用户名: 密码: 验证码:
基于mCherry的双分子荧光互补系统研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
检测细胞内蛋白质之间的相互作用对于理解生命的活动过程有重要的意义。目前已经有许多技术被开发并用于体内蛋白质相互作用的检测,如酵母双杂交技术,荧光共振能量转移技术及蛋白质片段互补技术等,但是这些技术各有优缺点。
     近年来发展的双分子荧光互补技术(BiFC)正在被广泛应用于体内蛋白质相互作用研究。该技术基于如下原理:荧光蛋白被切成两个肽段后,每个肽段不能被激发发射荧光,也不能自发组装成完整的荧光蛋白从而被激发产生荧光,但是当两个片段分别融合于相互作用的两个蛋白时,在相互作用蛋白的辅助下能重新组建成完整的荧光蛋白,从而被激发产生荧光。BiFC技术具有简单,快速,直观,灵敏及定位等特点,然而迄今存在的BiFC系统的特征光谱较短(≤570 nm),本研究将波长较长(587/610 nm)的第二代红色单体荧光蛋白mCherry发展成一个新的BiFC系统,扩展了BiFC技术的波谱范围。
     根据mCherry的晶体结构,将mCherry分别从3个氨基酸位点(136/137,159/160,174/175)切开,用EGFP作为弱相互作用蛋白筛选出从位点159/160切开所形成的两个片段能够产生BiFC信号,发展了基于mCherry的BiFC系统。用已知相互作用的一组蛋白(SV40的大T抗原(LTag)和人源p53)作为研究对象,验证了mCherry-BiFC系统在细胞内研究蛋白质相互作用的可靠性。
     本研究亦引入Venus-BiFC系统,将mCherry-BiFC和Venus-BiFC在细胞内共用同时检测两组蛋白质的相互作用(LTag和p53及早幼粒细胞白血病蛋白(PML)和sp100),结果表明mCherry-BiFC系统和其他BiFC系统可以共用,能够用于检测多个蛋白之间的相互作用。由于mCherry较强的亮度,较短的成熟时间(T1/2≈25 min),较长的激发和发射波长,使得本研究所发展的mCherry-BiFC系统成为一个很好的体内蛋白质相互作用研究工具,并能和其他BiFC系统共用,同时研究体内多个蛋白间的相互作用。
Monitoring protein-protein interactions in living cells is of crucial importance for understanding the dynamics and mechanism of biological processes. So far, many technologies have been developed and utilized in detection of protein-protein interactions in vivo, such as yeast two hybrid, fluorescence resonance energy transfer, protein fragments complementation, and so on. These technologies, however, have their own advantages and disadvantages.
     In recent years, one new developed technology, bimolecular fluorescence complementation (BiFC), has been widely used in detecction of protein-protein interactions in vivo. This technology relies on the reconstruction of a fluorescent protein from its two non-fluorescent fragments when they are brought together and complement each other because of the association or interaction between proteins fused to each fragment. The BiFC assay is simple, rapid, sensitive, visualizable and localizable. However, the optical spectra of existing BiFC systems are somewhat short (≤570 nm). In this study, a long optical spectrum BiFC system was developed based on the second generation monomer red fluorescent protein, mCherry, for its long excitation and emission wavelengths (587/610 nm), and thus expanded the spectra of BiFC systems.
     According to its crystal structure, mCherry was split between amino acids 136/137,159/160 and 174/175 respectively and produced three pairs of peptide fragments. The pair of peptide fragments dissected at position 159/160 could produce BiFC signals selected by EGFPs because of its weak interaction, thus mCherry based BiFC system was developed. The applicability and reliability of the mCherry based BiFC system was investigated using SV40 lager T antigen (LTag) and human p53 protein, which are known for their strong interaction. The results demonstrated that mCherry based BiFC system act perfectly in detecting protein-protein interactions in living cells.
     By combined use of the mCherry based red BiFC system with a Venus based yellow BiFC system, the interaction between LTag and p53 as well as the interaction between sp100 and promyelocytic leukemia protein (PML), were detected simultaneously in living cells. The brilliant redness, short maturation time, and the long excitation and emission wavelengths (587/610 nm) of mCherry make the new BiFC system an excellent candidate for analyzing protein–protein interactions in living cells and for studying multiple protein–protein interactions when coupled with other BiFC systems.
引文
[1] Masters SC. Co-immunoprecipitation from transfected cells. Methods in molecular biology, 2004, 261:337-350.
    [2] Szabo A, Stolz L, Granzow R. Surface plasmon resonance and its use in biomolecular interaction analysis (BIA). Current opinion in structural biology, 1995, 5(5):699-705.
    [3] Gavin AC, Bosche M, Krause R et al. Functional organization of the yeast proteome by systematic analysis of protein complexes. Nature, 2002, 415(6868):141-147.
    [4] Ho Y, Gruhler A, Heilbut A et al. Systematic identification of protein complexes in Saccharomyces cerevisiae by mass spectrometry. Nature, 2002, 415(6868):180-183.
    [5] Witze ES, Old WM, Resing KA, Ahn NG. Mapping protein post-translational modifications with mass spectrometry. Nature methods, 2007, 4(10):798-806.
    [6] Tong AH, Drees B, Nardelli G et al. A combined experimental and computational strategy to define protein interaction networks for peptide recognition modules. Science, 2002, 295(5553):321-324.
    [7] Schweitzer B, Predki P, Snyder M. Microarrays to characterize protein interactions on a whole-proteome scale. Proteomics, 2003, 3(11):2190-2199.
    [8] Zhu H, Bilgin M, Bangham R et al. Global analysis of protein activities using proteome chips. Science, 2001, 293(5537):2101-2105.
    [9] Fields S, Song O. A novel genetic system to detect protein-protein interactions. Nature, 1989, 340(6230):245-246.
    [10] Ito T, Chiba T, Ozawa R et al. A comprehensive two-hybrid analysis to explore the yeast protein interactome. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98(8):4569-4574.
    [11] Stryer L. Fluorescence energy transfer as a spectroscopic ruler. Annual review of biochemistry, 1978, 47:819-846
    [12] Kuroda K, Kato M, Mima J, Ueda M. Systems for the detection and analysis of protein-protein interactions. Applied microbiology and biotechnoogyl, 2006, 71(2):127-136.
    [13] Kerppola TK. Complementary methods for studies of protein interactions in living cells. Nature methods, 2006, 3(12):969-971.
    [14] Hu CD, Chinenov Y, Kerppola TK. Visualization of interactions among bZIP and Rel family proteins in living cells using bimolecular fluorescence complementation. Molecular cell, 2002, 9(4):789-798.
    [15] Uetz P, Giot L, Cagney G et al. A comprehensive analysis of protein-protein interactions in Saccharomyces cerevisiae. Nature, 2000, 403(6770):623-627.
    [16] Stelzl U, Worm U, Lalowski M et al. A human protein-protein interaction network: a resource for annotating the proteome. Cell, 2005, 122(6):957-968.
    [17] Koleske AJ, Young RA. An RNA polymerase II holoenzyme responsive to activators. Nature, 1994, 368(6470):466-469.
    [18] Johnsson N, Varshavsky A. Split ubiquitin as a sensor of protein interactions in vivo. Proceedings of the National Academy of Sciences of the United States of America, 1994, 91(22):10340-10344.
    [19] Stagljar I, Korostensky C, Johnsson N, te Heesen S. A genetic system based on split-ubiquitin for the analysis of interactions between membrane proteins in vivo. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95(9):5187-5192.
    [20] Dmitrova M, Younes-Cauet G, Oertel-Buchheit P et al. A new LexA-based genetic system for monitoring and analyzing protein heterodimerization in Escherichia coli. Molecular genetics and genomics, 1998, 257(2):205-212.
    [21] Karimova G, Dautin N, Ladant D. Interaction network among Escherichia coli membrane proteins involved in cell division as revealed by bacterial two-hybrid analysis. Journal of bacteriology, 2005, 187(7):2233-2243.
    [22] Karimova G, Pidoux J, Ullmann A, Ladant D. A bacterial two-hybrid system based on a reconstituted signal transduction pathway. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95(10):5752-5756.
    [23] Dang CV, Barrett J, Villa-Garcia M et al. Intracellular leucine zipper interactionssuggest c-Myc hetero-oligomerization. Molecular and cellular biology, 1991, 11(2):954-962.
    [24] Sadowski I, Bell B, Broad P, Hollis M. GAL4 fusion vectors for expression in yeast or mammalian cells. Gene, 1992, 118(1):137-141.
    [25] Fagan R, Flint KJ, Jones N. Phosphorylation of E2F-1 modulates its interaction with the retinoblastoma gene product and the adenoviral E4 19 kDa protein. Cell, 1994, 78(5):799-811.
    [26] Latt SA, Cheung HT, Blout ER. Energy Transfer. a System with Relatively Fixed Donor-Acceptor Separation. Journal of the American Chemical Society, 1965, 87:995-1003.
    [27] Stryer L, Haugland RP. Energy transfer: a spectroscopic ruler. Proceedings of the National Academy of Sciences of the United States of America, 1967, 58(2):719-726.
    [28] dos Remedios CG, Moens PD. Fluorescence resonance energy transfer spectroscopy is a reliable "ruler" for measuring structural changes in proteins. Dispelling the problem of the unknown orientation factor. Journal of structural biology, 1995, 115(2):175-185.
    [29] Clegg RM. Fluorescence resonance energy transfer. Current Opinion in Biotechnology, 1995, 6(1):103-110.
    [30] Periasamy A. Fluorescence resonance energy transfer microscopy: a mini review. Journal of biomedical optics, 2001, 6(3):287-291.
    [31] Elangovan M, Day RN, Periasamy A. Nanosecond fluorescence resonance energy transfer-fluorescence lifetime imaging microscopy to localize the protein interactions in a single living cell. Journal of microscopy, 2002, 205(Pt 1):3-14.
    [32] Tsuji A, Sato Y, Hirano M et al. Development of a time-resolved fluorometric method for observing hybridization in living cells using fluorescence resonance energy transfer. Biophysical journal, 2001, 81(1):501-515.
    [33] Medvedev SY, Tokunaga T, Schultz RM et al. Quantitative analysis of gene expression in preimplantation mouse embryos using green fluorescent protein reporter. Biology of reproduction, 2002, 67(1):282-286.
    [34] Bastiaens PI, Squire A. Fluorescence lifetime imaging microscopy: spatialresolution of biochemical processes in the cell. Trends in cell biology, 1999, 9(2):48-52.
    [35] Slaughter BD, Schwartz JW, Li R. Mapping dynamic protein interactions in MAP kinase signaling using live-cell fluorescence fluctuation spectroscopy and imaging. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104(51):20320-20325.
    [36] Liu HW, Zeng Y, Landes CF et al. Insights on the role of nucleic acid/protein interactions in chaperoned nucleic acid rearrangements of HIV-1 reverse transcription. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104(13):5261-5267.
    [37] You X, Nguyen AW, Jabaiah A et al. Intracellular protein interaction mapping with FRET hybrids. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(49):18458-18463.
    [38] Xu Y, Piston DW, Johnson CH. A bioluminescence resonance energy transfer (BRET) system: application to interacting circadian clock proteins. Proceedings of the National Academy of Sciences of the United States of America , 1999, 96(1):151-156.
    [39] Pfleger KD, Eidne KA. Illuminating insights into protein-protein interactions using bioluminescence resonance energy transfer (BRET). Nature methods, 2006, 3(3):165-174.
    [40] Coulon V, Audet M, Homburger V et al. Subcellular imaging of dynamic protein interactions by bioluminescence resonance energy transfer. Biophysical journal, 2008, 94(3):1001-1009.
    [41] Pfleger KD, Seeber RM, Eidne KA. Bioluminescence resonance energy transfer (BRET) for the real-time detection of protein-protein interactions. Nature protocols, 2006, 1(1):337-345.
    [42] Xu X, Soutto M, Xie Q et al. Imaging protein interactions with bioluminescence resonance energy transfer (BRET) in plant and mammalian cells and tissues. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104(24):10264-10269.
    [43] Jorgensen R, Holliday ND, Hansen JL et al. Characterization of G-Protein CoupledReceptor Kinase Interaction with the NK-1 Receptor Using BRET. Molecular pharmacology, 2007.
    [44] Heroux M, Breton B, Hogue M, Bouvier M. Assembly and signaling of CRLR and RAMP1 complexes assessed by BRET. Biochemistry, 2007, 46(23):7022-7033.
    [45] Prinz A, Diskar M, Herberg FW. Application of bioluminescence resonance energy transfer (BRET) for biomolecular interaction studies. Chembiochem, 2006, 7(7):1007-1012.
    [46] Nouaille S, Blanquart C, Zilberfarb V et al. Interaction between the insulin receptor and Grb14: a dynamic study in living cells using BRET. Biochemical pharmacology, 2006, 72(11):1355-1366.
    [47] Rossi F, Charlton CA, Blau HM. Monitoring protein-protein interactions in intact eukaryotic cells by beta-galactosidase complementation. Proc Natl Acad Sci U S A, 1997, 94(16):8405-8410.
    [48] Remy I, Michnick SW. Clonal selection and in vivo quantitation of protein interactions with protein-fragment complementation assays. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96(10):5394-5399.
    [49] Pelletier JN, Campbell-Valois FX, Michnick SW. Oligomerization domain-directed reassembly of active dihydrofolate reductase from rationally designed fragments. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95(21):12141-12146.
    [50] Galarneau A, Primeau M, Trudeau LE, Michnick SW. Beta-lactamase protein fragment complementation assays as in vivo and in vitro sensors of protein protein interactions. Nature biotechnology, 2002, 20(6):619-622.
    [51] Paulmurugan R, Umezawa Y, Gambhir SS. Noninvasive imaging of protein-protein interactions in living subjects by using reporter protein complementation and reconstitution strategies. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99(24):15608-15613.
    [52] Kaihara A, Kawai Y, Sato M et al. Locating a protein-protein interaction in living cells via split Renilla luciferase complementation. Analytical Chemistry, 2003, 75(16):4176-4181.
    [53] Paulmurugan R, Gambhir SS. Monitoring protein-protein interactions using split synthetic renilla luciferase protein-fragment-assisted complementation. Analytical Chemistry, 2003, 75(7):1584-1589.
    [54] Kim SB, Otani Y, Umezawa Y, Tao H. Bioluminescent indicator for determining protein-protein interactions using intramolecular complementation of split click beetle luciferase. Analytical Chemistry, 2007, 79(13):4820-4826.
    [55] Remy I, Michnick SW. A highly sensitive protein-protein interaction assay based on Gaussia luciferase. Nature methods, 2006, 3(12):977-979.
    [56] Ghosh I, Hamilton AD, Regan L. Antiparallel leucine zipper-directed protein reassembly: Application to the green fluorescent protein. Journal of the American Chemical Society, 2000, 122(23):5658-5659.
    [57] Hu CD, Chinenov Y, Kerppola TK. Visualization of interactions among bZip and Rel family proteins in living cells using bimolecular fluorescence complementation. Molecular Cell, 2002, 9(4):789-798.
    [58] Reid BG, Flynn GC. Chromophore formation in green fluorescent protein. Biochemistry, 1997, 36(22):6786-6791.
    [59] Shu X, Shaner NC, Yarbrough CA et al. Novel chromophores and buried charges control color in mFruits. Biochemistry, 2006, 45(32):9639-9647.
    [60] Miyawaki A, Nagai T, Mizuno H. Mechanisms of protein fluorophore formation and engineering. Current opinion in chemical biology, 2003, 7(5):557-562.
    [61] Tsien RY. The green fluorescent protein. Annual review of biochemistry, 1998, 67:509-544.
    [62] Biondi RM, Baehler PJ, Reymond CD, Veron M. Random insertion of GFP into the cAMP-dependent protein kinase regulatory subunit from Dictyostelium discoideum. Nucleic acids research, 1998, 26(21):4946-4952.
    [63] Abedi MR, Caponigro G, Kamb A. Green fluorescent protein as a scaffold for intracellular presentation of peptides. Nucleic acids research, 1998, 26(2):623-630.
    [64] Baird GS, Zacharias DA, Tsien RY. Circular permutation and receptor insertion within green fluorescent proteins. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96(20):11241-11246.
    [65] Heinemann U, Hahn M. Circular permutation of polypeptide chains: implicationsfor protein folding and stability. Progress in biophysics and molecular biology, 1995, 64(2-3):121-143.
    [66] Hu CD, Kerppola TK. Simultaneous visualization of multiple protein interactions in living cells using multicolor fluorescence complementation analysis. Nature biotechnology, 2003, 21(5):539-545.
    [67] Shyu YJ, Liu H, Deng X, Hu CD. Identification of new fluorescent protein fragments for bimolecular fluorescence complementation analysis under physiological conditions. Biotechniques, 2006, 40(1):61-66.
    [68] Jach G, Pesch M, Richter K et al. An improved mRFP1 adds red to bimolecular fluorescence complementation. Nature methods, 2006, 3(8):597-600.
    [69] Shyu YJ, Suarez CD, Hu CD. Visualization of AP-1 NF-{kappa}B ternary complexes in living cells by using a BiFC-based FRET. Proceedings of the National Academy of Sciences of the United States of America, 2008.
    [70] Berggard T, Linse S, James P. Methods for the detection and analysis of protein-protein interactions. Proteomics, 2007, 7(16):2833-2842.
    [71] Cardullo RA. Theoretical principles and practical considerations for fluorescence resonance energy transfer microscopy. Methods in cell biology, 2007, 81:479-494.
    [72] Magliery TJ, Wilson CG, Pan W et al. Detecting protein-protein interactions with a green fluorescent protein fragment reassembly trap: scope and mechanism. Journal of the American Chemical Society, 2005, 127(1):146-157.
    [73] Morell M, Espargaro A, Aviles FX, Ventura S. Detection of transient protein-protein interactions by bimolecular fluorescence complementation: the Abl-SH3 case. Proteomics, 2007, 7(7):1023-1036.
    [74] Atanasiu D, Whitbeck JC, Cairns TM et al. Bimolecular complementation reveals that glycoproteins gB and gH/gL of herpes simplex virus interact with each other during cell fusion. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104(47):18718-18723.
    [75] Boyko V, Leavitt M, Gorelick R et al. Coassembly and complementation of Gag proteins from HIV-1 and HIV-2, two distinct human pathogens. Molecular cell, 2006, 23(2):281-287.
    [76] Park K, Yi SY, Lee CS et al. A split enhanced green fluorescent protein-basedreporter in yeast two-hybrid system. The protein journal, 2007, 26(2):107-116.
    [77] Sung MK, Huh WK. Bimolecular fluorescence complementation low analysis system for in vivo detection of protein-protein interaction in Saccharomyces cerevisiae. Yeast, 2007, 24(9):767-775.
    [78] Cole KC, McLaughlin HW, Johnson DI. Use of bimolecular fluorescence complementation to study in vivo interactions between Cdc42p and Rdi1p of Saccharomyces cerevisiae. Eukaryotic cell, 2007, 6(3):378-387.
    [79] Hoff B, Kuck U. Use of bimolecular fluorescence complementation to demonstrate transcription factor interaction in nuclei of living cells from the filamentous fungus Acremonium chrysogenum. Current genetics, 2005, 47(2):132-138.
    [80] Kerppola TK. Bimolecular fluorescence complementation: visualization of molecular interactions in living cells. Methods in cell biology, 2008, 85:431-470.
    [81] Molendijk AJ, Ruperti B, Singh MK et al. A cysteine-rich receptor-like kinase NCRK and a pathogen induced protein kinase RBK1 are Rop GTPase interactors. Plant Journal, 2007.
    [82] Dong G, Ni Z, Yao Y et al. Wheat Dof transcription factor WPBF interacts with TaQM and activates transcription of an alpha-gliadin gene during wheat seed development. Plant molecular biology, 2007, 63(1):73-84.
    [83] Walter M, Chaban C, Schutze K et al. Visualization of protein interactions in living plant cells using bimolecular fluorescence complementation. Plant Journal, 2004, 40(3):428-438.
    [84] Tzfira T, Vaidya M, Citovsky V. Involvement of targeted proteolysis in plant genetic transformation by Agrobacterium. Nature, 2004, 431(7004):87-92.
    [85] Zhang SF, Ma C, Chalfie M. Combinatorial marking of cells and organelles with reconstituted fluorescent proteins. Cell, 2004, 119(1):137-+.
    [86] Park K, Yi SY, Lee CS et al. A split enhanced green fluorescent protein-based reporter in yeast two-hybrid system. Protein Journal, 2007, 26(2):107-116.
    [87] Jeong J, Kim SK, Ahn J et al. Monitoring of conformational change in maltose binding protein using split green fluorescent protein. Biochemical and Biophysical Research Communications, 2006, 339(2):647-651.
    [88] Valencia-Burton M, McCullough RM, Cantor CR, Broude NE. RNA visualizationin live bacterial cells using fluorescent protein complementation. Nature Methods, 2007, 4(5):421-427.
    [89] Ozawa T, Natori Y, Sato M, Umezawa Y. Imaging dynamics of endogenous mitochondrial RNA in single living cells. Nature Methods, 2007, 4(5):413-419.
    [90] Prasher DC, Eckenrode VK, Ward WW et al. Primary structure of the Aequorea victoria green-fluorescent protein. Gene, 1992, 111(2):229-233.
    [91] Patterson G, Day RN, Piston D. Fluorescent protein spectra. Journal of cell science, 2001, 114(Pt 5):837-838.
    [92] Rizzo MA, Springer GH, Granada B, Piston DW. An improved cyan fluorescent protein variant useful for FRET. Nature biotechnology, 2004, 22(4):445-449.
    [93] Griesbeck O, Baird GS, Campbell RE et al. Reducing the environmental sensitivity of yellow fluorescent protein. Mechanism and applications. The Journal of biological chemistry, 2001, 276(31):29188-29194.
    [94] Matz MV, Fradkov AF, Labas YA et al. Fluorescent proteins from nonbioluminescent Anthozoa species. Nature biotechnology, 1999, 17(10):969-973.
    [95] Merzlyak EM, Goedhart J, Shcherbo D et al. Bright monomeric red fluorescent protein with an extended fluorescence lifetime. Nature methods, 2007, 4(7):555-557.
    [96] Wiedenmann J, Schenk A, Rocker C et al. A far-red fluorescent protein with fast maturation and reduced oligomerization tendency from Entacmaea quadricolor (Anthozoa, Actinaria). Proceedings of the National Academy of Sciences of the United States of America, 2002, 99(18):11646-11651.
    [97] Baird GS, Zacharias DA, Tsien RY. Biochemistry, mutagenesis, and oligomerization of DsRed, a red fluorescent protein from coral. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97(22):11984-11989.
    [98] Tubbs JL, Tainer JA, Getzoff ED. Crystallographic structures of Discosoma red fluorescent protein with immature and mature chromophores: linking peptide bond trans-cis isomerization and acylimine formation in chromophore maturation. Biochemistry, 2005, 44(29):9833-9840.
    [99] Wall MA, Socolich M, Ranganathan R. The structural basis for red fluorescence in the tetrameric GFP homolog DsRed. Nature structural biology, 2000, 7(12):1133-1138.
    [100] Yarbrough D, Wachter RM, Kallio K et al. Refined crystal structure of DsRed, a red fluorescent protein from coral, at 2.0-A resolution. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98(2):462-467.
    [101] Jakobs S, Subramaniam V, Schonle A et al. EGFP and DsRed expressing cultures of Escherichia coli imaged by confocal, two-photon and fluorescence lifetime microscopy. FEBS letters, 2000, 479(3):131-135.
    [102] Yanushevich YG, Staroverov DB, Savitsky AP et al. A strategy for the generation of non-aggregating mutants of Anthozoa fluorescent proteins. FEBS letters, 2002, 511(1-3):11-14.
    [103] Bevis BJ, Glick BS. Rapidly maturing variants of the Discosoma red fluorescent protein (DsRed). Nature biotechnology, 2002, 20(1):83-87.
    [104] Campbell RE, Tour O, Palmer AE et al. A monomeric red fluorescent protein. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99(12):7877-7882.
    [105] Gross LA, Baird GS, Hoffman RC et al. The structure of the chromophore within DsRed, a red fluorescent protein from coral. Proceedings of the National Academy of Sciences of the United States of America, 2000, 97(22):11990-11995.
    [106] Shaner NC, Campbell RE, Steinbach PA et al. Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp. red fluorescent protein. Nature biotechnology, 2004, 22(12):1567-1572.
    [107] Wang L, Jackson WC, Steinbach PA, Tsien RY. Evolution of new nonantibody proteins via iterative somatic hypermutation. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101(48):16745-16749.
    [108] Weissleder R. A clearer vision for in vivo imaging. Nature biotechnology, 2001, 19(4):316-317.
    [109] Petersen J, Wilmann PG, Beddoe T et al. The 2.0-A crystal structure of eqFP611, a far red fluorescent protein from the sea anemone Entacmaea quadricolor. The Journal of biological chemistry, 2003, 278(45):44626-44631.
    [110] Shcherbo D, Merzlyak EM, Chepurnykh TV et al. Bright far-red fluorescent protein for whole-body imaging. Nature methods, 2007, 4(9):741-746.
    [111] Wiedenmann J, Vallone B, Renzi F et al. Red fluorescent protein eqFP611 and its genetically engineered dimeric variants. Journal of biomedical optics, 2005, 10(1):14003.
    [112] Nienhaus K, Vallone B, Renzi F et al. Crystallization and preliminary X-ray diffraction analysis of the red fluorescent protein eqFP611. Acta crystallographica, 2003, 59(Pt 7):1253-1255.
    [113] Lukyanov KA, Fradkov AF, Gurskaya NG et al. Natural animal coloration can Be determined by a nonfluorescent green fluorescent protein homolog. The Journal of biological chemistry, 2000, 275(34):25879-25882.
    [114] Andresen M, Wahl MC, Stiel AC et al. Structure and mechanism of the reversible photoswitch of a fluorescent protein. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102(37):13070-13074.
    [115] Chudakov DM, Feofanov AV, Mudrik NN et al. Chromophore environment provides clue to "kindling fluorescent protein" riddle. The Journal of biological chemistry, 2003, 278(9):7215-7219.
    [116] Chudakov DM, Belousov VV, Zaraisky AG et al. Kindling fluorescent proteins for precise in vivo photolabeling. Nature biotechnology, 2003, 21(2):191-194.
    [117] Gurskaya NG, Fradkov AF, Terskikh A et al. GFP-like chromoproteins as a source of far-red fluorescent proteins. FEBS letters, 2001, 507(1):16-20.
    [118] Wilmann PG, Petersen J, Pettikiriarachchi A et al. The 2.1 A Crystal Structure of the Far-red Fluorescent Protein HcRed: Inherent Conformational Flexibility of the Chromophore. Journal of molecular biology, 2005, 349(1):223-237.
    [119] Fradkov AF, Verkhusha VV, Staroverov DB et al. Far-red fluorescent tag for protein labelling. The Biochemical journal, 2002, 368(Pt 1):17-21.
    [120] Verkhusha VV, Lukyanov KA. The molecular properties and applications of Anthozoa fluorescent proteins and chromoproteins. Nature biotechnology, 2004, 22(3):289-296.
    [121] Wilmann PG, Petersen J, Pettikiriarachchi A et al. The 2.1A crystal structure of the far-red fluorescent protein HcRed: inherent conformational flexibility of thechromophore. Journal of molecular biology, 2005, 349(1):223-237.
    [122] Phillips GN, Jr. Structure and dynamics of green fluorescent protein. Current opinion in structural biology, 1997, 7(6):821-827.
    [123] Zacharias DA, Violin JD, Newton AC, Tsien RY. Partitioning of lipid-modified monomeric GFPs into membrane microdomains of live cells. Science (New York, N.Y, 2002, 296(5569):913-916.
    [124] Reich NC, Levine AJ. Specific interaction of the SV40 T antigen-cellular p53 protein complex with SV40 DNA. Virology, 1982, 117(1):286-290.
    [125] Crawford LV, Pim DC, Lamb P. The cellular protein p53 in human tumours. Molecular biology & medicine, 1984, 2(4):261-272.
    [126] Lilyestrom W, Klein MG, Zhang R et al. Crystal structure of SV40 large T-antigen bound to p53: interplay between a viral oncoprotein and a cellular tumor suppressor. Genes & Development, 2006, 20(17):2373-2382.
    [127] Everett RD, Chelbi-Alix MK. PML and PML nuclear bodies: implications in antiviral defence. Biochimie, 2007, 89(6-7):819-830.
    [128] Nagai T, Ibata K, Park ES et al. A variant of yellow fluorescent protein with fast and efficient maturation for cell-biological applications. Nature biotechnology, 2002, 20(1):87-90.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700