用户名: 密码: 验证码:
基于广域测量信息的电力系统解列研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自2003年8月14日的北美“8.14”大停电后,世界范围又发生了多次大停电。这些触目惊心的大停电事故引起了世界各国从事电力生产和科研的专家的重视。所有国内外重大事故的产生,几乎都是由系统失去稳定而扩大,从而发展为灾害性后果的。是否考虑失去稳定后的对策,对电力系统的安全有极其重要的影响。长期的运行实践表明,不管对系统稳定性的要求如何严格、措施如何完善,总可能因一些事先不可预计的各种偶然因素相互叠加,产生稳定破坏事故,而过分提高对系统稳定性的要求需要大量的投资。一个较弱而有措施准备的系统,将会比一个较强而无措施准备的系统有较好的运行效果。因此,对电力系统失去稳定后的控制措施的研究成为当前的一个热点。
     在我国,当互联系统遭受大扰动的影响而失去同步时,失步解列作为防止系统崩溃的最后一道防线得到了广泛的应用。但目前大多数失步解列装置的动作是基于就地信息,其判据仅能反映一类或几类失步特性,并且实际应用中多套装置的配合也很困难。另外,大多数判据都是针对等值两机系统的,对于多频失步振荡,目前的方法在失步振荡判据和解列点选择上都将失效。
     研究解列问题主要解决“何时”在“何处”解两个方面的问题。文献提到的解列时机,有的直接考虑时间,有的考虑振荡周期数,而没有考虑系统频率等参数的运行限制以及解列后各个孤岛能否保持稳定等关键问题。解列割集搜索问题是一个NP-hard问题,必须用启发式方法求解,现有方法计算时间长,难以满足在线应用要求。研究着眼于整个系统的振荡解列地点,研究易于保持解列后各孤岛稳定的解列时机,以及研究保持孤岛稳定的控制措施是非常必要的,也是十分紧迫的。
     本文将电力系统用一个节点-权重图来表示,在此基础上结合电力系统的特点对系统进行分区,将机组的失稳转化为子区域的失稳。利用广域测量系统所提供的系统动态信息,可以在线识别失稳区,搜索解列割集,自适应地确定解列时机。论文的主要研究内容和成果如下:
     1提出了一种基于电力系统分区调度与机组同调分群的电力系统分区方法。在电力系统的当前运行工况下,设置预想事故,根据机组的摇摆曲线对机组进行同调分群,一个调度区的发电机可能属于一个同调群,也可能分为两个或多个同调群。结合分区与分群结果,将系统机组分为尽量多的机群,系统分区数与机群数相对应。从各机群节点出发,根据节点邻接关系,利用广度优先搜索方法将系统的非发电机节点分到与各机群对应的子区域中去。一个互联系统被分为一系列子区域,各子区域内的发电机同调,发电机节点为各子区域的核心节点,其余节点为其外层节点。应用该方法对山东实际电网进行了仿真分析。
     2提出了一种基于系统分区的失步解列割集搜索算法。电力系统失稳后,根据广域测量信息可以确定失稳机群,失稳机群所在的子区域为失稳子区域。相邻的失稳子区域构成失稳区,搜索解列割集时,一次只考虑将一个失稳区解列。失稳区中与剩余区有支路直接相连的子区域为失稳区边界。搜索失稳区边界与剩余区之间的联络线即得解列割集。
     网络的割集搜索问题是一个NP-hard问题,对电力系统进行分区后,搜索解列割集时就不需要搜索子区域内部的大量支路,从而减小了搜索空间;再加上电力系统高度稀疏的特点,用该方法进行解列割集搜索的计算量与失稳区非发电机节点数成正比,大大降低了电力系统割集搜索问题的计算复杂度。以1318节点、134机山东省实际系统为例说明该算法搜索速度快、计算时间短,可满足在线应用要求。
     3提出了一种自适应解列时机确定方案。用发电机角频率和角频率的变化率来衡量机组受系统振荡影响的程度,提出系统应该在发电机所受的冲击影响还能够被解列、减载等措施抵消前解列。当机组间最大相对摇摆角差大于某一设定值时,认为系统可能失稳,搜索将“可能失稳区”解列的解列割集。根据发电机运行频率限制,从机组角频率角度提出了自适应解列时机确定方案。考虑到解列操作需要时间,当判定系统可能失稳时,如果机组当前角频率或此后0.1s的角频率预测值满足设定条件,系统可以先于失步时刻解列。若系统已失稳,根据发电机组电流、枢纽变电站电压和机组的角频率决定何时实施解列。如果失稳系统不满足上述的解列条件,仍可以短时异步运行。采取必要控制措施后,若系统不能恢复同步,运行一定时间后解列。对新英格兰10机39节点系统和山东电网实例的仿真表明,根据本文提出的解列时机实施解列,再辅助以合适的控制措施可保持孤岛稳定。
     4针对待解列区域有功缺额较大的情况,总结出一种解列连锁切负荷,并配合低频或低压减载的综合控制措施。分析了振荡过程中和解列后缺乏有功的孤岛的频率变化特点,指出对有些缺乏有功的孤岛,在解列后的最初一段时间内,孤岛的频率可能上升,故基于低频的控制措施将失效;并且当孤岛的有功缺额较大时,孤岛机组频率可能升高到频率上限。对待解列区域有功缺额较大,且仿真表明解列后该区域频率会异常升高的情况,给出了解列连锁切负荷措施。解列的同时切除一定比例的负荷,以改善孤岛的电压水平,增加发电机的功率输出,限制解列后最初一段时间内孤岛的频率值,使之不越限。过了最初的一段时间后,若孤岛频率下降,当下降到一定值时,低频减载装置动作切除部分负荷;如果孤岛的电压水平仍然低,也可由低压减载装置切除部分负荷。针对山东电网实例,比较了直接解列形成的孤岛与失步振荡解列形成的孤岛的频率变化的不同特点,验证了本文提出的控制措施的有效性。
Since the U.S.-Canadian blackout on 14 August, 2003, a number of blackouts have occurred worldwidely, the whole world has been shocked by the blackouts. As a result, more and more experts are making great efforts on the research about the reasons of blackouts and the measures how to deal with an unstable power system. The reason of almost all the serious disasters in power system is that there are no countermeasures set before the occurrence of instabilities, and so the outages are transferred to the other part of the system. For a power system, considering the preventive measures to save it from possible instability is extremely important. The long time experiences for power system operation have shown that no matter how strict the requirements for power system stability, and how perfect the measures are, there would be some unpredictable casual faults working together to cause instability. However, the expense for too strict security requirements is very high. A weaker system with good countermeasures for possible instability will perform much better than a strong one without countermeasures. So the subject of countermeasures to an unstable power system has become a hot field.
     In China, when an interconnected grid is subjected to large disturbances and becomes out-of-step, splitting the out of step area from the main grid has been used widely as the last resort for preventing widespread blackout. But most of the out-of-step devices are based on local information, their criteria only reflect one or several types of out-of-step phenomena, and it is very difficult for different devices to cooperate, too. In addition, most of the devices are designed based on equivalent two-machine system model, however, under complex conditions of three or more groups of generators operate asynchronously, both the out of step criteria and the pre-decided islanding spots will not be suitable.
     Two pivotal problems about active islanding are when and where to split the system. Islanding cutset searching is a NP-hard problem, and heuristic approaches are employed to solve it. The approaches mentioned in literature need much calculation time, and can not be used online. Some references use a setting time after faults or a number of oscillation periods to determine islanding time, but the system condition is not been considered. Thus, it is very urgent to do research on proper islanding spots, suitable islanding time, and valid measures to keep the islands stable.
     Power system is modeled by a vertex-weighted graph, the system buses are put into a series of subsystems. Then out of step among generators is converted to the one among subsystems. Based on WAMS information, out of step area identifying and islanding cutset searching can be made online, and islanding time can be determined adaptively. The main contributions of the dissertation include the following.
     1 Based on power system dispatching area and generator coherency, an approach, which divides an interconnected power system into a series of subsystems, is proposed. After setting some faults on the current system, the generator power angles' curves are got by simulation. Employing the curves, the generators are grouped into a number of coherency groups. If the generators in a dispatching area are not coherent, they can be put into several coherent groups. Considering the dispatching area and generator coherent grouping, the generators of a system are put into as many as possible groups, that is, the system is divided into the same number of subareas. The generator buses are the core of the subareas. Finally, the nongenerator buses of the system are put into the corresponding subareas employing breadth first searching method. Non-generator buses are the outer layer buses of the subareas. The approach has been used to a practical power system.
     2 Based on power system areaing, an islanding cutset searching approach is proposed. It is assumed that all the dynamic data on generators can be obtained from WAMS. The subareas where there are out-of-step generators are called out-of-step subareas. Combine the interconnected out-of-step subareas to an out-of-step area (OOSA). An OOSA may include one or more out-of-step subareas, the other part of the system is called remaining system (RS). The subareas in OOSA, which have direct electrical connections with RA, are called OOSA boundary. By searching for the tie lines that connect OOSA boundary and RS, the cutset can be obtained
     The problem of cutset searching is classified as a NP-hard one. After system areaing, there is no need to scan all the inner branches of OOSA, this reduces lots of calculation burden, which makes the calculation complexity of cuset searching proportional to the number of the outer layer buses of the OOSA. Simulation results for the IEEE 30-bus system and a practical 1318-bus Shandong power system demonstrate the effectiveness of the proposed approach.
     3 An adaptive scheme to decide "when to split" a system disturbed by power oscillation is proposed. Generator's operation frequency limits are surveyed, and generatorωand dω/dt are used to estimate the level of affection made by the oscillation. It is proposed that islanding measures must be taken before the affection can be eliminated by islanding and load/generation shedding. Based on WAMS information, it can be judged that some generators may go out of step from other generators, and the subareas they are belonged to are called "possible out of step subareas". Combine the connected "possible out of step subareas" to an area, named "possible out of step area (POOSA)". According to generator frequency limits, a scheme, which decides islanding time adaptively, is proposed. If the current maximalωof POOSA generators or the predicted values ofωin 0.1s gets setting threshold values, the POOSA should be split from the main power system immediately. After out of step occurs, if currents of generators or the main power stations' voltages, the maximalωof OOSA generators or the predicted value ofωin 0.1s gets setting thresholds, the OOSA should be split immediately. Otherwise, the system may operate asynchronously for a setting time. The simulation results show that splitting the system at the time determined by the scheme, and taking some load shedding measures when they are needed, the stability of the islands can be ensured.
     4 If an area which will be split from the main grid has large generation deficit, an integrated measure including islanding load shedding, underfrequency and undervoltage load shedding is given. The frequency characteristics of the generators in islands with generation lack are analyzed. The conclusion is that the frequency increases, at the beginning of the forming of some islands with generation deficit, so the measures based on under-frequency are invalid at this case. Furthermore, the more the generation deficit is, the higher the island frequency may get. Sometimes, the frequency may be so high that the OPC protection of the generator unit will operate, and the most serious situation is that the generators would trip cascadingly or simultaneously. Because the generator frequency in the islands with generation deficit increase, a new measure is proposed, that is, shedding a proportion of loads at the same time of system splitting, which can improve the voltage profile, increase the generators' output power, and limit the maximal frequency at the beginning of the island's forming. After a while, if the frequency reaches a setting point of under-frequency devices, some loads would be shed again. If the voltage profile is low, the under-voltage load shedding devices will work. Simulation results show that the measures proposed in this paper can keep the frequency of the islands stable.
引文
[1]高鹏,王建全,甘德强,等.电力系统失步解列综述.电力系统自动化,2005,29(19):90-96.
    [2]高鹏,王超,任祖怡,等.考虑次要失步机群的大区电网失步解列装置.电力系统自动化,2006,30(17):50-53,107.
    [3]刘振亚.特高压电网.北京:中国经济出版社,2005.
    [4]张鹏飞,薛禹胜,张启平,等.基于PMU实测摇摆曲线的暂态稳定量化分析.电力系统自动化,2004,28(20):17-20,42.
    [5]薛禹胜.时空协调的大停电防御框架-(一)从孤立防线到综合防御.电力系统自动化,2006,30(1):8-16.
    [6]薛禹胜.现代电网稳定理论和分析技术的研究方向.电力系统自动化,2007,24(7):1-6.
    [7]周德才,张保会,姚峰,等.基于图论的输电断面快速搜索.中国电机工程学报电力系统自动化,2006,26(12):32-38.
    [8]Andersson G,Donalek P,Farmer R,et al.Causes of the 2003 major grid blackouts in North America and Europe,and recommended means to improve system dynamic performance.IEEE Transactions on Power Systems,2005,20(4):1922-1928.
    [9]薛禹胜.综合防御由偶然故障演化为电力灾难-北美8.14大停电的警示.电力系统自动化,2003,27(18):1-5,37.
    [10]U.S.-Canada Power systems Outage Task Force.Final Report on the August 14,2003Blackout in the United States and Canada.http://www.ferc.gov/,April,2004.
    [11]唐葆生.伦敦南部大停电及其教训.电网技术.2003,27(11):1-5,12.
    [12]Larsson S,Ek E.The black-out in southern Sweden and eastern Denmark,IEEE PES General Meeting,Denver,USA,2004,2:1668-1672.
    [13]Berizzi A.The Italian 2003 blackout.IEEE PES 2004 General Meeting,Denver,USA,2004,2:1673-1679.
    [14]陈向宜,陈允平,李春艳,等.构建大电网安全防御体系-欧洲大停电事故分析及思考.电力系统自动化.2007,31(1):4-8.
    [15]王梅义,吴竞昌,蒙定中.大电网系统技术(第二版).北京:中国电力出版社,1995.
    [16]袁季修.试论防止电力系统大面积停电的紧急控制-电力系统安全稳定运行的第三道防线.电网技术,1999,23(4):1-4.
    [17]张保会.加强继电保护与紧急控制系统的研究提高互联电网安全防御能力.中国电机工程学报,2004,24(7):1-6.
    [18]沈沉,吴佳耘,乔颖,等.电力系统主动解列控制方法的研究.中国电机工程学报,2006,26(13):1-6.
    [19]沈沉,乔颖,吴佳耘,等.电力系统主动解列仿真平台的研究.中国电机工程学报,2006,26(18):13-18.
    [20]Zhao Q,Sun K,Zheng D,et al.A study of system splitting strategies for island operation of power system:a two-phase method based on OBDDs.IEEE Transactions on Power Systems,2003,18(4):1556-1565.
    [21]Yang B,Vittal V,Heydt G T.Slow-coherency-based controlled islanding-a demonstration of the approach on the August 14,2003 blackout scenario.IEEE Transactions on Power Systems,2006,21(4):1840-1847.
    [22]潘贞存,桑在中,戴方涛,等.电网自动解列的新判据.电力系统自动化,1995,19(7):34-37.
    [23]滕林.电力系统暂态稳定在线决策算法的研究.[博士学位论文].北京:华北电力大学,2003.
    [24]Morioka Y,Tomiyama K,Arima H,et al.System separation equipment to minimize power system instability using generator's angular-velocity measurements.IEEE Transactions on Power Delivery,1992,8(3):941-947.
    [25]Yamashita K,Kameda H.Out-of-step prediction logic for wide-area protection based on an autoregressive model.IEEE PES Power System Conference and Exposition,New York,USA,2004,1:307-312.
    [26]Wang L,Girgis A A.A new method for power system transient instability detection.IEEE Transactions on Power Delivery,1997,12(3):1082-1089.
    [27]周良松,夏成军,彭波,等.基于PMU的预测型振荡解列初步研究.继电器,2003,29(3):9-13.
    [28]Agematsu S,Imai S,Tsukui R,et al.Islanding protection system with active and reactive power balancing control for Tokyo Metropolitan power system and actual operational experiences.IEE 7th International Conference on Developments in Power System Protection,Amsterdam,Netherlands,2001:351-354.
    [29]Hou D,Tziouvaras D A.Out-of-step protection enhancements.IEE International Conference on Developments in Power System Protection,Amsterdam,Netherlands,2004,1:5-10.
    [30]宗洪良,任祖怡,郑玉平,等.基于ucosφ失步解列装置.电力系统自动化,2003,27(19):83-85.
    [31]Teng L,Liu W,Yang W,et al.Study on power system separation based on the local electrical quantities.International Conference on Power System Technology,Kunming,China,2002,1:349-354.
    [32]张保会,张毅刚,刘海涛.基于本地量的振荡解列装置原理研究.中国电机工程学报,2001,21(12):67-72.
    [33]高鹏,王健全,邹文平,等.基于无功功率捕捉失步解列断面的理论研究.电力系统自动化,2005,29(5):15-20.
    [34]Centeno V,Phadke A G,Edris A,et al.An adaptive out-of-step relay.IEEE Transactions on Power Delivery,1997,12(1):61-71.
    [35]严伟,路于平,李鹏.一种新的大型发电机失步预测综合保护方案.电力系统自动化,2000,24(21):52-55.
    [36]Centeno V,Ree J D L,Phadka A G,et al.Adaptive out-of-step relaying using phasor measurement techniques.IEEE Computer Applications in Power,1993,6(4):12-17.
    [37]Stanton S E,Slivinsky C,Martin K,et al.Application of phasor measurement and partial energy analysis in stabilizing large disturbances.IEEE Transactions on Power Systems,1995,10(1):297-306.
    [38]Abdelaziz A Y,Irving M R,Mansour M M,et al.Adaptive detection of generator out-of-step conditions in power systems using an artificial neural network.UKACC Conference on Control,Exeter,UK,1996,1:166-171.
    [39]Song X,Jiao S,Liu W,et al.A fuzzy theory based principle to distinguish stable swings and unstable swings in complicated power systems.International Conference on Power System Technology,Beijing,China,1998,2:1091-1095.
    [40]Anderson P M,Mirheyda M.An adaptive method for setting underfrequency load shedding relays.IEEE Transactions on Power Systems,1992,7(2):647-655.
    [41]Zin A A M,Hafiz H M,Wong W K.Static and dynamic under-frequency load shedding:a comparison.International Conference on Power System Technology,Singapore,2004,1:941-945.
    [42]Perumal N,Amran A C.Automatic load shedding in power system.National Power Engineering Conference,Bangi,Malaysia,2003:211-216.
    [43]Lindahl S,Runvik G,Stranne G.Operational experience of load shedding and new requirements on frequency relays.International Conference on Developments in Power System Protection,Nottingham,UK,1997:262-265.
    [44]Delfino B,Massucco S,Morini A,et al.Implementation and comparison of different under frequency load-shedding schemes.IEEE PES Summer Meeting,Vancouver,Canada,2001,1:307-312.
    [45]Prasetijo D,Lachs W R,Sutanto D.A new load shedding scheme for limiting underfrequency.IEEE Transactions on Power Systems,1994,9(3):1371-1378.
    [46]Thompson J G,Fox B.Adaptive load shedding for isolated power systems.International Conference on Generation,Transmission and Distribution,1994,141(5): 491-496.
    [47]Elkateb M M,Dias M F.New proposed adaptive frequency load shedding scheme for congeneration plants.International Conference on Developments in Power System Protection,York,UK,1993:236-239.
    [48]Luki(?) M,Kuzle I,Te(?)njak S.An adaptive approach to setting under-frequency load shedding relays for an isolated power system with private generation.9th Mediterranean Electrotechnical Conference,Tel-Aviv,Israel,1998,2:1122-1125.
    [49]Shah S,Shahidehpour S M.A heuristic approach to load shedding scheme.IEEE Transactions on Power Systems,1989,4(4):1421-1429.
    [50]Novosel D,King R L.Using artificial neural networks for load shedding to alleviate overloaded lines.IEEE Transactions on Power Delivery,1994,9(1):425-433.
    [51]Imai S.Undervoltage load shedding improving security as reasonable measure for extreme contingencies.IEEE PES General Meeting,2005,San Francisco,USA,2:1754-1759.
    [52]Balanathan R,Pahalawaththa N C,Annakkage U D,et al.Undervoltage load shedding to avoid voltage instability.IEE International Conference on Generation,Transmission and Distribution,Hertfordshire,UK,1998,145(2):175-181.
    [53]Phadke A G.Synchronized phase measurements in power system.IEEE Computer Applications in Power,1993,6(2):42-47.
    [54]IEEE Working Group Report.Synchronized sampling and phasor measurement for relaying and control.IEEE Transactions on Power Delivery,1994,9(1):442-452.
    [55]Sotojic D R.Spectral monitoring of power system dynamic performances.IEEE Transactions on Power Systems,1993,8(2):445-451.
    [56]Wilson R E,Sterlina P S.Verification of measured transmission system phase angles.IEEE Transactions on Power Delivery,1996,11(4):1743-1747.
    [57]苗世洪,王少荣,刘沛,等.基于GPS的电网状态监测系统的设计与实现.电力系统自动化,2000,24(12):52-54.
    [58]鞠平,郑世宇,徐群,等.广域测量系统研究综述.电力自动化设备.2004,24(7):37-40,49.
    [59]丁剑,白晓民,王文平,等.电力系统中基于PMU同步数据的应用研究综述.继电器.34(6),2006,78-84.
    [60]江全元,邹振宇,曹一家,等.考虑时滞影响的电力系统稳定分析和广域控制研究进展.电力系统自动化,2005,29(3):1-7.
    [61]Chaudhuri B,Majumder R,Pal B.Wide-Area Measurement-Based Stabilizing Control of Power System Considering Signal Transmission Delay.IEEE Trans on Power Systems,2004,19(4):1971-1979.
    [62]Xie X R,Xin Y Z,Xiao J Y,et al.WAMS Applications in Chinese Power Systems.IEEE Power and Energy Magazine,2006,4(1):54-63.
    [63]薛禹胜,徐伟,Dong Zhaoyang,等.关于广域测量系统及广域控制保护系统的评述.电力系统自动化.2007,31(15):1-5,16.
    [64]宋晓娜,毕天姝,吴京涛,等.基于WAMS的电网扰动识别方法.电力系统自动化.2006,30(5):24-28,73.
    [65]宋方方,毕天姝,杨奇逊.基于广域测量系统的电力系统多摆稳定性评估方法.中国电机工程学报.2006,26(16):38-45.
    [66]Kamwa I,Grondin R,Hebert Y.Wide-area measurement based stabilizing control of large power systems - a centralized/hierarchical approach.IEEE Transactions on Power Delivery.2001,16(1):136-153.
    [67]段振国,高曙,杨以涵,等.基于图论的电力系统解列策略生成方法.中国电力.1998,31(3):7-9.
    [68]孙惠泉.图论及其应用.北京:科学出版社,2004.
    [69]谭骏珊,杨卫民,刘军万.数据结构与算法.长沙:中南大学出版社,2005.
    [70]黄刘生,唐策善.数据结构.合肥:中国科学技术大学出版社,2002.
    [71]许近.自补图理论及其应用.西安:西安电子科技大学出版社,1999.
    [72]Yusof S B,Rogers G J,Alden R T H.Slow coherency based network partitioning including load buses.IEEE Transactions on Power Systems,1992,8(3):1375-1382.
    [73]Irving M R,Sterling M J H.Optimal network tearing using simulated annealing.International Conference on Generation,Transmission and Distribution,1990,137(1):69-72.
    [74]Orero S O,Irving M R.A genetic algorithm for network partitioning in power system state estimation,IEE UKACC International Conference on Control,Exter,UK,1996,1:162-165.
    [75]You H,Vittal V,Wang X.Slow coherency-based islanding.IEEE Transactions on Power Systems,2004,19(1):483-491.
    [76]Gallai A M,Gallai R J.Coherency identification for large electric power systems.IEEE Transactions on Circuits and Systems,1982,CAS-29(11):777-782.
    [77]You H,Vittal V,Yang Z.Self-healing in power systems:an approach using islanding and rate of frequency decline-based load shedding.IEEE Transactions on Power Systems,2003,18(1):174-181.
    [78]Chow J H,Date R A,Othman H,et al.Slow coherency aggregation of large power systems.IEEE Publication,90TH0292-3-PWR,1989:50-60.
    [79]Crow M L.Waveform relaxation methods for the simulation of systems of differential/algebraic equations with application to electric power systems, Dissertations.Urbana-Champaign:University of Illinois,1990.
    [80]中华人民共和国国家经济贸易委员会.电力系统安全稳定导则(DL/755-2001).北京:中国电力出版社。2002.
    [81]沈根才.正确规划电网结构,重视电网稳定性.电力系统自动化,2001,5:38-41.
    [82]曾得文.实现全国电网互联的基本原则和措施建议.中国电力.2000,33(7):38-41.
    [83]王士政.调度自动化与配网自动化技术.北京:中国水利水电出版社,2003.
    [84]王成山,杜瑞建,张家安.区域互联电力系统同调机群的分布式协同识别.电网技术.2005,29(11):9-13.
    [85]Wu F F,Narasimhamurthi N.Coherency identification for power system dynamic equivalents.IEEE Transactions on Circuits and Systems.1983,CAS-30(3):140-147.
    [86]余耀南.动态电力系统.北京:水利电力出版社,1985.
    [87]许剑冰,薛禹胜,张启平,等.电力系统同调动态等值的述评电力系统.电力系统自动化.2005,29(14):91-95.
    [88]倪以信,陈寿孙,张宝霖,等.动态电力系统的理论和分析.北京:清华大学出版社,2002.
    [89]Sun K,Zheng D,Lu Q.Splitting strategies for islanding operation of large-scale power systems using OBDD-based methods.IEEE Transactions on Power Systems,2003,18(2):912-923.
    [90]Sun K,Zheng D,Lu Q.A simulation study of OBDD-based proper splitting strategies for power system under consideration of Transient stability.IEEE Transactions on Power Systems,2005,20(1):389-399.
    [91]Wang X,Vittal V.System islanding using minimal cutsets with minimum net flow.IEEE Power Systems Conference and Exposition,New York,USA,2004,1:379-384.
    [92]Lin H,Kuo S,Yeh F.Minimal outset enumeration and network reliability evaluation by recursive merge and BDD.IEEE 8th Symposium on Computers and Communication,Antalya,Turkey,2003,2:1341-1346.
    [93]Sun K,Zhao Q,Zheng D,et al.A two-phase method based on OBDD for searching for splitting strategies of large-scale power systems.IEEE Conference on Power System Technology,Kunming,China,2002,2:834-838.
    [94]Jin M,Sidhu T S,Sun K.A new system splitting scheme based on the unified stability control framework.IEEE Transactions on Power Systems,2007,22(1):433-440.
    [95]Adibi M M,Kafka R J,Maram S,et al.On power system controlled separation.IEEE Transactions on Power Systems,2006,21(1):1894-1902.
    [96]薛禹胜.运动稳定性量化理论-非自治非线性多刚体系统的稳定性分析.南京:江苏科学技术出版社,1999.
    [97]张伯明,陈寿孙.高等电力网络分析.北京:清华大学出版社,1996.
    [98]蒙定中.关于发电机承受异步振荡能力的建议.中国电力,2006,39(3):99-101.
    [99]方勇杰.电力系统的自适应解列控制.电力系统自动化,2007,31(20):41-44,48.
    [100]白杨,高鹏,孙光辉,等.中国南方电网失步解列装置的配合.电力系统自动化,2006,30(7):85-88.
    [101]林文孚,胡燕.单元机组自动控制技术.北京:中国电力出版社,2004.
    [102]郑立新.发电机过频保护与汽轮机超速保护配合问题的探讨.电力建设,2005,26(3):8-9.
    [103]王梅义.电网继电保护应用.北京:中国电力出版社,1999.
    [104]袁季修,陈荣德,白亚民.对大型汽轮发电机频率异常运行能力的要求.中国电力,2001,34(12):32-36.
    [105]袁季修.防止电力系统频率崩溃的紧急控制.电力自动化设备,2002,22(4):1-4.
    [106]沈根才.认识“系统振荡”,改善电网结构,合理安排振荡解列.中国电力,2004,37(7):1-3.
    [107]张保会.广域动态信息条件下电网安全紧急控制的研究.电力自动化设备.2005,25(8):1-8.
    [108]李国庆,王乡,董国兴.利用局部信息的多机系统失步的快速判定.东北电力学院学报,1995,15(2):34-39.
    [109]吕志来,张保会,哈恒旭.基于PMU的电力系统暂态实时快速预测的研究.继电器,2000,28(1):3-5,9.
    [110]Imai S,Yasuda T.UFLS program to ensure stable island operation.IEEE PES power System Conference and Exposition,New York,USA,2004,1:283-288.
    [111]杨炳元,张保会,吴集光.简单电力系统失步运行时对策浅析.继电器.2002,28(2),14-16,36.
    [112]Rajamani K,Hambarde U K.Islanding and load shedding schemes for captive power plants.IEEE Transactions on Power Delivery,1999,14(3):805-809.
    [113]Kottick D,Or O.Neural-networks for predicting the operation of an under-frequency load shedding system.IEEE Transactions on Power Systems,1996,11(3):1350-1358.
    [114]蔡邠.电力系统频率.北京:中国电力出版社,1998.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700