用户名: 密码: 验证码:
拖网捕捞拖曳系统的建模及控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
海洋渔业作为人类长期赖以生存和发展的基础,为人类提供了丰富的食物及营养来源。拖网捕捞渔业具有主动性好、作业区域广等优点,已逐渐成为海洋渔业中最为重要的作业方式。随着世界经济的发展以及物质生活不断丰富,人类对营养和健康的食品需求越来越大,使得海洋捕捞产业的重要性逐渐显现。同时,海洋渔业资源的衰退及海洋生态保护意识的增强,拖网捕捞效率及生态影响问题逐渐成为关注的热点话题。传统拖网捕捞多采用手动控制,捕捞效率主要依赖操作人员的经验,而拖网曳纲长达上千米,使得拖网的手动控制精度差、响应慢,降低了拖网捕捞效率,拖网操作的不当还会导致海洋生态资源的破坏。分析拖网系统的动态特性,提高拖网捕捞系统的自动化程度及控制性能,对于提升拖网捕捞效率及降低对海洋生态系统的影响是至关重要的。
     本文以大型变水层拖网捕捞系统为研究对象,围绕着拖网捕捞拖曳系统的建模及控制展开了研究工作。论文建立了拖网捕捞拖曳系统各组成部分的数学模型,研究了各模型的耦合关系,并将各部分模型在统一的框架内进行集成,针对拖网系统的模型进行了仿真分析及海试验证。为提高拖网捕捞的控制性能,论文针对拖网网具对目标鱼群的瞄准捕捞进行了研究,并分别针对拖网在垂直面及空间范围的瞄准捕捞设计了轨迹跟踪控制器。
     本论文具体的研究内容如下:
     第1章概述了拖网捕捞拖曳系统的组成及工作过程,阐述了拖网捕捞系统数学建模及控制相关内容的研究进展,分析了本课题的研究背景及研究意义,介绍了本课题的主要研究内容。
     第2章介绍了拖网曳纲绞车的工作原理,并根据拖网工况设计了压力/流量分时控制的曳纲绞车液压系统,建立了曳纲绞车液压系统的数学模型,并在比例压力控制液压系统的基础上,提出了分段的曳纲张力长度复合控制策略,能够保证拖网曳纲张力及长度的复合控制,最后针对曳纲绞车液压系统及曳纲张力长度复合控制器进行了仿真分析。
     第3章将拖网网具系统离散为若干质量单元,确定了质量单元的拓扑连接关系,计算了质量单元承受的网线拉力、流体水动力及在水中的重力,最后采用集中质量法建立了网具单元的数学模型,为验证集中质量法网具系统数学模型的准确性,对所建立的数学模型进行了仿真及海试分析。
     第4章建立了拖网渔船的数学模型,并将模型与所建立的曳纲绞车及网具系统模型进行联立,进而集成为拖网捕捞拖曳系统总体数学模型,以“开富号”拖网捕捞系统为研究对象,针对拖网系统网口扩张展开了研究工作,最后针对建立的数学模型进行了仿真及海试分析。
     第5章探讨了拖网网具在垂直面内对目标轨迹的跟踪控制问题,首先将拖网网具系统简化为垂直面内的三质点简化系统,并建立了简化系统的数学模型,针对网具系统的非线性特性,同时考虑了拖网系统的参数摄动及外干扰,提出了一种基于模糊鲁棒算法的轨迹跟踪控制策略,并针对提出的模糊鲁棒控制算法进行了仿真研究。
     第6章在垂直面拖网网位跟踪控制的基础上,讨论了拖网系统在空间范围内对目标轨迹的跟踪控制问题,首先将垂直面内的三质点系统推广到空间范围,建立了拖网空间三质点系统的数学模型,考虑到拖网空间模型的特点,采用了递推法实现拖网跟踪控制,同时考虑了拖网过程的参数摄动以及外干扰,提出了一种自适应鲁棒控制策略,并针对所提出的自适应鲁棒控制器进行了仿真分析。
     第7章对本论文的研究工作进行了概述,提出了本论文的主要结论及创新点,并展望了下一步的研究方向和研究内容。
Marine fishery is of great importance for the food and nutrition supply which human beings depend on for a living. Fish trawling has the advantages of good initiatives and wide production areas, and has become most important fishing method. With the recession of fisheries resources and the improvement of environment protection consciousness of the ocean, the catching efficiency and environmental influences of trawling has become a hot topic. As the distance between trawler and net can be thousands of meters, the trawl net movement is difficult to predict. Manual operation for the trawl system is often very slow and the control precision cannot be ensured. Therefore, increased control performance for the geometry and trajectory of trawl net would greatly improve trawling efficiency and catch quality.
     In this paper, a mathematic model of trawl system was developed including trawler, trawl winch and trawl net system, and the interface between subsystems was analyzed. The accuracy of trawl model was then testified through computer simulation and sea-trial. In order to improve the control performance, the tracking and geometry control within vertical plane and space were discussed, and robust control scheme was adopted for the purpose of disturbance attenuation. Simulation results illustrated the proposed control strategy was effective.
     The main contents of the dissertation are presented as follows:
     Chapter1give an overview of the trawl system, and the research background, significance and the main contents were also presented.
     Chapter2introduced the principle of the trawl winch, and the hydraulic system with pressure and flow control was designed according to the trawling conditions. Mathematical model of trawl winch hydraulic system was then established, and the tension and length compound control scheme was developed.
     Chapter3modeled the trawl net system with lumped mass method. The topological connections of trawl nets were first ensured with discrete method, and the cable tension, fluid hydrodynamic force and gravity in water were then derived. Finally, computer simulation and sea-trial were conducted to verify the modeling accuracy of the trawl net system.
     Chapter4first established the mathematical model for trawler, and the model was then integrated with trawl winch and trawl nets system model. The "kaifu" trawling system was then investigated for trawl system simulation and sea trial analysis.
     Chapter5discussed the trajectory tracking control problem of trawl system within the vertical plane. A simplified model within the vertical plane was first established, and a fuzzy robust trajectory tracking control strategy was proposed taking into account parameter perturbation and external disturbance. Simulation results verified the validity of the proposed fuzzy robust control algorithm.
     Chapter6further investigated the trajectory tracking control problem of trawl system in the space. An adaptive robust control strategy was proposed based on backstepping method, and a control allocation of trawl winch and trawler was developed for the consideration of the non-strict feedback characteristics of trawl system. Finally, simulation results illustrated the proposed adaptive robust controller was effective.
     Chapter7summarized the main results and conclusions, and the achievement and suggestion for the future work were also presented.
引文
1. http://www.fao.org/index en.htm.2010.
    2. 黄锡昌,虞聪达,苗振清.中国远洋捕捞手册[M].上海科学技术文献出版社,2003.
    3. K. Reite. Modeling and control of trawl systems[D]. NTNU.2006
    4. 崔建章.渔具渔法学[M].中国农业出版社,1997.
    5. J. Fossa, P. Mortensen,D. Furevik. The deep-water coral Lophelia pertusa in Norwegian waters: distribution and fishery impacts[J]. Hydrobiologia,2002,471(1-3):1-12.
    6. C. Goudey. The Development of a Semi-Pelagic Trawl for Squid and Butterfish[C].OCEANS'87.1987.
    7. 佘显炜.网板、拖网、拖网船配合的力学计算[J].浙江水产学院学报,1986,5(1):21-35.
    8. 徐建国,董云水.拖网渔捞事故的发生,预防与处理[J].中国水产,2003(9):75-76.
    9. C. W. Lee. Dynamic analysis and control technology in a fishing gear system[J]. Fisheries Science,2002, 68:1835-1840.
    10. K. Reite, V. Johansen,A. Sorensen. Control structure for trawl systems[C].7th Conference on Manoeuvring and Control of Marine Craft, IFAC, Lisbon, Portugal.2006.
    11. K. J. Reite. State estimator for trawl system surveillance[J]. Control Engineering in Fisheries,2009: 179-186.
    12. P. G. Holmes.J. G. Smithson. Development of an Improved Electric Trawl-Winch Control for Stern Trawlers[J]. Proceedings of the Institution of Electrical Engineers-London,1968,115(7):1045-1055.
    13.周雄.大中型艉拖网渔船绞纲机的设计探讨(上)[J].渔业机械仪器,1993,20(5):18-20.
    14.周雄.大中型艉拖网渔船绞纲机的设计探讨(下)[J].渔业现代化,1993,20(17):7-11.
    15.林国强,王巧英.中高压液压绞纲机的海上试验[J].渔业机械仪器,1982(1):38-41.
    16.蔡子俊.JYWI-2×2/50型液压绞纲机和WYL-1.0/18型液压起网机[J].渔业机械仪器,1983(6):16-17.
    17.胡文伟.对SY**型绞纲机液压系统的改进设想[J].渔业机械仪器,1986(4):35-36.
    18.李旺祥.700—900KW双船底拖网渔船绞纲机液压系统分析[J].渔业机械仪器,1994,21(6):26-29.
    19. Karmoy. Device and a method for autotrawl operation, K.W. AS, Editor.1994, Google Patents.
    20. M. R. Mitchell,J. G. Dessureault. A constant tension winch:design and test of a simple passive system[J]. Ocean Engineering,1992,19(5):489-496.
    21. S. Ueki, H. Doi, S. Miyajima. Winding mechanism with tension control function and trawling apparatus. 2011, Google Patents.
    22. H. Langerak,H. Drives. Escort Tug-Tow Winch Load Control[J]. TUGNOLOGY 2009,2009:2-10.
    23.张超.海洋拖曳绞车液压调速及张力波动抑制研究[D].浙江大学.2011
    24. D. Priour. Numerical optimisation of trawls design to improve their energy efficiency[J]. Fisheries Research,2009,98(1-3):40-50.
    25. D. Priour,R. Khaled. Comparison between two methods of trawl optimisation[C].2009.
    26. A. Fridman. Theory and design of commercial fishing gear[M]. Israel Program for Scientific Translations, 1973.
    27.佘显炜.三维空间拖网系统运动方程[C].中国水产捕捞学术研讨会论文集.1999.
    28. F. X. Hu, M. Ko, T. Tokai. Dynamic Analysis of Midwater Trawl System by a 2-Dimensional Lumped Mass Method[J]. Fisheries Science,1995,61(2):229-233.
    29. C. W. Lee,J. H. Lee. Modeling of a midwater trawl system with respect to the vertical movements[J]. Fisheries Science,2000,66(5):851-857.
    30. T. Yonezawa, Y. Fujimori, S. Shimizu. Representation of the dynamic characteristics of a towed sampling gear with a linearized model[J]. Nippon Suisan Gakkaishi,2009,75(3):390-401.
    31. T. Yonezawa, Y. Fujimori, S. Shimizu. A dynamic model of a towed sampling gear system including a vessel[J]. Nippon Suisan Gakkaishi,2009,75(3):402-411.
    32. J. S. Bessonneau,D. Marichal. Study of the dynamics of submerged supple nets (applications to trawls)[J]. Ocean Engineering,1998,25(7):563-583.
    33. B. Cha,C. Lee. Dynamic simulation of a midwater trawl system's behavior[J]. Fisheries Science,2002, 68:1865-1868.
    34. T. Takagi, K. Suzuki,T. Hiraishi. Development of the numerical simulation method of dynamic fishing net shape[J]. Nippon Suisan Gakkaishi,2002,68(3):320-326.
    35. K. Suzuki,T. Takagi. Numerical analysis of dynamic behavior of Danish seining and sea trial verification[J]. Math. Phys. Fish. Sci,2008,6:11-22.
    36. K. Suzuki, T. Takagi, T. Shimizu. Validity and visualization of a numerical model used to determine dynamic configurations of fishing nets[J]. Fisheries Science,2003,69(4):695-705.
    37. K. Suzuki, S. Torisawa,T. Takagi. Numerical Analysis of Net Cage Dynamic Behavior Due to Concurrent Waves and Current[C].2009:ASME.
    38. T. Takagi, T. Shimizu, K. Suzuki. Performance of 'NaLA':a fishing net shape simulator[J]. Fish. Eng, 2003,40:125-134.
    39. T. Takagi, T. Shimizu, K. Suzuki. Validity and layout of NaLA a net configuration and loading analysis system[J]. Fisheries Research,2004,66(2-3):235-243.
    40. C. W. Lee, J. H. Lee, B. J. Cha. Physical modeling for underwater flexible systems dynamic simulation[J]. Ocean Engineering,2005,32(3-4):331-347.
    41. C. W. Lee, M. W. Lee, G. H. Lee. Design and performance of a software based fishing simulator, in Maritime Transportation and Exploitation of Ocean and Coastal Resources,, G.G. Soares, Y. Garbatov, andN. Fonseca, Editors.2005, Taylor & Francis Ltd:London.1245-1249.
    42. J. H. Lee, L. Karlsen,C. W. Lee. A method for improving the dynamic simulation efficiency of underwater flexible structures by implementing non-active points in modelling[J]. ICES Journal of Marine Science,2008,65(9):1552-1558.
    43. H. Y. Kim, C. W. Lee, J. K. Shin. Dynamic simulation of the behavior of purse seine gear and sea-trial verification[J]. Fisheries Research,2007,88(1-3):109-119.
    44. Y. H. Kim,M. C. Park. The simulation of the geometry of a tuna purse seine under current and drift of purse seiner[J]. Ocean Engineering,2009,36(14):1080-1088.
    45. S. A. Hosseini, C. W. Lee, H. S. Kim. The sinking performance of the tuna purse seine gear with large-meshed panels using numerical method[J]. Fisheries Science,2011:1-18.
    46.孙霄峰.单船中层拖网系统的建模与仿真[D].大连海事大学.2008
    47.孙霄峰.基于物理模型的渔网动态模拟与可视化研究,in第七届中国计算机图形学大会论文集.2008.
    48.孙霄峰.渔船模拟器中拖网曳纲动力学模型的研究,in第七届全国虚拟现实与可视化学术会议论文集.2007.
    49.孙霄峰,尹勇,张秀凤.基于物理模型的渔网网衣动态模拟与可视化研究[J].大连水产学院学报,2009(6):563-567.
    50.孙霄峰,尹勇,张秀凤.船舶操纵模拟器中的系缆张力模型[J].中国航海,2007(3):1-4.
    51. S. Nishiyama, T. Miura, H. Nakamura. Dynamic characteristic of mid water trawl nets[J]. Bulletin of the Japanese Society of Scientific Fisheries (Japan),1982.
    52. R. Wan, F. Hu,T. Tokai. Computer simulation of shape and tension on fishing net and rope system[J]. Fisheries Science,2002,68:1853-1856.
    53. M. Nakamura,W. Koterayama. Motion simulation of trawl net system[J]. Proceedings of the Sixteenth International Offshore and Polar Engineering Conference,2006,2:239-246.
    54. J. Prat, J. Antonijuan, A. Folch. A simplified model of the interaction of the trawl warps, the otterboards and netting drag[J]. Fisheries Research,2008,94(1):109-117.
    55. C. Dymarski,J. Nakielski. Calculation of motion trajectory and geometric parameters of the trawl during pelagic fishing[J]. Polish Maritime Research,2009,16(4):50-55.
    57. K. O. Satoru Inouel, K. Nagamatsu,Y. Kajikawa. Verification of the catenary-application to the warp of a towing net[J]. Journal of National Fisheries University,2009,57(4):255-262.
    58. M. A. Abkowitz. Measurement of hydrodynamic characteristics from ship maneuvering trials by system identification.1980.
    59. M. A. Abkowitz. Lectures on Ship Hydrodynamics--teering and Manoeuvrability.1964.
    61.浜本剛实.MMG报告—Ⅱ操縦性数学モデルの理论的背景[J].日本造船学会誌,1977(577):32-39.
    63.小瀬邦治,黄岛胜郎.MMG报告一Ⅳ’拘束操纵性试验の方法及び试验装置[J].日本造船学会誌,1977(579):22-31.
    64. S. Inoue, M. Hirano, K. Kijima. A practical calculation method of ship maneuvering motion[J]. International Shipbuilding Progress,1981,28(325):207-222.
    65. S. Inoue. Hydrodynamic derivatives on Ship monoeuvring[J]. ISP,1981,28(321).
    66.藤野正隆,葛西宏直,小林弘明.低速·浅水域操纵运动数学モデルの检讨:MSS报告Ⅰ[J].日本造船学会誌,1989(717):122-129.
    69.小瀬邦治,深沢塔一,末光启二.低速畴の操纵运动モデルの实用化:MSS报告Ⅳ[J].日本造船学会誌,1989(721):403-411.
    70.王国强.捕鱼控制系统的发展与捕捞效益的前景[J].实验室研究与探索,1997,1.
    71.王尔光.中层拖网的水层控制[J].大连水产学院学报,1991(2):21-29.
    72. N. Umeda. An optimal regulator for a midwater trawl system[J]. Bulletin of National Research Institute of Fisheries Engineering (Japan),1991,12(1):11.
    73. F. X. Hu, M. Ko,K. Sato. Characteristics of Dynamic Control of Midwater Trawl System in-Field Experiments[J]. Nippon Suisan Gakkaishi,1994,60(4):493-497.
    74. C. W. Lee. Depth Control of a Midwater Trawl Gear Using Fuzzy-Logic[J]. Fisheries Research,1995, 24(4):311-320.
    75. C. W. Lee, C. L. Zhang,H. O. Shin. Simplified trawl system modeling and design of a depth control system using fuzzy logic[J]. Fisheries Research,2001,53(1):83-94.
    76.周应祺.瞄准捕捞中拖网网位的控制方法初探[J].海洋渔业,1989(001):6-10.
    77. V. Johansen, O. Egeland,A. J. Sorensen. Modelling and control of a trawl system in the transversal direction[J]. Control Applications in Marine Systems 2001 (Cams 2001),2002:243-248.
    78. http://www.activefishingsystems.co.za/index.htm.
    81.古.武典.Autotrawl system for fishing boat[J].川崎重工技报,2004,156:46-47.
    82. S. Fuwa, K. Ebata, H. Kinoshita. New Trawling System Equipped in NANSEI MARU of Kagoshima University[J]. Fisheries,2005,42(1):29-38.
    83. H. Hammersland,A. Tvedt. METHOD AND DEVICE FOR OPERATION OF A TRAWL.1997, WO Patent 1,997,046,087.
    84. S. Kotwicki, K. L. Weinberg,D. A. Somerton. The effect of autotrawl systems on the performance of a survey trawl[J]. Fishery Bulletin,2006,104(1):35-45.
    85. K. L. Weinberg,D. A. Somerton. Variation in trawl geometry due to unequal warp length[J]. Fishery Bulletin,2006,104(1):21-34.
    86. J. Wu,A. T. Chwang. A hydrodynamic model of a two-part underwater towed system[J]. Ocean Engineering,2000,27(5):455-472.
    87. J. Wu,A. T. Chwang. Experimental investigation on a two-part underwater towed system[J]. Ocean Engineering,2001,28(6):735-750.
    88. J. Wu,A. T. Chwang. Investigation on a two-part underwater manoeuvrable towed system[J]. Ocean Engineering,2001,28(8):1079-1096.
    89. M. S. Triantafyllou,M. A. Grosenbaugh. Robust Control for Underwater Vehicle Systems with Time Delays[J]. IEEE Journal of Oceanic Engineering,1991,16(1):146-151.
    90. F. S. Hover, M. A. Grosenbaugh,M. S. Triantafyllou. Calculation of Dynamic Motions and Tensions in Towed Underwater Cables[J]. IEEE Journal of Oceanic Engineering,1994,19(3):449-457.
    91. F. S. Hover. Inversion of a distributed system for open-loop trajectory following[J]. International Journal of Control,1994,60(5):671-686.
    92. L. Chauvier, G. Damy, J. C. Gilbert. Optimal control of a deep-towed vehicle by optimization techniques[M]. Ieee,1998.
    93. P. Williams. Towing and winch control strategy for underwater vehicles in sheared currents[J]. International Journal of Offshore and Polar Engineering,2006,16(3):218-227.
    94. J. D. M. Zand, B. J. Buckham, D. Constantinescu. Ship and Winch Regulation for Remotely Operated Vehicle's Waypoint Navigation[J]. International Journal of Offshore and Polar Engineering,2009,19(3): 214-223.
    95.王海波.水下拖曳升沉补偿系统设计及其内模鲁棒控制[J].机械工程学报,2010,46(8).
    96.王海波.水下拖曳升沉补偿系统的非参数模型自适应控制[J].控制理论与应用,2010,27(4).
    97.谌志新.我国渔船捕捞装备的发展方向与重点[J].渔业现代化,2005(4):3-4.
    98.陈雪忠,黄洪亮.单船中层拖网网具操作参数变化的研究[J].中国水产科学,2004(z1):63-68.
    99.黄洪亮,陈雪忠.东南太平洋智利竹笑鱼中层拖网捕捞技术[J].中国水产科学,2005(1):99-103.
    100.冯春雷,黄洪亮,陈雪忠.主要作业参数对单船中层拖网性能的显著性分析[J].海洋渔业,2007(1):8-12.
    101.许永久,张敏,邹晓荣.我国竹筴鱼中层拖网网具性能分析[J].上海水产大学学报,2008(2):215-221.
    102.许永久,张敏.智利竹筴鱼中层拖网设计参数与作业性能分析[J].现代渔业信息,2009(12):20-25.
    103. D. Marichal. Dynamic Behaviour of a Complete Trawl Gear (Manoeuvrability and Security) in Hydroelasticity in Marine Technology:Hydroelasticity'2006.2006:wuxi.413-420.
    104. X. S. Sun, X. F., Y. Yin, Y. C. Jin. The modeling of single-boat, mid-water trawl systems for fishing simulation[J]. Fisheries Research,2011,109(1):7-15.
    105. Y. C. Li, Y. P. Zhao, F. K. Gui. Numerical simulation of the hydrodynamic behaviour of submerged plane nets in current[J]. Ocean Engineering,2006,33(17-18):2352-2368.
    106.万荣,朱文斌,何鑫.双船中层拖网网位控制的静力学解析[J].中国海洋大学学报:自然科学版,2007(1):61-64,66.
    107. K. Matuda, F. X. Hu,A. Koike. Static Characteristics of a Midwater Trawl Net Using Canvas Mouth Opening Devices[J]. Nippon Suisan Gakkaishi,1988,54(10):1783-1788.
    108. F. Hu, K. Matsuda,A. Koike. Comparison of Mechanical Characteristics between Canvas Type and Otter Type Midwater Trawl Net in a Flume Experiment[J]. Nippon Suisan Gakkaishi,1989,55(5):785-790.
    109. K. J. Reite,A. Sorensen. Mathematical Modeling of the Hydrodynamic Forces on a Trawl Door[J]. IEEE Journal of Oceanic Engineering,2006,31(2):432-453.
    110. F. Wang, G. Huang,D. Deng. Dynamic response analysis of towed cable during deployment/retrieval[J]. Journal of Shanghai Jiaotong University (Science),2008,13(2):245-251.
    111. S. X. Wang, Y. H. Wang,X. P. Li. Dynamic analysis of towed and variable length cable systems[J]. China Ocean Engineering,2007,21(2):331-341.
    112.贾欣乐,杨盐生.船舶运动数学模型:机理建模与辩识建模[M].大连海事大学出版社,1999.
    113.周昭明,盛子寅,冯悟时.多用途货船的操纵性预报计算[J].船舶工程,1983,6:21-29.
    114. M. Hirano. On calculation method of ship maneuvering motion at initial design phase[J]. Journal of the society of naval architects of Japan,1980,147.
    115. K. Kijima, Y. Nakiri, T. Katsuno. On the manoeuvring performance of a ship with the parameter of loading condition[J]. Journal of the society of naval architects of Japan,1990,168:141-148.
    116.邵世明,赵连恩,朱念昌.船舶阻力[M].国防工业出版社,1995.
    117. C. W. Lee, J. H. Lee.I. J. Kim. Application of a fuzzy controller to depth control of a midwater trawl net[J]. Fisheries Science,2000,66(5):858-862.
    118. T. Takagi,M. Sugeno. Fuzzy identification of systems and its applications to modeling and control[J]. IEEE Transactions on Systems, Man, and Cybernetics,1985,15:116-132.
    119. B. Chen, C. Tseng,H. Uang. Mixed H2/H∞ fuzzy output feedback control design for nonlinear dynamic systems:an LMI approach[J]. Fuzzy Systems, IEEE Transactions on,2000,8(3):249-265.
    120. X. J. Ma,Z. Q. Sun. Output tracking and regulation of nonlinear system based on Takagi-Sugeno fuzzy model[J]. Ieee Transactions on Systems Man and Cybernetics Part B-Cybernetics,2000,30(1):47-59.
    121. C. S. Tseng, B. S. Chen,H. J. Uang. Fuzzy tracking control design for nonlinear dynamic systems via T-S fuzzy model[J]. Ieee Transactions on Fuzzy Systems,2001,9(3):381-392.
    122. S. Tong, T. Wang,H. X. Li. Fuzzy robust tracking control for uncertain nonlinear systems[J]. International Journal of Approximate Reasoning,2002,30(2):73-90.
    123. C. Lin, Q. G. Wang,T. H. Lee. Hinf output tracking control for nonlinear systems via TS fuzzy model approach[J]. Systems, Man, and Cybernetics, Part B:Cybernetics, IEEE Transactions on,2006,36(2): 450-457.
    124. G. Tang, C. Li,L. Sun. Optimal tracking control for large-scale interconnected systems with time-delays[J]. Computers & Mathematics with Applications,2007,53(1):80-88.
    125. B. Mansouri, N. Manamanni, K. Guelton. Output feedback LMI tracking control conditions with H(infinity) criterion for uncertain and disturbed T-S models[J]. Information Sciences,2009,179(4): 446-457.
    126. J. Wu, S. K. Nguang, J. Shen. Robust H(infinity) tracking control of boiler-turbine systems[J]. Isa Transactions,2010,49(3):369-375.
    127. H. Zhou, Y. Chen,H. Yang. Robust optimal output tracking control of a midwater trawl system based on TS fuzzy nonlinear model[J]. China Ocean Engineering,2013,27:1-16.
    128.吴忠强,许世范,岳东.非线性系统的TS模糊建模与控制[J].系统仿真学报,2002,14(2):253-256.
    129. M. Krstid, I. Kanellakopoulos,P. Kokotovic. Adaptive nonlinear control without overparametrization[J]. Systems & Control Letters,1992,19(3):177-185.
    130.I. Kanellakopoulos, P. V. Kokotovic,A. S. Morse. Systematic design of adaptive controllers for feedback linearizable systems[J]. Automatic Control, IEEE Transactions on,1991,36(11):1241-1253.
    131. T. Fossen. Marine control systems:guidance, navigation and control of ships, rigs and underwater vehicles, Marine Cybernetics, Trondheim[M]. ISBN 82-92356-00-2,2002.
    132.石贤良,吴成富.基于MATLAB的最小二乘法参数辨识与仿真[J][J].微处理机,2005,6:44-46.
    133. W. S. Lee, B. Anderson, R. L. Kosut. A new approach to adaptive robust control[J]. International journal of adaptive control and signal processing,1993,7(3):183-211.
    134.梅生伟,申铁龙,刘康志.现代鲁棒控制理论与应用[M].清华大学出版社,2008.
    135. B. Yao,M. Tomizuka. Adaptive robust control of SISO nonlinear systems in a semi-strict feedback form[J]. Automatica,1997,33(5):893-900.
    136. B. Yao,M. Tomizuka. Adaptive robust control of MIMO nonlinear systems in semi-strict feedback forms[J]. Automatica,2001,37(9):1305-1321.
    137.林永屹,杜佳璐,牛杰.基于Backstepping的船舶航向自适应鲁棒非线性控制器设计[J].船舶工程,2007,29(1):24-27.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700