用户名: 密码: 验证码:
隧道衬砌水压力荷载的实用化计算研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着路网向山区的拓展,线路标准的提升,特别是高速铁路和高速公路大规模的修建,会遇到大量的高水头富水隧道问题。“以排为主”的隧道地下水处治理念不符合当前环境保护的要求,与之相应的计算水压力的规范条文亦不能满足工程设计的需要。而采用“以堵为主、限量排放”的地下水处治方案中,水压力成为衬砌结构的主要荷载之一。本文围绕高水头富水区隧道衬砌水压力荷载问题,采用理论分析、数值计算、室内试验等手段,并结合具体工程实例对衬砌水压力荷载的实用化计算进行深入系统的研究。
     (1)研究了裂隙块状围岩中衬砌水压力集度,得出块状围岩经由出露在临空面上的块体传递到衬砌上的水压力集度量值为孔隙水压力p,方向为临空面法线方向,其集度量值的大小同围岩块体形状、大小无关。
     (2)依据渗流理论,得出了轴对称条件下,围岩、衬砌渗流力公式与隧道衬砌前后涌水量计算公式;利用保角变换原理,针对两种不同衬砌背后水压力边界条件(a.φ= y,b.φ= ha),推导出了一般情况下水底隧道涌水量和围岩渗流力的解析公式。
     (3)基于轴对称解析解,通过对衬砌渗流力积分得出了作用在衬砌上的水压力在量值上等于围岩与衬砌交界面上围岩介质中的孔隙水压力;并对衬砌水压力折减系数敏感度进行了分析,得出决定衬砌水压力折减系数的主要因素是衬砌与围岩的相对渗透性。
     (4)通过数值模拟研究了隧道开挖与支护对围岩水力势的影响以及设置防水板和排导系统的复合式衬砌水压力的分布特征;提出了设置防水板和排导系统的复合式衬砌等效渗透系数kl*的确定方法,通过引入等效渗透系数在设计中实现了衬砌水压力的实用化计算。
     (5)探讨了不同排导结构的衬砌水压力的分布规律,为隧道防排水系统的合理选择提供了依据。
     (6)通过室内试验,验证了保持衬砌背后排水系统的畅通是减小作用在衬砌上水压力的有效措施;当衬砌采用全封闭防水措施时,无论是围岩渗透系数很小或采用围岩注浆,都不能降低最终作用在衬砌上的水压力。
     (7)阐述了利用轴对称解估算衬砌水压力的方法与原理,并提出两种简单可行的衬砌水压力估算方法;研究了轴对称解对不同断面形状隧道与浅埋隧道的适用性,得出轴对称解也适用于非圆形隧道衬砌水压力的估算,只要将非圆形隧道断面等效成圆形隧道即可。
     (8)结合本文部分研究成果,选取两个典型的工程实例,对隧道水荷载特征进行了分析,可供类似工程借鉴、参考。
With the expansion of road net to mountainous regions and the improvement of route standard, especially with the large-scaled construction of high-speed railways and express ways, large amounts of problems of high water head tunnel will be met. The groundwater treatment which“mainly use drainage”does not meet the current environmental protection policy, and the corresponding guidelines for calculating external water pressure on tunnel lining does not meet the requirements of engineering design as well. According to new concept of water control in tunnel, the amount of water inflow should be limited. In this case, water pressure becomes one of the major loads of lining structure. This paper focuses on the problem of tunnel lining water pressure load of high water head tunnel, uses theoretical derivation, numerical simulation, laboratory test, and analysis of engineering example to intensively and systematically study the practical calculation of water pressure load on tunnel lining.
     (1) Aim at determination of the water pressure upon the tunnel lining in jointed rock mass, and a conclusion is presented: the value of water pressure of lining, which transferred through rock block, equal to the value of pore water pressure, and the direction is perpendicular to the free face, regardless of the shape and size of the rock block.
     (2) According to seepage theory, the equations for calculating seepage force in rock mass/lining are obtained, and the formulas of water inflow of tunnel are deducted as well. Use of conformal transformation and aim at the boundary conditions of two different lining water pressure (a.φ= y, b.φ= ha), the equations for calculating the water inflow of underwater tunnel and the seepage force are also deducted.
     (3) Based on axisymmetric solution, through integrating seepage force of lining, a conclusion is obtained, that is external water pressure acting on lining is equal to pore water pressure in the interface between rock mass and lining. By analysis of sensitivity of the reduction factor of lining water pressure, the main factor determining the reduction factor of lining water pressure is the relatively permeability of lining to rock mass is obtained.
     (4) Through numerical simulation, the effect of excavation and supporting on the ground water potential and the distribution of water pressure of composite lining with waterproofing sheet and drainage system is studied, and a method for determining“equivalent permeability coefficient”of the composite lining (kl*) with waterproofing sheet and drainage system is presented for the practical calculation of lining water pressure.
     (5) The distribution of lining water pressure for different drainage style is discussed to provide the base for choosing suitable drainage system.
     (6) A laboratory test proved that maintain the drainage system behind the lining unimpeded is an efficient method to decrease the lining water pressure. When full sealing waterproofing system used, water pressure finally acting on lining can not be deducted, no matter use of grouting.
     (7) Based on use of axisymmetric solution, two feasible simple methods are presented for estimating water pressure upon lining, and applicability of axisymmetric solution for non-circular cross section tunnels and shallow tunnels are also presented in this paper.
     (8) Integration of study results in this paper, several projects are choosen for analyzing the characteristics of water pressure upon tunnel lining, which can be used as references for similar engineering activities.
引文
[1]刘招伟.圆梁山隧道岩溶突水机理及其防治对策.北京:中国地质大学, 2004.
    [2]张志强,关宝树,仇文革,等.圆梁山隧道在高水位条件下支护结构体系研究.岩石力学与工程学报, 23(005): 763-769, 2004
    [3]张民庆,刘招伟.圆梁山隧道岩溶突水特征分析.岩土工程学报, 27(004): 422-426, 2005
    [4]任旭华,陈祥荣,单治钢.富水区深埋长隧洞工程中的主要水问题及对策.岩石力学与工程学报, 23(11): 1924-1929, 2004
    [5] Matsuo S. An overview of the Seikan tunnel project. Tunnelling and Underground Space Technology, 1(3-4): 323-331, 1986
    [6] Hashimoto K, Tanabe Y. Construction of the Seikan undersea tunnel--II. execution of the most difficult sections. Tunnelling and Underground Space Technology, 1(3-4): 373-379, 1986
    [7]王建宇.对我国隧道工程中2个问题的思考.铁道建筑技术, (4): 1-4, 2001
    [8]王建宇.对隧道衬砌水压力荷载的讨论.现代隧道技术,增刊: 67-73, 2006
    [9]王建宇.对隧道工程技术若干问题的质疑.现代隧道技术: 11—17, 2002
    [10]王建宇.隧道围岩渗流和衬砌水压力荷载.铁道建筑技术, (2): 1-6, 2008
    [11]张成平.隧道结构水压折减及相关问题研究:硕士论文.北京:北京交通大学, 2002.
    [12] Lee IM, Kim JH, Reddi LN. Clogging Phenomena of the Residual Soil-Geotextile Filter System. Geotechnical Testing Journal, 25(4): 379-390, 2002
    [13] Shin JH, Potts DM, Zdravkovic L. The effect of pore-water pressure on NATM tunnel linings in decomposed granite soil. CANADIAN GEOTECHNICAL JOURNAL, 42(6): 1585-1599, 2005
    [14]蒋忠信.隧道工程与水环境的相互作用.岩石力学与工程学报, 24(1): 121-127, 2005
    [15]张有天张,王镭.再论隧洞水荷载的静力计算.水利学报, 3(3): 22-31, 1985
    [16]张有天张.隧洞水荷载的静力计算.岩石力学与工程学报, 1980
    [17]周太开,张有天.关于水工隧洞结构计算若干问题的商榷.水力发电, (5), 1980
    [18]潘家铮,张有天,张武功.学术讨论---隧洞水荷载的静力计算.水利学报, 5: 73-79, 1981
    [19] Farmer IW, Jennings DH. Effect of strata permeability on the radial hydrostatic pressures on mine shaft linings. Mine Water and the Environment, 2(3): 17-24, 1983
    [20]王建宇,胡元芳.对岩石隧道衬砌结构防水问题的讨论.现代隧道技术, 38(1): 20-25, 2001
    [21]中华人民共和国行业标准.地铁设计规范(GB50157-2003). 2003.
    [22]中华人民共和国行业标准.铁路隧道设计规范(TB10003-2001). 2001.
    [23]中华人民共和国行业标准.水工隧洞设计规范(SL279-2002). 2002.
    [24]张有天.岩石隧道衬砌外水压力问题的讨论.现代隧道技术, 3: 1-4, 2003
    [25]中华人民共和国行业标准.公路隧道设计规范(JTG D70-2004). 2004.
    [26] British Tunneling Society . Tunnel Lining Design Guide, 2004.
    [27]国外高速铁路标准及规程汇编第十二册.德国铁路铁路隧道设计、施工与养护(DS 853). 1993.
    [28]朱伟.日本隧道技术标准规范(盾构篇)及解释.西南交通大学出版社, 1988.
    [29] O'Rourke TD. Guidelines for Tunnel Lining Design. American Society of Civil Engineers, 1984.
    [30]邹成杰.水利水电岩溶工程地质.北京:水利电力出版社, 1994.
    [31]蒋忠信.深埋岩溶隧道水压力的预测与防治.铁道工程学报, 6(90): 37-40, 2005
    [32]董国贤.水下公路隧道.北京:人民交通出版社, 1984.
    [33]张有天.隧洞及压力管道设计中的外水压力修正系数.水力发电, (12): 30-34, 1996
    [34]关宝树.青函隧道土压研究报告第八章隧道衬砌上的压力.隧道译丛, 10: 38-50, 1980
    [35]王建秀,何静.深埋隧道外水压力计算的解析-数值法.水文地质工程地质, 29(3): 17-19, 2002
    [36] T.S.Nam EJJ, G.C.Choi,et al. Hydraulic Lining-ground Interaction of Subsea Tunnels. Chinese Journal of Rock Mechanics and Engineering, 26(supp.2): 3674-3681, 2007
    [37] Lee IM, Park KJ, Nam SW. Analysis of an underwater tunnel with consideration of seepage force. Tunnels and Metropolises: 315-319, 1998
    [38] Polubarinova-Kochina PY, De Wiest RJM. Theory of ground water movement: Princeton University Press Princeton, NJ, 1962.
    [39] Lei S. An Analytical Solution for Steady Flow into a Ttonnel. Ground water, 37(1): 23-26, 1999
    [40] Kolymbas D, Wagner P. Groundwater ingress to tunnels–The exact analytical solution. Tunnelling and Underground Space Technology incorporating Trenchless Technology Research, 22(1): 23-27, 2007
    [41]中华人民共和国铁道部.铁路工程水文地质勘察规程(TB10049-2004). 2004.
    [42]朱大力.预测隧道涌水量的方法.工程勘察, (04), 2000
    [43]王建秀,朱合华,叶为民.隧道涌水量的预测及其工程应用.岩石力学与工程学报, 23(007): 1150-1153, 2004
    [44]徐帮树,张宪堂,张芹.海底隧道涌水量预测及应用研究.武汉理工大学学报:交通科学与工程版, 31(004): 599-602, 2007
    [45]黄涛,杨立中.山区隧道涌水量计算中的双场耦合作用研究.成都:西南交通大学出版社, 2002.
    [46] Chisyaki T. A study on confined flow of ground water through a tunnel. Ground Water, 22(2): 162-167, 1984
    [47] Tal A, Dagan G. Flow toward storage tunnels beneath a water table, 1. Two-dimensional flow. Water Resources Research, 19(1): 241-249, 1983
    [48] Tal A, Dagan G. Flow toward storage tunnels beneath a water table, 2. Three dimensional flow. Water Resources Research, 20(9): 1216-1224, 1984
    [49] Bouvard M, and Pinto,N. Amenagement capivari-cachoeira. Etude du puits en charge. . Houille Blanche, 7: 747-760, 1969
    [50] Schleiss A. Design of previous pressure tunnels. International Water Power and Dam Construction, 38: 21-26, 1986
    [51] Fernaondez G, Alvarez TAJ. Seepage-Induced Effective Stresses and Water Pressures Around Pressure Tunnels. Journal of Geotechnical Engineering, 120(1): 108-128, 1994
    [52] Park KH, Lee JG, Owatsiriwong A. Seepage force in a drained circular tunnel: An analytical approach. Canadian Geotechnical Journal, 45(3): 432-436, 2008
    [53] Louis C. Rock hydraulics in rock mechanics, edited by L.Muller,Verlay Wien New York. 1974
    [54] Louis C. A study of groundwater flow in jointed rock and its influence on the stability of rock masses. London: Imperial College, 1969.
    [55] Zimmerman R, Chen G, Hadgu T, et.al. A numerical dual-porosity model with semianalytical treatment of fracture of matrix flow. Water Resources Research, 29: 2127-2127, 1993
    [56] Louis C, Maini Y. Determination of in-situ hydraulic parameters in jointed rock. Second Congress on Rock Mechanics, 1970:1-2.
    [57]周志芳,钱考量.地基各向异性岩体内渗透力的三给边界元分析.岩土工程学报, 114(2), 1992
    [58]王秀英,谭忠盛,王梦恕,等.山岭隧道堵水限排围岩力学特性分析.岩土力学, 29(001): 75-80, 2008
    [59]王秀英,谭忠盛,王梦恕,等.高水位隧道堵水限排围岩与支护相互作用分析.岩土力学,29(006): 1623-1628, 2008
    [60]丁浩,蒋树屏,杨林德.外水压下隧道衬砌的力学响应及结构对策研究.岩土力学, 29(010): 2799-2804, 2008
    [61]丁浩,蒋树屏,杨林德.外水压下隧道围岩与衬砌的随机有限元分析.岩土工程学报, 31(4): 643-647, 2009
    [62]吉小明,王宇会,阳志元.隧道开挖问题中的流固耦合模型及数值模拟.岩土力学, 28(增刊): 379-384, 2007
    [63] Yoo C. Interaction between Tunneling and Groundwater—Numerical Investigation Using Three Dimensional Stress–Pore Pressure Coupled Analysis. Journal of Geotechnical and Geoenvironmental Engineering, 131: 240, 2005
    [64] Lee S, Jung J, Nam S, et.al. The influence of seepage forces on ground reaction curve of circular opening. Tunnelling and Underground Space Technology incorporating Trenchless Technology Research, 22(1): 28-38, 2007
    [65]张有天.地下结构的地下水荷载.工程力学, (01): 38-50, 1996
    [66] Nam SW, Bobet A. Liner stresses in deep tunnels below the water table. Tunnelling and Underground Space Technology incorporating Trenchless Technology Research, 21(6): 626-635, 2006
    [67] Mashimo H, Ishimura T. Evaluation of the load on shield tunnel lining in gravel. Tunnelling and Underground Space Technology incorporating Trenchless Technology Research, 18(2-3): 233-241, 2003
    [68] Lee IM, Nam SW. The study of seepage forces acting on the tunnel lining and tunnel face in shallow tunnels. Tunnelling and Underground Space Technology incorporating Trenchless Technology Research, 16(1): 31-40, 2001
    [69]王建宇.隧道围岩渗流和衬砌水压力荷载.铁道建筑技术, (2): 1-6, 2008
    [70]张有天,张武功,王镭.隧洞水荷载的静力计算.水利学报, 3: 52-62, 1980
    [71]张有天.地下结构的地下水荷载.工程力学, (增刊): 38-50, 1996
    [72]张有天,张武功,王镭.再论隧洞水荷载的静力计算.水利学报, 3(3): 22-31, 1985
    [73] Lei S. An Analytical Solution for Steady Flow into a Tunnel. Ground Water, 37(1): 23-26, 1999
    [74] El Tani M. Circular tunnel in a semi-infinite aquifer. Tunnelling and Underground Space Technology incorporating Trenchless Technology Research, 18(1): 49-55, 2003
    [75] Park KH, Owatsiriwong A, Lee JG. Analytical solution for steady-state groundwater inflow into a drained circular tunnel in a semi-infinite aquifer: A revisit. Tunnelling and Underground Space Technology incorporating Trenchless Technology Research, 23(2): 206-209, 2008
    [76]王秀英,王梦恕,张弥.计算隧道排水量及衬砌外水压力的一种简化方法.北方交通大学学报, 28(001): 8-10, 2004
    [77]王秀英,王梦恕,张弥.山岭隧道堵水限排衬砌外水压力研究.岩土工程学报, 27(001): 125-127, 2005
    [78]蒋忠信.隧道工程与水环境的相互作用.岩石力学与工程学报, 24(001): 121-127, 2005
    [79]王建宇.再谈隧道衬砌水压力.现代隧道技术, 40(3): 5-10, 2003
    [80]张成平,张顶立,王梦恕,等.高水压富水区隧道限排衬砌注浆圈合理参数研究.岩石力学与工程学报, 26(011): 2270-2276, 2007
    [81]王秀英,谭忠盛,王梦恕.钻爆法施工的海底隧道结构防排水技术研究.中国工程科学, 11(007): 71-75, 2009
    [82]高新强,仇文革.深埋单线铁路隧道衬砌高水压分界值研究.岩土力学, 26(010): 1675-1680, 2005
    [83]张祉道.隧道涌水量及水压计算公式半理论推导及防排水应用建议.现代隧道技术, 43(001): 1-6, 2006
    [84]王家服.隧道涌水量计算探讨.铁道学报, 16(004): 110-116, 1994
    [85]王建秀,杨立中.深埋隧道涌水量数值计算中的试算流量法.岩石力学与工程学报, 21(012): 1776-1780, 2002
    [86]张俊儒,仇文革.深埋高水位山岭隧道作用于衬砌外表面的水压力计算方法.现代隧道技术, 41(006): 12-15, 2004
    [87]高新强,仇文革,高扬.山岭隧道高水压下衬砌结构平面数值分析.岩土力学, 26(003): 365-369, 2005
    [88]高新强,仇文革,高扬.山岭隧道突水对衬砌结构受力影响数值分析.中国铁道科学, 25(006): 54-58, 2004
    [89] Arjnoi P, Jeong JH, Kim CY, et.al. Effect of drainage conditions on porewater pressure distributions and lining stresses in drained tunnels. Tunnelling and Underground Space Technology incorporating Trenchless Technology Research, 24(4): 376-389, 2009
    [90] Itasca Consulting Group,Inc. FLAC3D Fast Lagrangian Analysis of Continua in 3 Dimensions Fluid-Mechanical Interaction. 2005.
    [91]贺晓明,李智录,王淑贤.利用ANSYS热分析模块分析渗流场问题的探究.工程地质计算机应用, (004): 26-29, 2005
    [92]李耀柱,林钢.基于ANSYS温度场模拟的均质土坝稳定渗流数值计算.水运工程, (002): 48-51, 2009
    [93]许玉景,孙克俐,黄福才. ANSYS软件在土坝渗流稳定计算中的应用.水力发电, 29(004): 69-71, 2003
    [94]王俊林,马艳.土工织物透水特性试验研究.中国水土保持, (008): 27-28, 2007
    [95] Doran SR, Hartwell, D.J., Kofoed, N., Warren, S. Storebalt railway tunnel-Denmark: design of cross passage ground treatment. Proceedings of the 11th European Conference on Soil Mechanics and Foundation Engineering. Copenhagen, Denmark., 1995.
    [96] Doran SR, Hartwell, D.J., Roberti, P., Kofoed, N., Warren, S. Storebalt railway tunnel - Denmark: implementation of cross passage ground treatment. Proceedings of the 11th European Conference on Soil Mechanics and Foundation Engineering. Copenhagen, Denmark, 1995.
    [97]周乐凡.考虑外水荷载作用的铁路隧道衬砌结构设计研究.铁道部科学研究院, 2003.
    [98]陈礼伟,周乐凡.地下水荷载对隧道衬砌作用的模型试验研究.现代隧道技术, 46(supp): 51-54, 2009
    [99]周乐凡,梅志荣,陈礼伟.考虑水荷载作用的铁路隧道衬砌结构设计.中国铁道科学, 26(006): 98-101, 2005
    [100] Shin JH, Y.S.Shin, S.H.Kim, et.al. EVALUATION OF RESIDUAL PORE WATER PRESSURES ON LININGS FOR UNDERSEA TUNNELS. Chinese Journal of Rock Mechanics and Engineering, 26(supp.2): 3682-3688, 2007
    [101]张民庆,彭峰.圆梁山隧道毛坝向斜水压力监测分析.岩土工程学报, 25(006): 702-705, 2003
    [102]中铁大桥勘察设计院有限公司.青岛胶州湾隧道详工程地质报告.武汉, 2007.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700