用户名: 密码: 验证码:
燃气管网仿真技术及其泄漏危险性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着国民经济的快速发展,城市燃气消费量日益增加,燃气管网变得日趋复杂,这使得人们更难于了解和掌握管网系统的运行规律。而燃气管网发生泄漏是一个概率事件,完全杜绝泄漏事故的发生是不可能的。管网一旦发生气体泄漏,将有可能造成重大的财产损失甚至人员伤亡。因此,燃气管网仿真技术及其泄漏危险性的研究已成为当前燃气输配领域亟待解决的重要课题。
     本文从课题的研究背景出发,先是分析了国内外燃气管网仿真技术及气体泄漏危险性的研究现状、发展趋势以及所存在的问题,最后指出本文的主要研究内容。通过建立管道瞬态流动模型,首次采用流体网络理论对模型进行求解,并和传统的数值解法(隐式差分法和特征线法)进行对比,得到两者最大偏差约为1%。采用该方法对北京市六环的部分高压燃气管线进行模拟分析,得到模拟值与实测值的最大偏差约为2.1%。传统的管网仿真方法要求每个节点都需分配一个已知参数(节点压力或流量),针对这一缺陷,提出了相应的解决办法。采用改进后的管网仿真方法对天津市的部分高压燃气管线进行模拟分析,得到模拟值与实测值吻合得较好。
     过去常采用高斯扩散模型研究气体扩散过程。通过研究发现,高斯扩散模型存在一定的缺陷,其不能真实反映泄漏燃气的扩散过程。本文对Ooms扩散模型进行改进,考虑了泄漏气体的速度、密度、浓度和温度等参数。将Ooms改进模型应用于管道泄漏燃气的扩散研究,获得泄漏气体的扩散危险域。基于该研究成果,得到可用于预测泄漏气体扩散危险高度及危险距离的关系式。采用CFD技术对管道喷射火焰进行数值模拟,得到模拟结果与风洞试验的实测结果吻合得较好。基于该模拟结果拟合得到可预测喷射火焰长度的计算式。
     通过适当简化管道泄漏率模型,从而获得预测破裂管道发生气体喷射或火焰喷射时危险域的定量计算式。最后,提出了一套在役燃气管道风险性的定量评价方法,基于该方法可了解在役管道的安全程度及其安全距离。
With the rapid development of our country’s economy, the consumptions of natural gas are increasingly going up in the city and its gas pipeline network become more complex, which makes human more difficult to understand and master the operation rule of the pipeline network system. The leakage accident of gas pipeline is a probability event. And it is impossible to avoid the accidents. Once gas releases through damaged pipes, accidents would happen involving substantial economic losses and even victims amongst the population. Therefore, study on the technique of simulation on gas pipeline network and its leakage risk has already become an important subject to settle in current gas transmission and distribution field.
     This paper first analyzed the present state, trend of development and existing problem of research on transient simulation on gas pipeline network and its leakage risk, and then the chief contents were introduced. The transient gas flow models were established and solved by fluid network theory. Compared to the conventional numerical methods (implicit difference method and character line method), the maximum deviation was about 1 percent among the methods. The fluid network theory was applied to the partial high pressure gas pipeline network at Sixth Ring Road in Peking. The results showed that the maximum deviation was about 2.1 percent between the calculations and measurements. The conventional technique of simulation on gas pipeline network claims that every node of the network should be allocated a known parameter (pressure or flow). Aim at this deficiency, the corresponding settle methods were proposed in this paper. The improved technique of simulation was applied to the partial high pressure gas pipeline network in Tianjin, and a good agreement was found between the calculations and measurements.
     Gaussian dispersion model has usually been used to study the process of gas dispersion. However, it doesn’t reflect the true process of natural gas dispersion due to its deficiency. Ooms dispersion model was improved considering the velocity, density, concentration and temperature of the leaked gas in this paper. The improved model was applied to study the dispersion process of natural gas released from the pipeline and the hazard area of the leaked gas was obtained. According to the results, the correlations to estimate the dispersion height and distance of the leaked gas were got. Jet fire from the damaged pipeline was studied by the use of computational fluid dynamics (CFD) technique and a good agreement was found between the calculations and measurements. Based on the simulation results, a correlation for predicting the stoichiometric flame length was proposed.
     Through reasonably simplified the release rate model of damaged pipeline, the quantitative correlations to estimate the hazard area of gas dispersion and jet fire were obtained. Finally, a simplified method for the quantitative risk assessment for natural gas pipelines was proposed. Based on the method, pipeline managers can know about the safety condition of gas pipeline and the safety distance from the pipeline.
引文
[1]国家发展改革委产业政策司,2007年及未来几年世界天然气产业发展趋势分析,中国经贸导刊,2007,5:22
    [2]《中国能源发展报告》编辑委员会,2007中国能源发展报告,北京:中国水利水电,2007,3
    [3]刘贺群余洋,我国天然气管网发展现状和趋势,当代石油石化,2005,13(12):11~14
    [4]王玉梅郭书平,国外天然气管道事故分析,油气储运,2000,19(7):5~10
    [5]Spyros Sklavounos, Fotis Rigas, Estimation of study distances in the vicinity of fuel gas pipelines , Journal of loss prevention, 2006,19: 24~31
    [6]American Petroleum Institute, Risk based resource document, API PR581, 2000
    [7]孙永庆钟群鹏张峥,城市燃气管道风险评估中失效后果的计算,天然气工业, 2006, 26(1):120~122
    [8]常大海王善珂肖尉,国外管道仿真技术发展状况,油气储运,1997,16(10):9~13
    [9]姜东琪,高压燃气管道特征线法不稳定流动计算的探讨,煤气与热力,2004,24(11):600~604
    [10]Kessal, M., Simplified numerical simulation of transients in gas networks, Chem. Eng. Res. Design, 2000, 76(6):925~931
    [11] L.M.C. Gato, J.C.C. Henriques, Dynamic behavior of high-pressure natural-gas flow in pipelines, Heat and fluid flow, 2005, 26(3):817~825
    [12]Greyvenstein, G.P., An implicit method for the analysis of transient flows in pipe networks, Int. J. Numer. Methods Eng., 2002, 56(1-3):1127~1143
    [13]Yulia Dukhovnaya, Michael A.Adewumi, Simulation of non-isothermal transients in gas/condensate pipelines using TVD scheme, Powder technology.2000, 112(1.2):163~171
    [14]Faille I., HeintzéE., A rough finite volume scheme for modeling two-phase flow in a pipeline, Computers & Fluids, 1999, 28(2):213~24
    [1]国家发展改革委产业政策司,2007年及未来几年世界天然气产业发展趋势分析,中国经贸导刊,2007,5:22
    [2]《中国能源发展报告》编辑委员会,2007中国能源发展报告,北京:中国水利水电,2007,3
    [3]刘贺群余洋,我国天然气管网发展现状和趋势,当代石油石化,2005,13(12):11~14
    [4]王玉梅郭书平,国外天然气管道事故分析,油气储运,2000,19(7):5~10
    [5]Spyros Sklavounos, Fotis Rigas, Estimation of study distances in the vicinity of fuel gas pipelines , Journal of loss prevention, 2006,19: 24~31
    [6]American Petroleum Institute, Risk based resource document, API PR581, 2000
    [7]孙永庆钟群鹏张峥,城市燃气管道风险评估中失效后果的计算,天然气工业, 2006, 26(1):120~122
    [8]常大海王善珂肖尉,国外管道仿真技术发展状况,油气储运,1997,16(10):9~13
    [9]姜东琪,高压燃气管道特征线法不稳定流动计算的探讨,煤气与热力,2004,24(11):600~604
    [10]Kessal, M., Simplified numerical simulation of transients in gas networks, Chem. Eng. Res. Design, 2000, 76(6):925~931
    [11] L.M.C. Gato, J.C.C. Henriques, Dynamic behavior of high-pressure natural-gas flow in pipelines, Heat and fluid flow, 2005, 26(3):817~825
    [12]Greyvenstein, G.P., An implicit method for the analysis of transient flows in pipe networks, Int. J. Numer. Methods Eng., 2002, 56(1-3):1127~1143
    [13]Yulia Dukhovnaya, Michael A.Adewumi, Simulation of non-isothermal transients in gas/condensate pipelines using TVD scheme, Powder technology.2000, 112(1.2):163~171
    [14]Faille I., HeintzéE., A rough finite volume scheme for modeling two-phase flow in a pipeline, Computers & Fluids, 1999, 28(2):213~24time-average dispersion models for estimating pheromone concentration in a deciduous forest, Journal of Chemical Ecology, 1984, 10(7): 1081~1108
    [30]Ermak, Donald L. and Chan, Stevens T., Recent developments on the FEM3 and SLAB atmospheric dispersion models, Technical Information Department, Lawrence Livermore National Laboratory, Livermore, CA, 1986
    [31]Morten, N. et al., Field experiments with dispersion of pressure liquefied ammonia, J. Hazard. Material, 1977, 5 (6):59~105
    [32]Bara, A. and Dusserre, G., The use of water curtains to protect firemen in case of heavy gas dispersion, J. Loss Prevention. Process Ind., 1997, 10(3): 179~183
    [33]Robert, N., Wind-tunnel experiments on dense gas dispersion, J. Hazard Material, 1982, (6):107~128
    [34]Rogstad, P .A .K and Pettersen, R .M., Wind tunnel modeling of a release gas near a building, Atmosphere Environment, 1986, 120(5):867~878
    [35]Pope, S.B., Turbulent Flows, Cambridge University, Press, 2000
    [36]Reynolds, W.C., The potential and limitation of direct and large eddy simulation, In J .L. Lumley, editor, Lecture Notes in Physics, Springer, New York, 1989
    [37]Wang, H. F. and Chen, Y.L., PDF modeling of turbulent non-premixed flames with local extinction, Combust. Flame, 2000, 123: 281~307
    [38]Meyers, R.E. and O’Brien E.E., The joint PDF of a scalar and its gradient at a point in a turbulent fluid, Combustion Science and Tech., 1981, 26: 123~134
    [39]Wamatz, J., Maas, U. and Dibble, R. W., Combustion: Physical and Chemical Fundamentals, Modeling and Simulation, Experiments, Pollution Formation, Springer, 3rd edition, 2001
    [40]胡正林,扩散模型中忽略纵向扩散的条件,环境保护科学,1990,10(1):9~12
    [41]王晓利唐斌邓静秋,成都市SO2扩散模型研究,环境科学丛刊,1992,12(2):54~57
    [42]王建平韩盛,唱吉市大气扩散模型的建立与探讨,干旱环境监测,1994,8(4):231~236
    [43]丁信伟王淑兰徐国庆,可燃及毒性气体扩散研究,化学工程,2000,28(1):33~36
    [44]孟志鹏王淑兰丁信伟,可爆性气体泄漏扩散时均湍流场的数值模拟,安全与环境学院,2003,3(3):25~28
    [45]黄郑华李建华,轻质气体泄漏扩散及其爆炸特性研究,消防技术及产品信息,2002,1:32~33
    [46]李建华黄郑华,易燃有毒气体泄漏扩散及其危险范围预测,消防技术及产品信息,2002,8:53~57
    [47]徐志胜邓芸芸姜学鹏,城市天然气管道泄漏的危害分析,工业安全与环保,2006,32(9):47~48
    [48]李又绿姚安林李永杰,天然气管道泄漏扩散模型研究,天然气工业,2004,24(8):102~104
    [49]张会强陈兴隆周力行等,湍流燃烧数值模拟研究得总述,力学进展,1999,29(4):567~573
    [50]董刚黄鹰陈义良,不同化学反应机理对甲烷射流湍流扩散火焰计算结果影响的研究,燃料化学学报,2000,28(1):49~54
    [51]董刚王海峰陈义良,用火焰面模型模拟甲烷/空气湍流射流扩散火焰,力学学报,2005,37(1):73~79
    [52]王大庆高惠临董玉华,天然气管线泄漏射流火焰分析,天然气工业,2006,26(1):134~137
    [53]王曰燕罗金恒赵新伟等,天然气输送管道火灾事故危险分析,天然气与石油,2005,23(3):34~36
    [54]李长明,燃气管网水力计算程序设计基础,北京:煤炭工业出版社,1997
    [55]孙建国王寿喜,气体管网的动态仿真,油气储运,2001,20(8):18~21
    [56]张启平麻德贤,危险物泄漏扩散过程的重气效应,北京化工大学学报,1998,25(3):86~90
    [57]李长俊汪玉春,输气管道系统仿真技术发展状况,管道技术与设备,1999,5: 32-35
    [58]Yulia Dukhovnaya, Michael Adewumi A., Simulation of non-isothermal transients in gas/condensate pipelines using TVD scheme, Powder technology, 2000, 112(12): 163~171
    [59]唐建峰段常贵吕文哲等,特征线法在燃气管道动态模拟中的应用,油气储运,2001,20(8): 12~17
    [60]蒋仕章蒲家宁,水力瞬变特征线法和隐式差分法的对比分析,油气储运,(1):33~36
    [44]孟志鹏王淑兰丁信伟,可爆性气体泄漏扩散时均湍流场的数值模拟,安全与环境学院,2003,3(3):25~28
    [45]黄郑华李建华,轻质气体泄漏扩散及其爆炸特性研究,消防技术及产品信息,2002,1:32~33
    [46]李建华黄郑华,易燃有毒气体泄漏扩散及其危险范围预测,消防技术及产品信息,2002,8:53~57
    [47]徐志胜邓芸芸姜学鹏,城市天然气管道泄漏的危害分析,工业安全与环保,2006,32(9):47~48
    [48]李又绿姚安林李永杰,天然气管道泄漏扩散模型研究,天然气工业,2004,24(8):102~104
    [49]张会强陈兴隆周力行等,湍流燃烧数值模拟研究得总述,力学进展,1999,29(4):567~573
    [50]董刚黄鹰陈义良,不同化学反应机理对甲烷射流湍流扩散火焰计算结果影响的研究,燃料化学学报,2000,28(1):49~54
    [51]董刚王海峰陈义良,用火焰面模型模拟甲烷/空气湍流射流扩散火焰,力学学报,2005,37(1):73~79
    [52]王大庆高惠临董玉华,天然气管线泄漏射流火焰分析,天然气工业,2006,26(1):134~137
    [53]王曰燕罗金恒赵新伟等,天然气输送管道火灾事故危险分析,天然气与石油,2005,23(3):34~36
    [54]李长明,燃气管网水力计算程序设计基础,北京:煤炭工业出版社,1997
    [55]孙建国王寿喜,气体管网的动态仿真,油气储运,2001,20(8):18~21
    [56]张启平麻德贤,危险物泄漏扩散过程的重气效应,北京化工大学学报,1998,25(3):86~90
    [57]李长俊汪玉春,输气管道系统仿真技术发展状况,管道技术与设备,1999,5: 32-35
    [58]Yulia Dukhovnaya, Michael Adewumi A., Simulation of non-isothermal transients in gas/condensate pipelines using TVD scheme, Powder technology, 2000, 112(12): 163~171
    [59]唐建峰段常贵吕文哲等,特征线法在燃气管道动态模拟中的应用,油气储运,2001,20(8): 12~17
    [60]蒋仕章蒲家宁,水力瞬变特征线法和隐式差分法的对比分析,油气储运,
    [80]冯良张同全惠君等,高阶稀疏对称方程组在燃气管网计算中的应用,同济大学学报,1995,23(6):718~722
    [81]左丽丽吴长春,燃气管网水力计算节点及编号的探讨,煤气与热力,2005,25(3):36~39
    [82]左丽丽吴长春丁明江,输配气管网稳态仿真问题的的拓广,中国石油大学学报(自然科学版),2006,30(1):111~114
    [83]管延文荣庆兴等,燃气管网模拟分析软件的开发与应用,上海煤气,2006,5:35~38
    [84]彭继军田贯山刘燕,燃气管网水力计算图的计算机生成,山东建筑工程学院学报,2003,(1):58~62
    [85]谢子超,燃气管网设计计算程序的研制,煤气与热力,1985,5(1):33~38
    [86]严铭卿,城市燃气管网的计算机辅助设计,煤气与热力,1988,8(1):15~19
    [87]于斌,AutoCAD 2000开发指南,北京:清华大学出版社,2002
    [88]刘诗飞詹予忠,重大危险源辨识及危害后果分析,北京:化学工业出版社,2004
    [89]Lydell B.O.Y., Pipe failure probability-the Thomas paper revisited, Reliability Engineering and System Safety,2000,68(3):207~217
    [90]蔡凤英等,化工安全工程,北京:科学出版社,2001
    [91]霍春勇董玉华余大涛等,长输管线气体泄漏率的计算方法研究,石油学报,2004,25(1):101~105
    [92]肖建兰吕保和王明贤等,气体管道泄漏模型的研究进展,煤气与热力,2006,26(2):7~10
    [93]Young-Do Jo, Bum Jong Ahn, A method of quantitative risk assessment for transmission pipeline, Journal of Hazardous Materials, 2005, A123: 1~12
    [94]王凯全邵辉等编,事故理论与分析技术,北京:化学工业出版社,2004
    [95]潘旭海蒋军成,化学危险性气体泄漏扩散模拟及其影响因素,南京化工大学学报,2001,23(1):19~22
    [96]丹尼尔约瑟夫,化工过程安全理论及应用(蒋军成,潘旭海译)(原著第二版),北京:化学工业出版社,2006,5
    [97]Gifford, F. A., Turbulent diffusion typing schemes: A Review, Nuclear Safety, 1976, 17 (1):68~72
    [98]谷清李云生,大气环境模式计算方法,北京:气象出版社,2002,3
    [99]谷清,风速与烟源有效高度、地面浓度的关系,上海环境科学,1988,7(6):16~19
    [100]Ooms, G., A new method for the calculation of the plume path of gases emitted by a stack, Atmospheric Environment, 1972, 6:899~909
    [101]Ooms, G., Duijm, N. J., Dispersion of stack plume heavier than air, IUTAM Sym. on Atmospheric Dispersion of Heavy Gases and Small Particles, Delft, the Netherlands,1974
    [102]Khan, F. I., Abbasi, A. A., Modeling and simulation of heavy gas dispersion on the basis of modifications in plume path theory, Journal of Hazardous Materials, 2000, A80: 15~30
    [103]Khan, F. I., Abbasi, A., Modeling and control of the dispersion of hazardous heavy gases, Journal of loss prevention, 1999, 12: 235~244
    [104]Albertson M. L., Dai, Y. B., Jenson, R. A. and Rouse, H., Diffusion of Submerged Jets, Transactions of American Society of Civil Engineers, 1950: 115~121
    [105]Richards, J. M., Experiments on the Motion of an Isolated Cylindrical Thermal through Un-stratified Surroundings, International Journal of Air and Water Pollution, 1963, 7: 17~34
    [106]Contini, S., Amendola, A., & Ziomas, I., Benchmark exercise on major hazard analysis, Commission of the European Communities (2), Italy: Join Research Centre, ISPRA, 1994
    [107]Carnahan, B., Luther, H. A. and Wilkes, J. O., Applied Numerical Methods, John Wiley and Sons, 1969
    [108]Kaimal, J. C., Wyngaard, J. C., Haugen, D. A., Cote, O. R. and Izumi, Y., Turbulence Structure in the Convective Boundary Layer, J. Atmosphere Science, 1976, 33: 2152~2169
    [109]崔克清,燃烧爆炸理论与技术,北京:中国计量出版社出版,2005,11
    [110]Bagster,D.F., Schubach,S.A., The prediction of jet-fire dimensions, J. Loss Pre. Process Ind., 1996, 9(3): 241~245
    [111]Kalghatgi , G. T., The visible shape and size of a turbulent hydrocarbon jet diffusion flame in a cross-wind, Comb. Flames, 1993(52): 91~106
    [112]王大庆高惠临霍春勇等,天然气管道泄漏射流火焰形貌研究,油气储运,2006,25(2):47~49
    [113]Becker, H. A. & Liang D., Visible length of vertical free turbulent diffusion flames, Comb. Flames, 1978(32): 115~137
    [114]范维澄万跃鹏,流动及燃烧的模型与计算,合肥:中国科学技术大学出版社,1992
    [115]Lovatt, A., Comparison studies of zone and CFD fire simulations, Fire Engineering Research Report, University of Canterbury, 1998
    [116]Versteeg, H.K., Malalasekera, W., an Introduction of Computation Fluid Dynamics: The Finite Volume Method, Wiley, New York, 1995
    [117]Fluent Inc., FLUENT User’s Guide. Fluent Inc., 2003
    [118]王福军,计算流体动力学分析——CFD软件原理与应用,北京:清华大学出版社,2004
    [119]郭鸿志,传输过程数值模拟,北京:冶金工业出版社,1998
    [120]侯凌云钟北京姜长青,值班甲烷/空气射流火焰的小火焰模型模拟,航空动力学报,2005,20(6):994~999
    [121]王海峰,湍流非预混燃烧的数值模拟研究:[博士论文],合肥;中国科技大学,2005
    [122]Barlow, R.S., Chen, J.Y., On transient flamelets and their relationship to turbulent methane-air jet flames, In Twenty-fourth symposium (international) on combustion, The Combustion Institute, 1992, 231~237
    [123]Egolfopoulos, F.N., Dynamics and structure of unsteady, strained, laminar premixed flames, In Twenty-fifth symposium (international) on combustion, The Combustion Institute, 1994, 1365~1373
    [124]Mahalingam, S. et al., Analysis and Numerical Simulation of a Non-premixed Flame in a Corner, Combustion and Flame, 1999, 46: 221~232
    [125]Lauder, B.E., and Spalding, D.B., Mathematical Models of Turbulence, Academic, New York, 1972
    [126]Pitsch, H., and Peters, N., A consistent flamelet formulation for non-premixed combustion considering differential diffusion effects. Combust Flame, 1998, 114: 26~40
    [127]Carvalho, M.G., Farias, T. and Fontes, P., Predicting Radiative Heat Transfer in Absorbing, Emitting, and Scattering Media Using the Discrete Transfer Method, In W.A. Fiveland et al., editor, Fundamentals of Radiation Heat Transfer, ASMEHTD, 1991, 160: 17~26
    [128]Verheij, F. J., and Duijm, N.J., Wind-tunnel Modeling of Torch Fires, TNO Report, Apeldoorn, The Netherlands, 1991,11:91~422
    [129]Panofsky, H., and Dutton, J., Atmosphere Turbulence, Wiley, New York, 1984
    [130]陶文铨,数值传热学,西安:西安交通大学出版社,2002,5
    [131]Thompson, Sr., Joseph, E., et al, Surfactant compositions and uses therefore, U.S. Patent 6302209, October 16, 2001
    [132]Hottel, H.C.,Fire Modeling, In: Berl WG, editor, International symposium on the use of fire models, Publication 746, Washington, DC: National Academy of Science, National Research Council,1961.
    [133]Wade, R., Gore, J.P., Visible and chemical flame lengths of acetylene/ air jet diffusion flame, NIST, NISTR 5904, 1996: 41~42
    [134]杨君涛,油罐火灾的数值模拟与实验研究: [硕士学位论文],天津;天津大学,2005
    [135]Hawthorne,W.R., Weddell,D.S., Hottel, H.C., Mixing and combustion in turbulent gas jets, In: Third symposium (international) on combustion. Baltimore: Williams and Wilkins, 1949: 266~288
    [136]Kalghatgi, G.T., Lift-off heights and visible lengths of vertical turbulent diffusion flames in still air, Combust Science Technology,1984, 41:17~29
    [137]Sugawa, O., Sakai, K., Flame length and width produced by ejected propane gas fuel from a pipe, in: 13th meeting of the UJNR panel on research and safety, NISTIR 6030, 1997: 401~411
    [138]Fairweather, M., Jones, W.P., Lindstedt, R.P., Predictions of radiative transfer from a turbulent reacting jet in a cross-wind, Combustion and Flame 1992, 89:45~63
    [139]Ballie, S., Caulfield, M., Cook, D.K., Docherty, P., A phenomenological model for predicting the thermal loading to a cylindrical vessel, Process Safety Environment Protection, 1998, 76:3~13
    [140]Fairweather, M., Jones, W.P., Lindstedt, R.P., Marquis, A.J., Predictions of a turbulent reacting jet in a cross-flow, Combustion and Flame, 1991,84:361~75
    [141]Peters, N., and Giittgens, J., Combustion and Flame, 1991, 85: 206~214
    [142]Ott, S., Measurements of Temperatures, Radiation and Heat Transfer in Natural Gas Flames, Final Report of the JIVE Project,Riser-R-703,1993
    [143]李静汪彤吕良海,城镇天然气管道泄漏原因分析,安全,2006,26(4):33~34
    [144]王存新,地面输气管道泄漏影响范围的动态模拟分析:[硕士学位论文],南充市;西南石油学院,2002
    [145]赖建波杨昭,高压燃气管道破裂的定量风险分析,天津大学学报,2007,40(5):589-593
    [146]John, J.E.A., Gas Dynamics, 2nd ed., Prentice-Hall, New Jersey, 1984
    [147]Young, D.J., Bum, J.A., A simple model for the release rate of hazardous gas from a hole on high-pressure pipelines, Journal of Hazardous Materials, 2003, A97:31~46
    [148]Dong Yuhua, Gao Huilin, etc., Mathematical modeling of gas release through holes in pipelines, Chemical engineering Journal, 2003, 92(3):237~241
    [149]Luo, J.H., Zheng, M., Zhao, X.W., etc., Simplified expression for estimating release rate of hazardous gas from a hole on high-pressure pipelines, Journal of Loss Prevention in the Process Industries, 2006, 19: 362~366
    [150]Jo, Y.D.,Ahn,B.J.,Analysis of hazard areas associated with high-pressure natural-gas pipelines,Journal of Loss Prevention in the Process Industries, 2002, 15: 179~188
    [151]TNO Green Book, Methods for the Determination of Possible Damage, TNO, Rijswijk, the Netherlands, 1989
    [152]李平全,油气输送管道失效事故及典型案例,焊管,2005,28(4):76~85
    [153]董玉华高惠临周敬恩等,长输管道定量风险评价方法研究,油气储运,2001,20(8):5~8
    [154]Stephens, M.J., et al., Pipeline maintenance planning based on quantitative risk analysis, International Pipeline Conference, ASME, 1996, 1
    [155]Bottelberghs, P. H., Risk analysis and safety policy developments in the Netherlands, Journal of Hazardous Material, 2000, 71(3):59~84
    [156]Marszal, E. M., Tolerable risk guidelines, ISA Trandsactions, 2001, 40(4):391~399
    [157]高建明王喜奎曾明荣,个人风险和社会风险可接受标准研究进展及启示,中国安全生产科学技术,2007,3(3):29~35
    [158]European Gas Pipeline Incident Data Group, Gas Pipeline Incidents fourth Report 1970-1998, 1999
    [159]John, M.,Chris, B.,Andrew, P., Charlotte, T., An Assessment of Measures in Use for Gas Pipeline to Mitigate against Damage Caused by Third Party Activity, Printed and Published by the Health and Safety Executive, C1 10/01, 2001
    [160]刘斐刘茂,城市燃气管线的定量风险分析,南开大学学报,2006,39(6):31~35

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700