用户名: 密码: 验证码:
潜流人工湿地处理农村生活污水的工艺研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
农村生活污水中含有氮、磷等营养物质,未经处理直接排入水体将导致水体富营养化的后果。通过对比常见分散污水处理技术的优缺点,本文选择将潜流人工湿地应用于农村生活污水的处理,针对湿地的净水效果、净化机理、工艺类型、影响因素、及模型构建等方面展开相应研究。主要研究内容及结论如下:
     (1)采用植物浮床技术研究喜温植物和耐寒植物的净水能力,并对植物根系输氧和光合作用对净水效果的影响作出分析。结果表明:菖蒲和香蒲为春季优势植物,美人蕉为夏季优势植物,石菖蒲和黑麦草为冬季优势植物。同一植物根系的氧气扩散速率(ODR)与根长、根壁厚度、根直径等因素有关,ODR较大的区域,微生物数量也较多,其ODR最大的区域在根尖区。植物的净光合速率Pn和蒸腾速率Tr的相关系数为0.961,呈显著线性相关;有机物以化学需氧量(CODcr)表示,其去除率及氨氮(NH4+-N)、总氮(TN)的去除率与净光合速率Pn呈相似的变化规律;湿地脱氮效果与净光合速率Pn呈显著相关;氨氮的去除效果与蒸腾速率Tr呈极显著相关。
     (2)选用批量平衡法研究基质的静态吸附除磷性能,并对其吸附除磷动力学和热力学作出分析。结果表明:Langmuir方程适合描述沸石、煤渣和无烟煤的磷素吸附等温线,而Freundlich方程适合描述生物陶粒的磷素吸附等温线,对比各基质的理论饱和吸附量qm和吸附参数KF可知煤渣和无烟煤的除磷能力较强。溶液浓度、基质用量、pH值、有机酸及其他阴离子对基质的吸附除磷均有不同程度的影响。各填料达到吸附平衡的时间各有不同,但吸附动力学特征相似,即初期反应较快,后期反应变慢,并逐渐达到平衡;随着温度的升高,基质吸附速率提高,达到平衡所需时间减少;Elovich方程、双常数速率方程和准二级动力学反应方程均能很好地描述基质对磷素的等温吸附动力学特征,其中以准二级动力学方程的描述最为准确。吸附系统的自由能变ΔG0<0,焓变ΔH0>0,反映基质对磷的吸附作用是自发的吸热过程,沸石和生物陶粒的除磷过程主要依靠物理吸附作用,煤渣和无烟煤的除磷过程,包括物理吸附、配位体交换和化学吸附作用。
     (3)设计复合垂直潜流人工湿地模拟装置,开展单一基质和组合基质动态净水试验、处理农村生活污水试验和运行参数优选试验。结果表明:有机物(CODcr)和总磷(TP)的去除率与进水负荷无明显相关性,总氮(TN)的去除率与进水负荷具有正相关性;生物陶粒的生化处理性能较好,沸石对氮素的处理效果较为显著,无烟煤对磷素的去除效果较为显著。兼顾经济因素和净化效能,可选用沸石、煤渣和砾石的体积比例为1:1:1作为湿地组合基质。在复合流湿地的净水效果中,下行流填料柱处于主导地位,上行流填料柱处于辅助地位,其中氮素的去除主要依靠硝化反硝化作用;水温、气水比、碳氮比、氮源形式等因素对其脱氮效率有显著影响;实际生活污水中含有悬浮态氮,易出现“氮释放”的现象。考虑水力负荷和水深之间的交互作用时,根据用L27(313)安排试验,采用SPSS13.0进行方差分析和多重比较,发现交互作用对总磷的去除率有显著影响,兼顾总氮和有机物的去除效果,本试验系统的优选方案为水力负荷1200mm/d、水深80cm、低进水浓度。
     (4)构建水平流、下行流和上行流的人工湿地,开展处理农村生活污水的运行试验,对水力停留时间(HRT)、负荷率((φ)和温度的影响进行分析,并探讨污染物沿程变化规律。结果表明:水平流湿地适合处理悬浮物和有机物负荷较高的农村生活污水,HRT以4d为宜;下行流湿地适合处理氨氮和总氮负荷较高的污水,HRT以4d-6d为宜;上行流湿地适合处理总磷负荷较高的污水,HRT以8d为宜。温度对有机物去除速率的影响显著,适合采用指数方程y=A·eBx拟合,各系统拟合的B值差异不大,表明有机物去除速率差异不明显;温度对氨氮、总氮去除速率的影响显著,适合采用Sigmoidal方程拟合,下行流湿地系统对氨氮的去除速率受温度影响较大,上行流湿地系统对总氮的去除速率受温度影响较大;温度对总磷去除速率的影响不及其他污染物显著,亦可采用Sigmoidal方程拟合。有机物和磷素的沿程变化规律表现为逐渐降低的趋势,氮素的沿程变化规律表现为总体呈下降趋势,但下行流和上行流湿地由于“氮释放”现象出现不同程度的起伏。
     (5)分析了人工湿地基本模型的特点,选用系统动力学软件Vensim对生态模型的存量流量图进行模拟,并探讨了各类模型的统一微分形式。结果表明:系统的基本状态、反应动力学和水动力学是人工湿地模型不断发展的内在逻辑主线,但是不同类型的模型在建立基点、适用条件及所反映的机理等方面各有侧重。衰减模型关注于湿地的污染物去除效率,动力学模型则反映湿地的污染物去除速率,Monod模型中关注到微生物的新陈代谢作用对污染物去除的贡献,而生态动力学模型则以“箱式”模型理论为基础,包含了碳循环、氮循环、储水量、溶解氧、自养微生物和异氧微生物六个子模块,更为系统地考虑到人工湿地内部的各种反应机理和降解过程。从物理、化学和生物过程的协同作用出发,在现有模型的基础上进一步完善,探讨人工湿地模型的统一微分形式为dC/dt=-kCn/(K+C)m,其中,m、n为结构参数,取值不同,可获得介于现有模型之间的过渡模型。
It results in water eutrophication that rural domestic wastewater containing nitrogen and phosphorus is discharged into natural water bodies without any treatment. After comparative studies on several familiar treatment technology of disperse sewage, subsurface flow constructed wetland was chosen to treat rural domestic wastewater. Process research on subsurface flow constructed wetland including treatment effiency, purification mechanism, technology types, influent factors and model establishment was done in the paper. The primary contents and conclusion are as follows.
     (1) Plant purification experiment by floating bed technology had been done to investigate purification abilities of thermophilous plants and cold tolerant plants.The result showed Iris pseudacorus Linn. and Typha orientalis Presl had greater advantage on purification than others in the spring, Canna indica Linn. did better in the summer, Acorus tatarinowii Schott and Lolium perenne Linn. did better in the winter. Polarography and photosynthesis experiment had been done to disscuss influence of oxygen diffusion rate and photosynthetic rate on purification performance. Oxygen diffusion rate of plant roots was related to root length, root-wall thickness, root diameter, and the maximum of ODR appears on apical zone. Oxygen carring process helped to microorganism growth. It showed significantly linear correlation between photosynthetic rate and transpiration rate that correlation coefficient of them was0.961. Removal efficiencies of CODcr, NH4+-N, TN embodied similar variety regulation with photosynthetic rate. Nitrogen removal efficiency had significant correlation with photosynthetic rate, and ammonia-nitrogen removal efficiency had very significant correlation with transpiration rate.
     (2) Substrates adsorption test by batch equilibrium method had been done to research phosphorus adsorption characteristics of substrates. The results indicated that Langmuir adsorption isotherm was fit for describing the absorption characteristics of zeolite, coal cinder and anthracite, while Freundlich dsorption isotherm was fit for biological ceramsite. Coal cinder and anthracite had greater advantage on phosphorus adsorption by comparing theoretical saturated adsorption capacity qm and adaorption parameter KF of substrates. Initial phosphorus concertration, substrate dose, pH, organic materials and other anion had different effects on substrates phosphorus adsorption characteristics.The adsorption kinetics curves of the subtrates showed the same trend including quick, medium and slow period, but the reaction time of reaching equilibrium were different. The pseudo second-order kinetics was best to describe the phosphorus adaorption kinetics onto all substrates examined, followed by Elovich and two-constant equations. It indicated the the adsorption reaction of phosphorus was endothermic and spontaneous that thermodynamic parameters ΔH0was positive and ΔG0was negative. The mechanism of phosphorus adsorption on zeolite and biological ceramsite was attributed to physical adsorption, while the mechanism on coal cinder and anthracite included physical adsorption, ligand exchange and chemical adsorption.
     (3) Dynamic purification experiment of singal and combined substrate, treatment experiment to rural domestic wastewater, optimization test of operation parameters had been done on the device of integrated vertical flow constructed wetland. The result showed removal effiencies of CODcr and TP had no correlation with influent loads, but removal effiency of TN had correlation with influent load of nitrogen. Biochemical treatment performance of biological ceramsite was better than other substrates, nitrogen removal ability of zeolite was better, phosphorus removal ability of anthracite was better. The combined substrates composed by zeolite, coal cinder and gravel with the proportion of1:1:1could remove nitrogen, phosphorus and organics effectively. Pollutants were mostly removed in the down-flow column of IVCW and the major dissolved nitrogen was removed by nitrification and denitrification of microogranism. Suspended-nitrogen in rural domestic wastewater which deposited in filler pore could cause "nitrogen-releasing" phenomenon. The factors including temperature, gas-flow ratio, C/N ratio and nitrogen-source forms had significant influence on TN removal efficiency. Variance analysis and multiple comparisons of orthogonal test datas indicated interaction between hydraulic load and water depth had significant effect on TP removal efficiency, and the optimal plan of the system was hydraulic load of1200mm/d, water depth of80cm and low influent concentration.
     (4) Rural domestic wastewater treatment experiment by horizontal flow, down-flow, up-flow wetlands had been done to anyalysis the influence of HRT, load ratio and temperature on treatment efficiency. The result showed horizontal flow wetland with HRT of4d was fit to treat wastewater with high load of turbidity and CODcr. Down-flow wetland with HRT of4d-6d was fit to treat wastewater with high load of NH4+-N and TN. Up-flow wetland with HRT of8d was fit to treat wastewater with high load of TP. Temperature had significant effect on CODCr removal speed, and the exponential equation y=A.eBx could describe relationship of temperature and organic substance removal speed. B-value of the wetlands had little difference, so CODcr removal speed of wetlands had insignificant difference. Temperature had significant effect on NH4+-N and TN removal speed, and the sigmoidal equation could describe relationship of temperature and nitrogen removal speed. Temperature had greater effect on NH4+-N removal speed of down-flow wetland and TN removal speed of up-flow wetland. Temperature had less effect on TP removal speed, and the sigmoidal equation could also describe relationship of temperature and phosphorus removal speed. Distribution regularity of pollutants along the water flow in wetlands had been investigated. Concentration of organic substance and phosphorus gradually decreased along the water flow. Concentration of nitrogen generally decreased along the water flow, but different degree of fluctuation was caused by "nitrogen-releasing" phenomenon cause in dow-flow and up-flow wetlands.
     (5) Features about basic models of construct wetland had been analysised, stock and flow figure of ecological dynamic model had been described by Vensim software of system dynamics, and generalized differential equations of various kinds of wetland models had been discussed. The result showed main development line of wetland models included basic state of system, reaction kinetics and hydrodynamics, but every wetland model had its own characteristics on its standpoint, adapted condition and representation mechanism. Attenuation model concerned to removal efficiency of pollutants, kinetics models reflected removal speed of pollutants, Monod model focused on contribution to removal rate of pollutants by microorganism activities. Based on box-model theory, Ecological dynamic model consisting of six submodules including carbon, nitrogen, water quality, dissolved oxygen, autotrophic microbe and heterotrophic microbe considered reaction mechanism and degradation process in wetlands. From synergistic action of physical, chemical and biological process, generalized differential equations of various kinds of wetland models was dC/dt=-kCn/(K+C)m.
引文
[1]李仰斌,张国华,谢崇宝.国内外农村生活排水相关标准编制概况[J].中国水利,2009,(5):56-57,64
    [2]马秋清,郝建国,周晓靖.农村生活污水处理现状及模式选择[J].科技资讯,2007,(22):237-238
    [3]王艳艳,孙勇,赵言文.江苏省太湖流域农业面源污染现状分析及防治措施[J].江西农业学报,2008,20(8):118-121
    [4]金丹越,白献宇,金相灿.洱海流域农村生活污水调查与处理方案研究[J].中国农村小康科技,2007,(9):96-99
    [5]陈能汪,张珞平,洪华生,等.九龙江流域农村生活污水污染定量研究[J].厦门大学学报(自然科学版),2004,43(增刊):249-253
    [6]黄萌.富营养化对水生生态系统的污染生态效应[J].科技情报开发与经济,2006,16(20):137-138
    [7]齐孟文,刘凤娟.城市水体富营养化的生态危害及其防治措施[J].环境科学动态,2004,(1): 44-45
    [8]陈开宁,李文朝,吴庆龙.滇池蓝藻对沉水植物生长的影响[J].湖泊科学,2003,15(4):364-368
    [9]张圣照,王国祥,濮培民.太湖藻型富营养化对水生高等植物的影响及植被的恢复[J].植物资源与环境,1998,7(4):52-57
    [10]韩志国,郑解生,谢隆初,等.淡水水体中的蓝藻毒素研究进展(综述)[J].暨南大学学报(自然科学版1,2001,22(3):129-135
    [11]Geoffrey A. Codd, Louise F. Morrison, James S Metcalf. Cyanobacterial toxins:risk management for health protection[J]. Toxicology and Applied Pharmacology,2005,203 (3):264-272
    [12]吴琪.以浮游植物评价太湖春季水质污染及富营养化[J].环境导报,2000,(2):32-35
    [13]李英杰,年跃刚,胡社荣,等.太湖五里湖水生植物群落演替及其驱动因素[J].水资源保护,2008,24(3):12-16
    [14]余国营,刘永定,丘昌强.滇池水生植被演替及其与水环境变化关系[J].湖泊科学,2000,12(1):73-79
    [15]熊金林.不同营养水平湖泊浮游生物和底栖动物群落多样性的研究[D].华中科技大学博士学位论文,2005
    [16]王正军,杜桂森,洪剑明.浮游动物群落结构和多样性的研究进展[J].首都师范大学学报(自然科学版),2008,29(3):41-50
    [17]吴生桂,沈韫芬.从时空异质性看东湖富营养化中原生动物的演替[J].生态学报,2001,21(3):446-451
    [18]龚志军,谢平,唐汇涓,等.水体富营养化对大型底栖动物群落结构及多样性的影响[J].水生生物学报,2001,25(3):210-216
    [19]邱东茹,吴振斌.富营养化浅水湖泊沉水水生植被的衰退与恢复[J].湖泊科学,1997,9(1):82-85
    [20]袁志宇,赵斐然.水体富营养化及生物学控制[J].中国农村水利水电,2008,(3):57-59
    [21]张自杰.排水工程[M].北京:中国建筑工业技术出版社,2000
    [22]Ronald Crites, Sherwood Reed, Robert Bastian. Land treatment systems for municipal and industrial wastes[M]. USA:McGraw-Hill publishing,2000
    [23]杨文涛,刘春平,文红艳.浅谈污水土地处理系统[J].土壤通报,2007,38(2):394-398
    [24]华文才,冯益敏,朱炳泉.地下土壤渗滤系统处理农村生活污水试验分析[J].华东交通大学学报,2008,25(6):6-10
    [25]张建,黄霞,施汉昌,等.滇池流域村镇生活污水地下渗滤系统设计[J].给水排水,2004,30(7):34-36
    [26]苏东辉,郑正,王勇,等.农村生活污水处理技术探讨[J].环境科学与技术,2005,28(1):79-82
    [27]曾令芳.简评农村生活污水处理新方法[J].中国农村水利水电,2001,(9):30-31,33
    [28]国家环境保护局科技标准司.城市污水稳定塘处理技术指南[M].北京:中国环境科学出版社,1997
    [29]何少林.高效藻类塘处理农村生活污水氮磷去除机理及工艺研究[D].同济大学博士学位论文,2006
    [30]韦慧.复合生态塘治理农村生活污水应用示范研究[D].昆明理工大学硕士学位论文,2008
    [31]陈吉宁,李广贺,王洪涛.滇池流域面源污染控制技术研究[J].中国水利,2004,(9):47-50
    [32]陈眼旸,肖亿群,邱江平.蚯蚓生物滤池处理城市污水初步试验[J].上海交通大学学报(农业科学版),2003,21(4):336-344
    [33]许保玖,龙腾锐,当代给水与废水处理原理[M].北京:高等教育出版社,2000
    [34]程永伟,施永生,王琳,等.人工湿地应用于小城镇污水处理的研究进展[J].云南化工,2006,33(3):54-57
    [35]武汉市村镇协会课题组.将人工湿地应用社会主义新农村建设[J].武汉建设,2007,(2):30-31
    [36]籍国东,倪晋仁.人工湿地废水生态处理系统的作用机制[J].环境污染治理技术与设备,2004,5(6):72-75
    [37]刘红,代明利,刘学燕,等.人工湿地系统用于地表水水质改善的效能及特征[J].环境科学,2004,25(4):65-69
    [38]Jan Vymazal. Constructed wetland for wastewater treatment[J]. Ecological Engineering,2005,25 (5):475-477
    [39]杨俊,龚琴红.人工湿地在我国农村生活污水治理中的应用[J].农业环境与发展,2007,(2):71-74
    [40]D. H. Hammer. Constructed wetland for wastewater treatment, municipal, industrial and agricultural[M]. USA:Lewis Publishers,1989
    [41]Reed S C, Brown D. Subsurface flow wetlands-a performance evaluation[J]. Water Environment Research,1995,67:244-248
    [42]叶建锋.垂直潜流人工湿地中污染物去除机理[D].同济大学博士学位论文,2007
    [43]Carsten Schulz, Jorg Gelbrecht, Bernhard. RennertTreatment of rainbow trout farm effluents in constructed wetland with emergent plants and subsurface horizontal water flow[J]. Aquaculture, 2003,217 (1-4):207-221
    [44]P. Kuschk, A. Wie(?)ner, U. Kappelmeyer, et al. Annual cycle of nitrogen removal by a pilot-scale subsurface horizontal flow in a constructed wetland under moderate climate[J]. Water Research, 2003,37 (17):4236-4242
    [45]F. Zurita, J. De Anda, M.A Belmont. Treatment of domestic wastewater and production of commercial flowers in vertical and horizontal subsurface-flow constructed wetlands[J]. Ecological Engineering,2009,35 (5):861-869
    [46]R.H. Kadlec. Comparison of free water and horizontal subsurface treatment wetlands[J]. Ecological Engineering,2009,35 (2):159-174
    [47]Green M, Safray L, Agaui M, et al. Constructed wetlands for river reclamation:Experimental design, start-up and preliminary results[J]. Bioresource Technology,1996,55:157-162
    [48]吴振斌,成水平,贺锋,等.复合垂直流人工湿地[M].北京:科学出版社,2008
    [49]Bhamidimarri R, Shilton A, Armstrong I, et al. Constructed wetlands for wastewater treatment:the New Zealand Experice[J]. Water Science & Technology,1991,24 (5):247-253
    [50]Z.M. Chena, B. Chena, b, J.B. Zhoua A vertical subsurface-flow constructed wetland in Beijing[J]. Communications in Nonlinear Science and Numerical Simulation,2008,13 (9):1986-1997
    [51]David Giraldi, Renato Iannellia. Measurements of water content distribution in vertical subsurface flow constructed wetlands using a capacitance probe:benefits and limitations[J]. Desalination, 2009,243(1-3):182-194
    [52]Arda Yalcuka, Aysenur Ugurlu. Comparison of horizontal and vertical constructed wetland systems for landfill leachate treatment[J]. Bioresource Technology,2009,100 (9):2521-2526
    [53]Suwasa Kantawanichkula, Supreeya Kladpraserta, Hans Brix. Treatment of high-strength wastewater in tropical vertical flow constructed wetlands planted with Typha angustifolia and Cyperus involucratus[J]. Ecological Engineering,2009,35 (2):238-247
    [54]Hans Brix, Carlos A. Arias. The use of vertical flow constructed wetlands for on-site treatment of domestic wastewater:New Danish guidelines [J]. Ecological Engineering,2005,25 (5):491-500
    [55]Johannes Laber, Raimund Haberl, Roshan Shrestha. Two-stage constructed wetland for treating hospital wastewater in Nepal[J]. Water Science and Technology,1999,40 (3):317-324
    [56]A. Tuszynska, H. Obarska-Pempkowiak. Dependence between quality and removal effectiveness of organic matter in hybrid constructed wetlands[M]. Bioresource Technology,2008,99 (14): 6010-6016
    [57]Pascal Molle, Stephanie Prost-Boucle, Alain Lienard. Potential for total nitrogen removal by combining vertical flow and horizontal flow constructed wetlands:A full-scale experiment study[J]. Ecological Engineering,2008,34 (1):23-29
    [58]Attilio Toscanoa, Gunter Langergraberb, Simona Consolia. Modelling pollutant removal in a pilot-scale two-stage subsurface flow constructed wetlands[J]. Ecological Engineering,2009,35 (2):281-289
    [59]Samira Abidi, Hamadi Kallali, Naceur Jedidi, et al. Comparative pilot study of the performances of two constructed wetland wastewater treatment hybrid systems[J]. Desalination,2009,246 (1-3): 370-377
    [60]Janjit Iamchaturapatr, Su Won Yi, Jae Seong Rhee. Nutrient removals by 21 aquatic plants for vertical free surface-flow (VFS) constructed wetland[J]. Ecological Engineering,2007,29 (3): 287-293
    [61]Zhang J, Ferdinand J A, Vanderheyden D J, et al. Variation of gas exchange within native plant species of Switzerland and relationships with ozone injury:an open-top experiment[J]. Environmental Pollution,2001,113 (2):177-185
    [62]成水平,吴振斌,夏宜琤.水生植物的气体交换与输导代谢[J].水生生物学报,2003,27(4):413-417
    [63]白峰青,郑丙辉,田自强.水生植物在水污染控制中的生态效应[J].环境科学与技术,2004,27(4):99-110
    [64]吴建强,阮晓红,王雪.人工湿地中水生植物的作用和选择[J].水环境保护,2005,21(1):3-6
    [65]Kadlec R H, Knight R I, Vymazal J, et al. Constructed wetlands for pollution control:Process, performance, design and operation M]. London:IWA Publishing,2002
    [66]Rice E I. Allelopathy[M]. New York:Academic Press,1974
    [67]J. Brisson, F. Chazarenc. Maximizing pollutant removal in constructed wetlands:Should we pay more attention to macrophyte species selection?[J]. Science of The Total Environment,407 (13): 3923-3930
    [68]Carsten Schulz, Jorg Gelbrecht, Bernhard Rennert. Treatment of rainbow trout farm effluents in constructed wetland with emergent plants and subsurface horizontal water flow[J]. Aquaculture, 2003,217 (1-4):207-221
    [69]王海燕,蒋展鹏.化感作用及其在环境保护中的应用[J].环境污染治理技术与设备,2002,3(6):86-88
    [70]Reddy K R, Connor G A, Gale P M. Phosphorus sorption capacities of wetland soils and stream sediments impacted by dairy effluent[J]. Journal of Environmental Quality,1998,27 (2):438-447
    [71]Arias C. A., M Del Bubba, Brix H. Phosphorus removal by sands for use as media in subsurface flow constructed reed beds[J]. Water Research,2001,35 (5):1159-1168
    [72]Lin T F, Wu J K. Adsorption of arsenite and arsenale within activated alumina grains:Equilibrium and kinetics[J]. Water Research,2001,25 (8):2049-2057
    [73]Dong Cheol Seo, Ju Sik Cho, Hong Jae Lee, et al. Phosphorus retention capacity of filter media for estimation the longevity of constructed wetland. Water Research,2005,39 (11):22445-2457
    [74]Y Yang, Y Q. Zhao, A.O.Babatunde, et al. Characteristics and mechanisms of phosphate adsorption on dewatered alum sludge[J]. Separation and Purification Technology,2006,51 (2):193-200
    [75]W.H. Park, C. Polprasert. Role of oyster shell in a integrated constructed wetland system designed for P removal[J].2008,34 (1):50-56
    [76]Baohua Guan, Xin Yao, Jinhui Jiang, et al. Phosphorus removal ability of three inexpensive substrates:physicochemical properties and application[J]. Ecological Engineering,200935 (4): 576-581
    [77]赵桂瑜.人工湿地除磷基质筛选及其吸附机理研究[D].同济大学博士学位论文,2007
    [78]谭洪新,周琪.湿地填料的磷吸附特性及潜流人工湿地除磷效果研究[J].农业环境科学学报,2005,24(2):353-356
    [79]袁东海,张孟群,高士祥,等.几种粘土矿物和粘粒土壤吸附净化磷的性能和机理[J].环境化学,2005,24(1):7-11
    [80]夏宜铮,张甬元,邓家齐,等.综合生物塘技术及黄州城区污水综合生物塘处理研究[M].北京:科学出版社,1993
    [81]梁威,吴振斌,詹发萃,等.人工湿地植物根去微生物与净化效果的季节变化[J].湖泊科学,2004,16(4):312-317
    [82]郑焕春,周春.微生物在富营养化水体生物修复中的作用[J].中国生态农业学报,2009,17(1):197-202
    [83]Special Issue. Bioremediation Business[J]. Nikkei Biotechnology& Business,2001,9:50-63
    [84]Alexandra Tietza, Alexander Kirschnerb, Gunter Langergraber. Characterisation of microbial biocoenosis in vertical subsurface flow constructed wetlands[J]. Science of The Total Environment,2007,380 (1-3):163-172
    [85]Marika Truu, Jaanis Juhanson, Jaak Truu. Microbial biomass, activity and community composition in constructed wetlands[J]. Science of The Total Environment,2009,407 (13):3958-3971
    [86]刘佳,王泽民,李亚峰,等.潜流人工湿地系统对污染物的去除与转化机理[J].环境保护科学,2005,31(2):53-57
    [87]Jianbo Lia, Yue Wen, Qi Zhoua, et al. Influence of vegetation and substrate on the removal and transformation of dissolved organic matter in horizontal subsurface-flow constructed wetlands[J]. Bioresource Technology,2008,99 (11):4990-4996
    [88]付融冰,杨海真,顾国维,等.潜流人工湿地对农村生活污水氮去除的研究[J].水处理技术,2006,32(1):18-22
    [89]陈秀荣,周琪.人工湿地脱氮除磷特性研究[J].环境污染与防治,2005,(7):526-529
    [90]贺锋,吴振斌,陶菁等.复合垂直流人工湿地污水处理系统硝化与反硝化作用[J].环境科学,2005,26(1):47-50
    [91]Bowden W B. The biogeochemistry of nitrogen in freshwater wetlands[J]. Biogeochemistry,1987,4 (3):313-348
    [92]Michal Green, Eran Friedler, Iris Safrai. Enhancing nitrification in vertical flow constructed wetland utilizing a passive air pump[J]. Water Research,1998,32 (12):3513-3520
    [93]Johannes Laber, Reinhard Perfler, Raimund Haber. Two strategies for advanced nitrogen elimination in vertical flow constructed wetlands[J] Water Science and Technology,1997,35 (5): 71-77
    [94]Verhoeven J T A, Meuleman A F M. Wetlands for wastewater treatment opportunities and limitations[J]. Ecological Engineering,1999,12 (1-2):5-12
    [95]Braskerud B C. Factors affecting phosphorus retention in small constructed wetlands treating agricultural nonpoint source pollution[J]. Ecological Engineering,2002,19 (1):41-61
    [96]C.A. Prochaska, A.I. Zouboulis. Removal of phosphates by pilot vertical-flow constructed wetlands using a mixture of sand and dolomite as substrate[J] Ecological Engineering,2006,26 (3): 293-303
    [97]雒维国,王世和,钱卫一,等.潜流型人工湿地除磷效果研究[J].安全与环境工程,2004,11(4):21-25
    [98]Kadlec R H, Knight R L. Treatment Wetland[M]. Chelsea:Lewis Publishers,1996
    [99]Drizo A, Comeau Y, Forget C, et al. Phosphorus saturation potential:A parameter for estimating the longevity of constructed wetland systems[J]. Environment Science Technology,2002,36 (21): 4642-4648
    [100]何成达,王惠民,钱小青,等.波式潜流人工湿地基质与污水磷素去除关系研究[J].农业环境科学学报,2006,25(1):175-178
    [101]尹炜,李培军,尹澄清,等.潜流人工湿地的局限性与运行问题[J].中国给水排水,2004,20(11):36-38
    [102]USEPA. Constructed Wetland Treatment of Municipal Wastewaters Manual[M]. Cincinnati:Office of Research and Development,2000
    [103]熊飞,李文朝,潘继征,等.人工湿地脱氮除磷的效果与机理研究进展[J].湿地科学,2005,3(3):228-234
    [104]Vymazal J, Brix H, Cooper P F, et al. Constructed Wetlands for Wastewater Treatment in Europe[J]. The Quarterly Review of Biology,1999,74 (1):97
    [105]卢学强.污水湿地处理工程水力停留时间的测定[J].干旱环境监测,1999,13(2):74-75
    [106]Akratos C S, Tsihrintzis V A. Effect of temperature, HRT, vegetation and porous media on removal efficiency of pilot-scale horizontal subsurface flow constructed wetlands[J]. Ecological Engineering,2007,29 (2):173-191
    [107]王世和,王薇,俞燕,等.水力条件对人工湿地处理效果的影响[J].东南大学学报(自然科学版),2003,33(3):359-362
    [108]华涛,周启星,贾宏宇.人工湿地污水处理工艺设计关键及生态学问题[J].应用生态学报,2004,15(7):1289-1293
    [109]郭明新,李万庆.天津市城市污水自由水面构筑物湿地处理系统污水氮去除规律的研究[J].环境化学,1996,15(6):516-521
    [110]USEPA. Subsurface flow constructed wetlands for wastewater treatment[M]. Washington:DC, USEPA832-R-93-008,1993
    [111]USEPA. FWS wetlands for wastewater treatment[MJ. Washington:DC, USEPA 832-R-99-002, 1999
    [112]Reed S C, Crites R, Middlebrooks E J. Natural systems for waste management and treatment[M]. San Francisco, Ca:Mc Graw-Hill,1995
    [113]王薇,俞燕,王世和.人工湿地污水处理工艺与设计[J].城市环境与城市生态,2001,14(1):59-62
    [114]赵桂瑜,杨永兴,杨长明,等.人工湿地污水处理系统工艺设计研究[J].四川环境,2005,24(6):24-27,35
    [115]蒋成立.某区民小区室外给水排水工程的设计[J].西南科技大学学报,2003,18(4):44-46
    [116]李联友,李显太.UPVC管道与W型柔性铸铁管在建筑排水中的应用比较[J].河北建筑工程学院学报,2003,21(3):7-1
    [117]侯思妮.某啤酒厂污水处理站水解池的加固及防渗[J].广东建材,2007,(1):40-44
    [118]岳位启.污水处理场水池防渗漏方法[J].石油工程建设,2000,6(3):24-26
    [119]Kadlec R H., The inadequacy of first-order treatment wetland models [J]. Ecological Engineering, 2000,15(1-2):105-119
    [120]Carleton J N, Grizzard T J, Godrej AN, et al. Performance of a constructed wetlands in treating urban stormwater runoff[J]. Water Environment Research,2000,72 (3):295-304
    [121]Goulet R R, Pick F R, Droste R L. Test of the first-order removal model for metal retention in a young constructed wetland[J]. Ecological Engineering,2001,17 (4):357-371
    [122]Theresa Maria Wynn, Sarah K. Liehr. Development of a constructed subsurface-flow wetland simulation model[J]. Ecological Engineering,2001,16 (4):519-536
    [123]Rousseau D P L, Vanrolleghem P A, Pauw N D. Model-based design of horizontal subsurface flow constructed treatment wetlands:a review[J]. Water Research,2004,38 (6):1484-1493
    [124]Stone K C, Poach M E, Hunt P G, et al. Marsh-pond-marsh constructed wetland design analysis for swine lagoon wastewater treatment[J]. Ecological Engineering,2004,23 (2):127-133
    [125]Nitisoravut S, Klomjek P. Inhibition kinetics of salt-affected wetland for municipal wastewater treatment[J].Water Research,200539 (18):4413-4419
    [126]Christos S. Akratosa, John N.E. Papaspyrosa, Vassilios A. Tsihrintzis. An artificial neural network model and design equations for BOD and COD removal prediction in horizontal subsurface flow constructed wetlands[J]. Chemical Engineering Journal,2008,143 (15):96-110
    [127]Christos S. Akratosa, John N.E. Papaspyrosa, Vassilios A. Tsihrintzis. Total nitrogen and ammonia removal prediction in horizontal subsurface flow constructed wetlands:Use of artificial neural networks and development of a design equation[J]. Bioresource Technology,2009,100 (2): 586-596
    [128]闻岳,周琪.水平潜流人工湿地模型[J].应用生态学报,2007,18(2):456-462
    [129]孔令裕,倪晋仁.典型人工湿地去污模型之间的关系(Ⅰ)[J].应用基础与工程科学学报,2007,15(2):149-155
    [130]邓春光,蔡明凯.人工湿地动力学模型研究[J].安徽农业科学,2007,35(15):4583-4584,4613
    [131]史云鹏,周琪.人工湿地污染物去除动力学模型研究进展[J].工业用水与废水,2002,33(6):12-15
    [132]朱永青.人工湿地净化机制数学模型模拟及应用[D].东华大学硕士学位论文,2006
    [133]白永刚.滴滤池-人工湿地技术处理农村生活污水应用研究[D].东南大学硕士学位论文,2005
    [134]董文茂.分散式生活污水处理:为中国农村污水处理提供新思路[J].环境,2007,(5):66-69
    [135]周律.中小城市污水处理投资决策与工艺技术[M].北京:化学工业出版社,2002
    [1]张雨葵,杨扬,刘涛.人工湿地植物的选择及湿地植物对污染河水的净化能力[J].农业环境科学学报,2006,25(5):1318-1323
    [2]成水平,吴振斌.人工湿地植物研究[J].湖泊科学,2002,14(2):179-184
    [3]U. Stottmeister, A. Wieβner, P. Kuschk, et al. Effects of plants and microorganisms in constructed wetlands for wastewater treatment[J]. Biotechnology Advances,2003,22 (1-2):93-117
    [4]Grove J K, Stein O R. Polar organic solvent removal in microcosm constructed wetlands[J]. Water Research,2005,39 (16):4040-4050
    [5]D.M. Revitta, R.B.E. Shutesa, R.H. Jones, et al. The performances of vegetative treatment systems for highway runoff during dry and wet conditions[J]. Science of the Total Environment,2004, 334-335:261-270
    [6]谢雄飞,肖锦.水体富营养化问题评述[J].四川环境,2000,19(2):22-25
    [7]国家环境保护总局.水和废水监测分析方法(第四版)[M].北京:中国环境科学出版社,2002
    [8]梁威,胡洪营.人工湿地净化污水过程中的生物作用[J].中国给水排水,2003,19(10):28-31
    [9]种云霄,胡洪营,等.大型水生植物在水污染治理中的应用研究进展[J].环境污染治理技术与 设备,2003,4(2):36-40
    [10]Lei Yang a, Hui-Ting Chang, Mong-Na Lo Huang. Nutrient removal in gravel-and soil-based wetland microcosms with and without vegetation[J]. Ecological Engineering,2001,18 (1):91-105
    [11]贺锋,吴振斌,等.复合垂直流人工湿地污水处理系统硝化与反硝化作用[J].环境科学,2005,26(1):47-50
    [12]吴振斌,陈辉蓉,等.人工湿地系统对污水磷的净化效果[J].水生生物学报,2001,25(1):28-35
    [13]I.R. Lantzke 1, D.S. Mitchell, A.D. Heritage, et al. A model of factors controlling orthophosphate removal in planted vertical flow wetlands[J]. Ecological Engineering,1999,12 (1-2):93-105
    [14]何成达.循环水流—浮床种植法处理生活污水的试验研究[J].环境科学与技术,2004,27(6):12-13,60
    [15]李欲如,操家顺.冬季低温条件下浮床植物对富营养化水体的净化效果[J].环境污染与防治,2005,27(7):505-508
    [16]黄蕾,翟建平,王传瑜,等.4种水生植物在冬季脱氮除磷效果的试验研究[J].农业环境科学学报,2005,24(2):366-370
    [17]Woolhouse H W W. Advances in Botanical Research[M]. London:Academic Press,1979
    [18]Armstrong W. The use of polarography in assay of oxygen diffusing from roots in anaerobic media[J]. Physiologia Plantarum,1967,20 (3):540-553
    [19]吴振斌,贺峰,程旺元,等.极谱法测定无氧介质中根系氧气输导[J].植物生理学报,2000,26(3):177-180
    [20]吴振斌,成水平,贺锋,等.复合垂直流人工湿地[M].北京:科学出版社,2008
    [21]梁威,吴振斌,周巧红,等.复合垂直流构建湿地基质微生物类群及酶活性的空间分布[J].云南环境科学,2002,21(1):5-8
    [22]雒维国,王世和,黄娟,等.植物光合及蒸腾特性对湿地脱氮效果的影响[J].中国环境科学,2006,26(1):30-33
    [23]Polprasert C, Khatiwada N R. An integrated kinetic model for water hyacinth ponds used for wastewater treatment[J]. Water Research,1998,32 (1):179-185
    [24]黄娟,王世和,雒维国,等.植物光合特性及其对湿地DO分布、净化效果的影响[J].环境科学学报,2006,26(11):1828-1832
    [25]王庆安,黄时达,孙铁珩.湿地植物光合作用向水体供氧能力的试验研究[J].生态学杂志,2000,19(5):45-51
    [1]Baohua Guan, Xin Yao, Jinhui Jiang, et al. Phosphorus removal ability of three inexpensive substrates:physicochemical properties and application[J]. Ecological Engineering,200935 (4): 576-581
    [2]李培培,郑正.人工湿地填料的磷吸附特性研究[J].河南科学,2008,26(1):88-91
    [3]袁东海,景丽洁,张孟祥,等.几种人工湿地基质净化磷素的机理[J].中国环境科学,2004,24(5):614-617
    [4]Arias C A, Bubba M D, Brix H. Phosphorus removal by sands for use as media in subsurface flow constructed reed beds[J]. Water research,2001,35 (5):1159-1168
    [5]W.H. Park, C. Polprasert. Role of oyster shell in a integrated constructed wetland system designed for P removal[J].2008,34 (1):50-56
    [6]赵桂瑜,杨永兴,杨长明,等.人工湿地污水处理系统工艺设计研究[J].四川环境,2005,24(6):24-27
    [7]袁东海,景丽洁,高士祥,等.几种人工湿地基质净化磷素污染性能的分析[J].环境科学,2005,26(1):51-56
    [8]Lin T F, Wu J K. Adsorption of arsenite and arsenale within activated alumina grains:Equilibrium and kinetics[J]. Water Research,2001,25 (8):2049-2057
    [9]张延红,程国斌,马伟.利用origin软件对吸附等温线拟合进行分析[J].计算机应用与化学,2005,22(10):899-902
    [10]谭洪新,周琪.湿地填料的磷吸附特性及潜流人工湿地除磷效果研究[J].农业环境科学学报,2005,24(2):353-356
    [11]赵桂瑜.人工湿地除磷基质筛选及其吸附机理研究[D].同济大学博士学位论文,2007
    [12]Dong Cheol Seo, Ju Sik Cho, Hong Jae Lee, et al. Phosphorus retention capacity of filter media for estimation the longevity of constructed wetland. Water Research,2005,39 (11):22445-2457
    [13]Reddy K R, Connor G A, Gale P M. Phosphorus sorption capacities of wetland soils and stream sediments impacted by dairy effluent[J]. Journal of Environmental Quality,1998,27 (2):438-447
    [14]Y Yang, Y Q. Zhao, A.O.Babatunde, et al. Characteristics and mechanisms of phosphate adsorption on dewatered alum sludge[J]. Separation and Purification Technology,2006,51 (2):193-200
    [15]Reed S C, Brown D. Subsurface flow wetlands performance evaluation[J]. Water Environmental Research,1995,67 (2):244-248
    [16]庞荣丽,介晓磊,方金豹.有机酸对不同磷源施入石灰性潮土后无机磷形态转化的影响[J].植物营养与肥料学报,2007,13(1):39-43
    [17]房莉,俞元春,余健.低分子量有机酸对森林土壤磷的活化作用[J].浙江林学院学报,2007,24(1):28-32
    [18]赵桂瑜,秦琴,周琪.几种人工湿地基质对磷素的吸附作用研究[J].环境科学与技术,2006,29(6):84-85
    [19]Holford I C R, Patrick Jr. W H. Effects of reduction and pH changes on phosphate sorption and mobility in acid soil[J]. Soil Science Society of America Journal,1979,43:292-296
    [20]EI-Shahawi M S, Nassif H A. Retention and thermodynamic characteristics of mercury (Ⅱ) complexes onto polyurethane foams[J]. Analytica Chimica Acta,2003,481 (1):29-39
    [21]舒月红,贾晓珊CTMAB-膨润土从水中吸附氯苯类化合物的机理—吸附动力学与热力学[J].环境科学学报,2005,25(11):1530-1536
    [22]Hulscher Th E M, Comelissen G Effect of temperature on sorption equilibrium and sorption kinetics of organic micropollutants-a reviews[J]. Chemosphere,1996,32 (4):609-626
    [23]袁东海,张孟群,高士祥,等.几种粘土矿物和粘粒土壤吸附净化磷的性能和机理[J].环境化学,1005,24(1):7—11
    [1]吴振斌,成水平,贺峰,等.复合垂直流人工湿地[M].北京:科学出版社,2008
    [2]贺锋,吴振斌,成水平,等.复合垂直流人工湿地对氮的净化效果[J].中国给水排水,2004,20(10):18-21
    [3]Jennifer L. Faulwetter, Vincent Gagnon, Carina Sundberg, et al. Microbial process influencing performance of treatment wetlands:A review[J]. Ecological Engineering,2009,35 (6):987-1004
    [4]国家环境保护总局水和废水监测分析方法编委会.水和废水监测分析方法(第四版)[M].中国环境科学出版社,2002
    [5]陆琦.人工湿地系统水力学优化设计研究[D].浙江大学硕士学位论文,2005
    [6]王世和,王薇,俞燕,等.水力条件对人工湿地处理效果的影响[J].东南大学学报(自然科学版),2003,33(3):359-362
    [7]Akratos C S, Tsihrintzis V A. Effect of temperature, HRT, vegetation and porous media on removal efficiency of pilot-scale horizontal subsurface flow constructed wetlands [J]. Ecological Engineering, 2007,29 (2):173-191
    [8]张自杰.排水工程[M].北京:中国建筑工业技术出版社,2000
    [9]张翔凌.不同基质对垂直流人工湿地处理效果及堵塞影响研究[D].中国科学院研究生院博士学位论文,2007
    [10]李云雁,胡传荣.试验设计与数据处理[M].北京:化学工业出版社,2005
    [11]朱建平,殷瑞飞SPSS在在统计分析中的应用[M].北京:清华大学出版社,2007
    [12]Alan Agresti. Categorical Data Ayalysis(Second Edition)[M]. USA:John Wiley & Sons Inc.,2002
    [13]Nancy L. Leech, Karen C. Barrett, George A. Morgan. SPSS for intermediate statistics:use and interpretation (Second editions)[M]. USA:Lawrence Erlbaum Associates Inc.,2005
    [14]谭洪新,周琪,杨殿海.页岩-钢渣组合填料湿地强化脱氮除磷研究[J].环境科学:2006,27(11):2182-2187
    [15]贺锋,吴振斌,陶菁,等.复合垂直流人工湿地处理系统硝化与反硝化作用[J].环境科学,2005,26(1):47-50
    [16]Jan Vymazal. Removal of nutrients in various types of constructed wetlands[J]. Science of The Total Environment.2007,380 (1-3):48-65
    [17]赵联芳,朱伟,赵建.人工料湿地处理低碳氮比污染河水时的脱氮机理[J].环境科学学报,2006,26(11):1821-1826
    [18]鄢璐,王世和,钟秋爽,等.强化供养条件下潜流型人工湿地运行特性[J].环境科学,2007,28(4):736-741
    [19]Juan Wu, Jian Zhang, Wenlin Jia. Impact of COD/N ratio on nitrous oxide emission from microcosm wetlands and their performance in removing nitrogen from wastewater[J].2009,100 (12):2910-2917
    [20]Fuerhacker M, Baver H, Ellinger R, et al. Approach for a novel control strategy for simultaneous nitrification/denitrification in activated sludge reactors[J]. Water Research,2000,34 (9): 2499-2506
    [21]连小莹,李先宁,谢祥峰,等.C/N及氮源形式对潜流型人工湿地脱氮效果的影响[J].电力环境保护,2008,24(2):27-29
    [22]孙影,贾卫国.利用SPSS13.0软件实现化学试验数据的方差分析[J].计算机在化学中的应用,2006,8:47-49
    [1]刘飞,胡光安,韩舞鹰.水力停留时间、水温与氨氮浓度对浸没式生物滤池氨氮去除速率的效应[J].淡水渔业,2004,34(1):3-5
    [2]Florent C, Gerard M, Yves G. Hydrodynamics of horizontal subsurface flow constructed wetlands[J]. Ecological Engineering,2003,21 (2-3):165-173.
    [3]Johan K, Anders W, Hakan J, et al. Controlling factors for water residence time and flow patterns in Ekeby treatment wetland, Sweden[J]. Advances in Water Resources,2007,30 (4):838-850
    [4]Zhu Songming, Chen Shulin. The impact of temperature on nitrification rate in fixed film biofilters[J]. Aquacultural Engineering,2002,26 (4):221-237
    [5]Jeff F H, Jay F M, Timothy G, et al. Effects of wetland depth and flow rate on residence time distribution characteristics[J]. Ecological Engineering,2004,23 (3):189-203
    [6]叶建锋.垂直潜流人工湿地中污染物去除机理[D].同济大学博士学位论文,2007
    [7]闻岳.水平潜流人工湿地净化受污染水体试验研究[D].同济大学博士学位论文,2007
    [8]杨长明,顾国泉,李建华.潜流人工湿地系统停留时间分布与N、P浓度空间变化[J].环境科学,2008,29(11):3043-304
    [9]梅特卡夫和埃迪公司.废水工程:处理与回用[M].北京:化学工业出版社,2004
    [10]许保玖,龙腾锐.当代给水与废水处理原理[M].北京:高等教育出版社,2000
    [11]李云雁,胡传荣.试验设计与数据处理[M].北京:化学工业出版社,2005
    [12]朱建平,殷瑞飞SPSS在统计分析中的应用[M].北京:清华大学出版社,2007
    [13]Alan Agresti. Categorical Data Ayalysis(Second Edition)[M]. USA:John Wiley & Sons Inc.,2002
    [14]Nancy L. Leech, Karen C. Barrett, George A. Morgan. SPSS for intermediate statistics:use and interpretation (Second editions)[M]. USA:Lawrence Erlbaum Associates Inc.,2005
    [15]Ayaz S C, Akga L.Treatment of wastewater by natural systems[J]. Environment Intemational,2001, 26 (3):189-195
    [1]Goulet R R, Pick F R, Droste R L. Test of the first-order removal model for metal retention in a young constructed wetland[J]. Ecological Engineering,2001,17 (4):357-371
    [2]Kadlec R H, Knight R I, Vymazal J, et al. Constructed wetlands for pollution control:Process, performance, design and operation[M]. London:IWA Publishing,2002
    [3]Rousseau D P L, Vanrolleghem P A, Pauw N D. Model-based design of horizontal subsurface flow constructed treatment wetlands:a review[J]. Water Research,2004,38 (6):1484-1493
    [4]Stone K C, Poach M E, Hunt P G, et al. Marsh-pond-marsh constructed wetland design analysis for swine lagoon wastewater treatment[J]. Ecological Engineering,2004,23 (2):127-133
    [5]Carleton J N, Grizzard T J, Godrej AN, et al. Performance of a constructed wetlands in treating urban stormwater runoff[J]. Water Environment Research,2000,72 (3):295-304
    [6]Nitisoravut S, Klomjek P. Inhibition kinetics of salt-affected wetland for municipal wastewater treatment[J].Water Research,200539 (18):4413-4419
    [7]闻岳,周琪.水平潜流人工湿地模型[J].应用生态学报,2007,18(2):456-462
    [8]孔令裕,倪晋仁.典型人工湿地去污模型之间的关系(Ⅰ)[J].应用基础与工程科学学报,2007,15(2):149-155
    [9]Langergraber G Simulation of subsurface flow constructed wetlands results and further research needs[J], Water Science Technology,2003,48 (5):157-166
    [10]Kadlec R H. Deterministic and stochastic aspects of constructed wetland performance and design[J]. Water Science and Technology,1997,35 (5):149-156
    [11]Kadlec R H. The inadequacy of first-order treatment wetland models[J]. Ecological Engineering, 2000,15(1-2):105-119
    [12]Stein O R, Biederman J A, Hook P B, et al. Plant species and temperature effects on k-C* first-order model for COD removal in batch-loaded SSF wetlands[J]. Ecological Engineering,2006,26 (2): 100-112
    [13]Kadlec R H, Knight R L. Treatment wetlands[M]. Boca Raton Florida:CRC Press,1996
    [14]Mitchell C, McNevin D. Alternative analysis of BOD5 removal in subsurface flow constructed wetlands employing monod kinetics[J]. Water Research,2001,35 (5):1295-1303
    [15]Grady C P L J r, Daigger G T, Lim H C. Biological wastewater treatment:second edition, revised and expanded[M]. Boca Raton Florida:CRC Press,1998
    [16]张军,周琪.表面流人工湿地磷循环生态动力学模型及实现方法[J].四川环境,2004,23(1):88-91
    [17]Wynn T M, Liehr S K. Development of a constructed subsurface-flow wetland simulation model [J]. Ecological Engineering,2001,16 (4):519-536
    [18]王锋德.垂直潜流人工湿地质流输氧机理研究及系统模型构建[D].山东农业大学硕士学位论文,2006
    [19]钟永光,贾晓菁,李旭,等.系统动力学[M].北京:科学出版社,2009
    [20]Hammer,D.E. An Engineering model of wetland:wastewater interactions[D]. Dissertation, University of Michigan,1984
    [21]Kadlec R H, Knight R L. Treatment wetlands[M]. London:Lewis Publishers,1996
    [22]Brix H. Use of constructed wetlands in water pollution control:historical development, present status, and future perspectives[J].Water Science and Technology,1994,30 (8):209-223
    [23]Rysgaard S, Risgaard-Petersen N, Nielsen L P, et al. Nitrification and denitrification lake andestuarine sediments measured by the 15N dilution technique and isotope pairing[J]. Applied Environmental Microbiology,1993,59 (7):2093-2098

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700