland kinematic structure of the stratiform precipitation region trailing an Oklahoma squall line.J.Atmos.Sci.,1991,48:825-841
    ·Schuur T J,S A Rutledge.Electrification of Stratiform Regions in Mesoscale Convective Systems. Part Ⅰ:An Observational Comparison of Symmetric and Asymmetric MCSs.J.Atmos.Sci., 2000,57(13):1961-1982
    ·Schubert W H,J J Hack,and P L Silva,et al..Geostrophic adjustment in an axisymmetric vortex.J.Atmos.Sci,1880,7:1464-1484
    ·Schubert W H,J J Hack.Inertial stability and tropical cyclone development.J.Atmos.Sci.,1982,39: 1687-1697
    ·Simpson J, N E Westcott,R J Clerman,et al..On cumulus mergers.Arch.Meteor.Geoph. Biokl. Ser., 1980,29:1-40
    ·Simpson J E,D A Mansfield,and J R Milford.Models of stratification and frontal movement in shelf-sea. Deep Sea Research Part A.Oceanographic Research Papers,1977,39 (11-12):1967-1984
    ·MSoula S,H Sauvageot,and G Molinie,et al.The CG lightning activity of a storm causinga flash flood. Geophys.Res.Lett.,1998,25:1181-1184
    ·Soula S,S Chauzy.Some aspects of the correlation between lightning and rainactivities in thunderstorms.Atmos.Res.,2001,56:355-373
    ·Soula S,Y Seity,and L Feral,et al..Cloud-to-ground lightning activity in hail-bearing storms. J.Geophys. Res.,2004,109, D02101, doi:10.1029/2003JD003669
    ·Smull B F,R A Houze Jr.A midlatitude squall line with a trailing region of stratiform rain:Radar and satellite observations.Mon.Wea.Rev.,113:117-133
    ·Stolzenburg M.Observations of high ground flash densities of positive lightning in summertime thunderstorms. Mon. Wea. Rev.,1994,122:1740-1750
    ·Stolzenburg M,W D Rust,and T C Marshall.Electrical structure in thunderstorm convective regions. 1. Mesoscale convective system.J.Geophys.Res.,1998a,103:14059-14078
    ·Stolzenburg M,W D Rust, and T C Marshall. Electrical structure in thunderstorm convective regions. 2. Isolated storms. J.Geophys.Res.,1998b,103:14079-14096
    ·Stolzenburg M, W D Rust, and T C Marshall.1 Electrical structure in thunderstorm convective regions. 3. Synthesis. J.Geophys.Res.,1998c,103:14097-14108
    ·Steiger S M,R E Orville,L D Carey.Total Lightning Signatures of Thunderstorm Intensity over North Texas. Part Ⅰ:Supercells.Mon.Wea.Rev.,2007a,135:3281-3302
    ·Steiger S M,R E Orville,Carey L D.Total Lightning Signatures of Thunderstorm Intensity over North Texas. Part Ⅱ:Mesoscale Convective Systems. Mon.Wea.Rev.,2007b,135:3303-3324
    ·Tessendorf S A,L J Miller,and K C Wiens,et al..The 29 June 2000 supercell observed during STEPS. Part I:Kinematics and Microphysics. J.Atmos. Sci.,2005,62:4127-4150
    ·Tessendorf S A,K C Wiens,and S A Rutledge.Radar and lightning observations of the 3 June 2000 Electrically Inverted Storm from STEPS.Mon.Wea.Rev.,2007a,135:3665-3680
    ·Tessendorf S A,S A Rutledge,and K C Wiens.Radar and Lightning Observations of Normal and Inverted Polarity multicellular storm from STEPS.Mon.Wea.Rev.,2007b,135:3681-3706
    ·Takahashi T.Riming electrification as a charge generation mechanism in thunderstorms.J.Atmos. Sci.,1978,35:1536-1548
    ·Thomas R J,P R Krehbiel,and W Rison,et al..Observation of VHF source powers radiated by lightning. Geophys.Res.Lett.,2001,28:143-146
    ·Trier S B,C A Davis,and J D Tuttle.Long-lived mesoconvective vortices and their environment. Part Ⅰ: Observations from the central United States during the 1998 warm season.Mon.Wea.Rev.,128: 3376-3395
    ·Ushio T,S J Heckman,and D J Boccippio,et al..A survey of thunderstorm flash rates compared to cloud top height using TRMM satellite data.J.Geophys.Res.,106(D20),24089-24095
    ·Vasiloff S V,E A Brandes,and R P Davies,et al..An investigation of the transition from multicell to supercell storm.J.Climate Appl.Meteor.1986,25:1022-1036
    ·Vonegut B.Some facts and speculations concerning the origin and role of thunderstorms electricity. Meteor.Monogr,1963,5:224-241
    ·Wang K Y,S A Liao.Lightning, radar reflectivity, infrared brightness temperature, and surface rainfall during the 2-4 July 2004 severe convective system over Taiwan area. J.Geophys.Res.,2006, D05206,doi:10.1029/2005 JD006411
    ·Wacker R S,R E Orville.Changes in measured lightning flash count and return stroke peak current after the 1994 U.S. National Lightning Detection Network upgrade,1,Observations.J.Geophys. Res.,1999a,104(D2):2151-2158
    ·Wacker R S,and R E Orville.Change in measured lightning flash count and returnstroke peak current after the 1994 U.S. National Lightning Detection Network upgrade,2,Theory. J.Geophys. Res., 1999b,104(D2):2159-2162
    ·Wakimoto R M,N T Atkins.Observations of the sea-breeze front during cape.part1:single-doppler, satellite,and cloud photogrammetry analysis.Mon.Wea.Rev.,1994,122:1092-1114
    ·Williams E R.The tripole structure of thunderstorms.J.Geophys.Res.,1989a,94:13151-13167
    ·Williams E R,M E Weber.and R E Orville.The relationship between lightning type and convective state of thunderclouds. J.Geophys.Res.,1989b,94:13213-13220
    ·Williams E R,S A Rutledge,and S G Geotis,et al.. A radar and electrical study of tropical "hot towers". J. Atmos. Sci.,1992,49:1386-1395
    ·Williams E R, R Zhang.and D Boccippio.Microphysical growth state of ice particlesand large-scale electrical structure of clouds. J.Geophys. Res.,1994,99:10787-10792
    ·Williams, E. R., B. Boldi, A. Matlin, et aLThe behavior of total lightning activity in severe Florida thunderstorms. Atmos.Res.,1999,51:245-265
    ·Williams E R.The electrification of severe storms. Severe Convective Storms.Meteor.Monogr.,2001, edited by C A Doswell,50:527-561
    ·Wilson J W,W E Schreiber.Initiation of convective storm by radar observe boundary layer convergence lines.Mon.Wea. Rev.,1986,114:2516-2536
    ·Wilson J W,C K Mueller.Nowcasts of thunderstorm initialization and evolution.Weather Forecasting, 1993,8:113-131
    ·Wilson J W,D L Megenhard.Thunderstorm initiation, organization, and lifetime associated with florida boundary layer convergence lines.Mon.Wea.Rev.,1997,125:1507-1524
    ·Wiens K C,S A Rutledge,and S A Tessendorf.The 29 June 2000 supercell observed during STEPS. Part Ⅱ:Lightning and charge structure.J. Atmos.Sci.,2005,62:4151-4177
    ·Weiss S A,W D Rust,and R Macgorman,et al..Evolving Complex Electrical Structures of the STEPS 25 June 2000 Multicell Storm.Mon.Wea.Rev.,2008,36:741-756
    ·Westcott N. A historical perspective on cloud mergers. Bull.Amer.Meteor.Soc.,1984,65(3):219-226
    ·Westcott N.Merging of convective clouds:Cloud initiation,bridging,and subsequent growth.Mon.Wea. Rev.,1994,122:780-790
    ·Winn W P,C B Moore,and C R Holmes,et al..Thunderstorm on July 16,1975, over Langmuir Laboratory:Acase study. J. Geophys. Res.,83:3079-3092
    .巴德M J,G S福布斯,JR格兰特等.卫星与雷达图像在天气预报中的应用.科学出版社,1998
    .北京大学大气湍流和扩散科研组,锦西沿岸区的海风(北京大学地球物理系论文集)(大气物理,1979),31-44
    .常志清,吴增茂,高山红.青岛海陆风三维结构的数值模拟青岛海洋大学学报,2002,32(6):877-883
    .蔡则怡,李鸿洲,李焕安.华北飑线系统的结构与演变特征.大气科学,1988,12(12):191-199
    .陈敏,郑永光,王洪庆等.一次强降水过程的中尺度对流系统模拟研究.气象学报,2005,63(3):314-324
    .陈双,王迎春,张文龙等.复杂地形下雷暴增强过程的个例研究.气象,2011,37(7):802-813
    .曹治强,李万彪.两个中尺度对流系统的降水结构和闪电特征.气象学报,2005,63(2):243-249
    .程麟生,冯伍虎.中纬度中尺度对流系统研究的若干进展.高原气象2002,21(1):337-347
    .陈哲彰.冰雹与雷暴大风的云对地闪电特征.气象学报,1995,53(3):367-374
    .陈彬,于恩洪.1989.渤海湾西部海陆风的天气气候特征.海洋通报,8(1):23-29
    .陈明轩,王迎春,高峰等.基于雷达资料4DVar的低层热动力反演系统及其在北京奥运期间的初步应用分析.气象学报,2011,69(1):64-78
    .陈明轩,王迎春,肖现等.基于雷达资料四维变分同化和三维云模式对一次超级单体风暴发展维持热动力机制的模拟分析.大气科学,2012,36(5):929-944
    .刁秀广,朱君鉴,刘志红.三次超级单体风暴雷达产品特征及气流结构差异性分析.气象学报,2009,67(1):133-146
    .刁秀广,杨晓霞,朱君鉴等一次长寿命风暴的CINRAD/SA雷达反射率及中气旋产品特征与流场结构分析.高原气象,2008,27(3):657-667
    .刁秀广,杨传凤,李静等.济南地区超级单体强度和流场结构分析.高原气象,2011,30(2):489-497
    .东高红,何群英,刘一玮等.海风锋在渤海西岸局地暴雨过程中的作用气象2011,37(9):1100-1107
    丁一汇,李鸿洲,章名立等.我国飑线发生条件的研究.大气科学,1982,6(1):18-27
    丁一汇.暴雨和中尺度气象学问题,气象学报,1994,52(3):274-283
    .冯桂力,郄秀书,袁铁等.雹暴的闪电活动特征与降水结构研究.中国科学D辑2007,37(1):123-132
    .冯桂力,郄秀书,袁铁,周筠珺.一次冷涡天气系统中雹暴过程的地闪特征分析.气象学报,2006,64(2):211-220
    .冯晋勤,童以长,罗小金.一次中-β尺度局地大暴雨对流系统的雷达回波特征.气象,2008,34(10):52-56
    .冯建明,纪晓玲,陈晓娟等.干早区一次连阴雨过程中暴雨天气的多普勒雷达图像特征.兰州大学学报(自然科学版),2010,S1(1):93-98
    .范俊红,王欣璞,孟凯等.一次MCC的云图特征及成因分析.高原气象,2009,28(6):1388-1398
    .付丹红,郭学良.积云合并在强降水中的作用.大气科学,2007,31(4):635-644
    .郭凤霞,张义军,言穆弘.青藏高原那曲地区雷暴云电荷结构特征数值模拟研究.大气科学2007,31(1):28-36
    .华北暴雨,气象出版社,1992
    .胡雯,黄勇,汪腊宝.夏季江淮区域对流云合并的基本特征及影响.高原气象,2010,29(1):206-213
    .何群英,解以扬,东高红等.海陆风环流在天津2009年9月26日局地暴雨过程中的作用.气象,2011,37(3):291-297
    .何群英,东高红,贾慧珍等.天津一次突发性局地大暴雨中尺度分析.气象,2009,35(7):18-24
    .黄美元,徐华英,吉武胜.积云并合及相互影响的数值模拟.中国科学(B辑)1987,17(2):214-224
    .黄勇,覃丹宇,邱学兴.暴雨过程中对流云合并现象的观测与分析.大气科学,2012,36(6):1135-1149.
    .李南,魏鸣,姚叶青.安徽闪电与雷达资料的相关分析以及机理初探.热带气象学报,2006,22(3):265-272
    .李鸿洲.华北地区中尺度地面分析业务化中常见的中尺度系统.气象,1991,17(7):40-44
    .李云,缪启龙,江吉喜.2005年8月16日天津大暴雨成因分析.气象,2007,33(5):83-88
    .李艳伟,牛生杰,姚展予等.云并合的初始位置探讨.大气科学,2009,33(5):1015-1026
    .李艳伟,牛生杰,罗宁等.积云并合扩展层化混合云的数值模拟分析.地球物理学报,2009,52(5):1165-1175
    .李改琴,梁海河,王树文等.台风海棠远距离暴雨中尺度系统特征.气象,2007,33(8):18-22
    .廖玉芳,俞小鼎,郭庆等.强雹暴的雷达三体散射统计与个例分析.高原气象,2007,26(4):812-820
    .廖玉芳,俞小鼎,吴林林等.一次强对流系列风暴个例的多普勒天气雷达资料分析.应用气象学报,2003,14(6):656-662
    .廖移山,李俊,王晓芳等.2007年7月18日济南大暴雨的β中尺度分析.气象学报,2010,68(6):184-196
    .陆汉城,杨国祥.中小尺度天气原理和预报.北京:气象出版社,2004
    .卢焕珍,赵玉洁,俞小鼎,冯金湖.雷达观测的渤海湾海陆风辐合线与自动站资料的对比分析.气象,2008,34(9):57-64
    .吕艳彬,郑永光,李亚萍等.华北平原中尺度对流复合体发生的环境和条件.应用气象学报,2002,13(4):406-412
    .吕玉环,李艳伟,金莲姬等.云并合过程中物理特征演变的模拟研究.大气科学,2012,36(3):471-486
    .梁萍,何金海,陈隆勋等.华北夏季强降水的水汽来源.高原气象,2007,26(3):460-465
    .梁永兴,张强,康凤琴.甘肃永登强对流云的雷达气候学特征分析.高原气象,2004,23(6):773-780
    .刘黎平,邵爱梅,葛润生等.一次混合云暴雨过程风场中尺度结构的双多普勒雷达观测研究.大气科学,2004,2892):278-283
    .刘正奇,谢巨伦.东西向海岸线对局地性降水的作用.气象,2003,29(12):41-44
    .刘运策,庄旭东,李献洲.珠江三角洲地区由海风锋触发形成的强对流天气过程分析.应用气象学报,2001,12(4):433-441
    .刘冬霞,郄秀书,冯桂力.华北一次中尺度对流系统中的闪电活动特征及其与雷暴动力过程的关
    系研究.大气科学,2010a,34(1):95-104
    .刘冬霞.强雷暴天气系统中的闪电活动特征及其电荷结构的数值模拟研究.中国科学研究院,
    博士论文,2010b
    .Liu D X, X S Qie, Y J Xiong, et al..Evolution of the total lightning activity in a leading-line and trailing stratiform mesoscale convective system over Beijing. Adv Atmos Sci(in China),2011,28(4):866-878
    .闵晶晶,刘还珠,曹晓钟等.天津“6.25”大冰雹过程的中尺度特征及成因.应用气象学报,2011,22(5):525-536
    .马明,陶善昌,祝宝友.卫星观测的中国及周边地区闪电密度的气候分布.中国科学(D辑),2004,34(4):298-306
    .马禹,王旭,陶祖钰.中国及其邻近地区中尺度对流系统的普查和时空分布特征.自然科学进展,1997,7(6):701-706
    .慕建利,王建捷,李泽椿.2005年6月华南特大连续性暴雨的环境条件和中尺度扰动分析.气象学报,2008,66(3):437-451
    .牟容,刘黎平,许小勇等.四维变分方法反演低层风场能力研究.气象,2007,33(1):11-19
    .潘玉洁,赵坤,潘益农,一次强飑线内强降水超级单体风暴的单多普勒雷达分析.气象学报,2008,66(4):621-636
    .漆梁波,陈永林.一次长江三角洲飑线的综合分析.应用气象学报,2004,15(2):162-173. Qie X S, M H Yan, C M Guo, et al.. Lightning data and study of thunderstorm nowcasting. ACTA Meteorological Sinica(in China),1993,7:244-256
    .郄秀书,周筠珺,袁铁.卫星观测到的全球闪电活动及其地域差异.地球物理学报,2004,47(6):997-1002
    .郄秀书,张义军,张其林.闪电放电特征和雷暴电荷结构研究.气象学报,2005,63(5):646-658
    .邱晓暖,范绍.海陆风研究进展与我国沿海三地海陆风主要特征.气象,2013,39(2):186-193
    .Sun J S, H Wang, L Wang, et al..The role of the urban boundary layer on the locally convective intense rainfall that occurred in Beijing on 10 July 2004. Chinese Journal of Atmospheric Sciences (in China),2006,30(4):383-400
    .孙继松,杨波.地形与城市环流共同作用下的β中尺度暴雨.大气科学,2008,32(6):1352-1364
    .孙继松,何娜,郭锐,陈明轩.多单体雷暴的形变与列车效应传播机制.大气科学,2012,36:网络版
    .孙靖,王建捷.北京地区一次引发强降水的中尺度对流系统的组织发展特征及成因探讨.气象,2010,36(12):19-27
    .孙建华,周海光,赵思雄.2003年7月4-5日淮河流域大暴雨中尺度对流系统的观测分析.大气科学,2006,30(6):1104-1118
    .孙淑清,周玉淑.近年来我国暴雨中尺度动力分析研究进展.大气科学,2007,31(6):1171-1188
    .孙健,刘淑媛,陶祖钰等.1998年6月8-9日香港特大暴雨中尺度对流系统分析.大气科学,2004,28(5):713-721
    .孙安平,张义军,言穆弘等.雷暴电过程对动力发展的影响研究.高原气象,2004,23(1):26-32
    .寿绍文,励申申,姚秀萍.中尺度气象学.气象出版社,2003
    .盛春岩,陈优宽.2006年8月青岛一次强海风过程“人”字形结构分析.气象,2007,33(8):35-39
    石定朴,朱文琴,王洪庆等.中尺度对流系统红外云图黑体温度的分析.气象学报,1996,54(5):600-610
    .陶祖钰,黄伟,顾雷.常规资料揭示的中尺度对流复合体的环流结构.热带气象学报.1996,12(4):373-379
    .吴增茂,龙宝森.青岛局地风特征的分析.海洋湖沼通报,1993,1:16-21
    .吴庆丽,陈敏,王庆红等.暴雨雨团中β尺度流场结构的数值模拟.科学通报,2002,47(18):1437-1440
    .王俊,朱君鉴,任钟冬.利用双多普勒雷达研究强飑线过程的三维风场结构.气象学报,2007,65(2):241-251
    .王俊,龚佃利,刁秀广等.一次弓状回波、强对流风暴及合并过程研究Ⅰ:以单多普勒雷达资料为主的综合分析.高原气象,2011,30(4):1067-1077
    .王俊,盛日锋,陈西利.一次弓状回波、强对流风暴及合并过程研究Ⅱ:双多普勒雷达反演三维风场分析.高原气象,2011,30(4):1078-1086
    .王树芬.一次由海风锋触发的强对流天气分析.大气科学,1990,14(4):504-507
    .王红艳,刘黎平,王改利等.多普勒天气雷达三维数字组网系统开发及应用.应用气象学报,2009,20(2):214-224
    .王建捷,李泽椿.1998年一次梅雨锋暴雨中尺度对流系统的模拟与诊断分析.气象学报,2002,60(2):146-155
    .王艳,张义军,马明.卫星观测的我国近海海域闪电分布特征.应用气象学报,2010,21(2):157-163
    .王飞,张义军,赵均壮等.雷达资料在孤立单体雷电预警中的初步应用.应用气象学报,2008,19(2):153-160
    王彦,于莉莉,李艳伟等.边界层辐合线对强对流系统形成和发展的作用.应用气象学报,2011,22(6):724-731
    .王令,王国荣,孙秀忠等.应用多种探测资料对比分析两次突发性局地强降水.气象,2012,38(3):281-290
    .王昂生,赵小宁.1983.云体并合及雹云形成.气象学报,1983,41(2):204-210
    .薛德强,郑全岭,钱喜镇等.龙口的海风及其影响.海洋湖沼通报,1995,2:19
    .项续康,江吉喜.我国南方地区的中尺度对流复合体.应用气象学报,1995,6(1):1-17
    .许小峰,郭虎,廖晓农等.国外雷电监测和预报研究.气象出版社,2003
    .俞小鼎,王迎春,陈明轩.新一代天气雷达与强对流天气预警.高原气象,2005,24(3):456-463
    .俞小鼎,姚秀萍,熊廷南等.多普勒天气雷达原理与业务应用.气象出版社,2006
    .俞小鼎,郑媛媛,张爱民等.安徽一次强烈龙卷的多普勒天气雷达分析.高原气象,2006,25(5):914-924
    .俞小鼎,郑嫒嫒,廖玉芳等.一次伴随强烈龙卷的强降水超级单体风暴研究.大气科学,2008,32(3):508-521
    .于恩洪,陈彬,白玉荣.渤海湾西部海陆风的空间结构.气象学报,1987,45(3):379-381
    .于恩洪等编著.海陆风及其应用.气象出版社,1997,1-146
    .姚学祥.中尺度对流复合体的动力诊断与数值模拟研究.南京气象学院,博士论文,2004
    .易笑园,张义军,李培彦等.MCS中地闪活动特征与雷达资料相关个例分析.气象科技,2007,35(5):666-669
    .言穆弘,刘欣生,安学敏等.雷暴非感应起电机制的模拟研究Ⅰ.云内因子影响.高原气象,1996,15(4):425-437
    .言穆弘,刘欣生,安学敏等.1996.雷暴非感应起电机制的模拟研究Ⅱ.云内因子影响.高原气象,1996,15(4):438-447
    .杨晓霞,周庆亮,郑永光等.2009年5月9—10日华北南部强降水天气分析.气象,2010,36(6):43-49
    .尹东屏,吴海英,张备等.一次海风锋触发的强对流天气分析.高原气象,2010,29(5):1261-1269
    .于仁成,高瑞华,宋同文等.一次中尺度对流系统分析.气象,1998,24(3):406-411
    .袁铁,郄秀书.卫星观测到的我国闪电活动的时空分布特征.高原气象,2004,23(4):488-494
    .袁铁,郄秀书.基于TRMM卫星对一次华南飑线的闪电活动及其与降水结构的关系研究.大气科学,2010,34(1):58-70
    .袁铁,郄秀书.中国东部及邻近海域暖季降水系统的闪电、雷达反射率和微波特征.气象学报,2010,68(5):652-665
    .袁美英.东北冷涡背景下对流性暴雨研究.南京信息工程大学,博士论文,2010
    .仲伟民.烟台地区海陆风特点.海洋通报,1993,12(3):26-29
    .杨春,谌云,芳之芳等.“07.6”广西柳州极端暴雨过程的多尺度特征分析.气象,2009,35(6):56-64
    .张腾飞,张杰,马联翔.一次西南涡影响云南强降水过程分析.气象科学,2006,26(4):376-383
    .张庆红,刘彦,张玉玲.中尺度对流复合体的诊断分析.自然科学进展,1998,8(2):213-219
    .张家国,万玉发,王珏.风暴生命史雷达特征量反演.应用气象学报,2008,19(1):101-105
    .张培昌,杜秉玉,戴铁丕.雷达气象学.北京:气象出版社,2001
    .张义军,华贵义,言穆弘等.对流和层状云系电活动、对流及降水特性的相关分析.高原气象,1995,14(14):396-404
    .张义军.强雷暴的雷电特征的观测和数值模拟研究.中国科学研究院,博士论文,1998
    .张义军,言穆弘,刘欣生.雷暴中放电过程的模式研究.科学通报,1999,44(12):1322-1325
    .张义军,刘欣生,Krehbiel P R雷暴中的反极性放电和电荷结构.科学通报,2002,47(15):1192-1195
    .张义军,孙安平,言穆弘等.雷暴电活动对冰雹增长影响的数值模拟研究.地球物力学报,2004,47(1):25-32
    .张义军,孟青,P R Krehbiel等.超级单体雷暴中闪电VHF闪电辐射点的时空分布特征.科学通报,2004,49(5):499-505
    .张义军,孟青,吕伟涛等.两次超级单体雷暴的电荷结构及其地闪特征.科学通报,2005,50(23):2663-3675
    .张义军,孟青,马明等.闪电探测技术发展和资料应用.应用气象学报,2006,17(5):611-620
    .张义军,周秀骥.雷电研究的回顾和进展.应用气象学报,2006,17(5):829-834
    .张义军,言穆弘,孙安平等.雷暴电学.气象出版社,2010
    .郑栋,孟青,吕伟涛等.北京及其周边地区夏季地闪活动时空特征分析.应用气象学报,2005,16(5):639-644
    .郑栋.闪电活动与降水的相关关系研究.中国科学研究院,博士论文,2008
    .郑栋,张义军,孟青等.一次雹暴的闪电特征和电荷结构演变研究.气象学报,2008,68(2):248-263
    .Zheng D, Y J Zhang,Qing Meng, et al.. Lightning activity and electrical structure in a thunderstorm that continued for more than 24h. Atmos. Res.,2010,97:241-256
    .郑嫒媛,俞小鼎.一次典型超级单体风暴的多普勒雷达观测分析.气象学报,2004,62(3):317-328
    .郑永光,陈炯,陈明轩等.北京及周边地区5-8月红外云图亮温的统计学特征及其天气学意义.科学通报,2007,52(14):1700-1706
    .郑永光,陈炯,朱佩君.中国及周边地区夏季中尺度对流系统分布及其日变化特征.科学通报,2008,53(4):471-478
    .翟菁,黄勇,胡雯等.强对流系统中对流云合并的观测分析.气象科学,2011,(1):100-106
    .翟菁,胡雯,冯妍,黄勇不同发展阶段对流云合并过程的数值模拟.大气科学,2012,36(4):697-712
    .朱乾根,林锦瑞,寿绍文等.天气学原理和方法.气象出版社,1981
    .朱乾根,周军,王志明等.1983.华南沿海五月份海陆风温压场特征与降水.南京气象学院学报,6(2):150-158
    .朱官忠,刘恭淑.华北南部产生中尺度对流复合体的环境条件分析.应用气象学报,1998,9(4):441-448
    .赵坤,周仲岛,潘玉洁等.台湾海峡中气旋结构特征的单多普勒雷达分析.气象学报,2008,66(4):637-651
    .卓鸿,姚秀萍,郑永光等.黄河下游春季一次中α对流系统暴雨过程的综合分析.气象学报,2004,62(4):504-511
    .卓鸿,赵平,任健,刘爱梅,杨芙蓉.2007年济南“7.18”大暴雨的持续拉长状对流系统研究.气象学报,2011,69(2):263-276
    .卓鸿,赵平,李春虎,蒲章绪.夏季黄河下游地区中尺度对流系统的气候特征分布.大气科学,2012,36(6):1112-1122
    .甄长忠.780810冰雹过程的分析.大气科学,1981,5(4):456-460
    .周海光,王玉斌.2003年6月30日梅雨锋大暴雨中β和中β结构的双多普勒雷达反演.气象学报2005,63(3):301-312
    .周鸣盛,何群英,易笑园.天津一次初夏暴雨的中尺度特征.气象,1990,16(12):26-29
    .周筠君,郄秀书,张义军等.地闪与对流性天气系统中降水关系的分析.高原气象1999,57(1):103-111
    .周筠君,郄秀书,王怀斌等,2003:利用对地闪的观测估算对流性天气中的降水.高原气象,229(2):168-172

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700