用户名: 密码: 验证码:
移动化学反应界面的应用:尿液指纹分析和等电聚焦电泳不稳定性机制的再研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
移动化学反应界面(Moving Chemical Reaction Boundary, MCRB)理论可以用于对两性电解质进行在线富集,已有的实验也证明,MCRB理论可以对高盐样品进行有效的物质富集,而不受其中高浓度盐分的影响,这对于众多生物样品如尿液等来说是十分适用的。另一方面,由MCRB理论推导出的判别式可以判断界面移动方向,为等电聚焦动力学的研究提供了新的视角。
     本文的主要研究内容是移动化学反应界面理论的应用研究。一方面,利用移动化学反应界面理论并结合毛细管电泳快速、高效、简便、经济和易于自动化的特点,进行了尿液指纹分析的研究。快速、灵敏的尿液指纹分析对发现新的生物标志物和进行临床检测具有重要意义。根据MCRB理论,以Gly-HCl作为样品缓冲液、Gly-NaOH作背景电解质的缓冲液,分别对缓冲液的pH值、浓度、工作电压等实验条件进行了优化。实验结果证明该方法大大提高了尿液指纹分析的灵敏度和数据的容量,与常规方法只能获得10个峰相比,MCRB方法大大改善了尿液指纹分析的灵敏度:观测到了超过90个的富集峰,达到了20倍以上的富集效果。表明MCRB介导的富集方法对尿液分析具有巨大潜在价值。
     另一方面,对大量文献材料中报道的有关等电聚焦中pH梯度不稳定性的实验(包括计算机模拟实验),采用MCRB理论衍生得到的判别式Rr进行分析和预测,并与实际的结果相对照。结果表明,在阴极漂移中,Rr均大于零,即阳极液中氢离子的迁移数大于阴极液中氢氧根离子的迁移数;而在阳极漂移中,Rr均小于零,即阴极液中氢氧根离子的迁移数大于阳极液中质子的迁移数。实验结果与MCRB的理论是完全一致的,从而揭示出MCRB理论在揭示等电聚焦中pH梯度不稳定现象的动力学方面的正确性和价值。这一结果对提高等电聚焦电泳的稳定性意义重大,而等电聚焦正是双向电泳和蛋白质组学研究中的重要工具。
     本文的最后一部分,选用硼砂作为缓冲液,以α-萘胺及NaBH3CN作为衍生化试剂,探索了采用场放大进样方法,用毛细管电泳对葡萄糖和果糖进行分离和富集的实验条件,最优的实验条件为60 mM,pH 11.0硼砂缓冲液,1.0 psi压力进样90s,和常规方法相比,葡萄糖的检测灵敏度提高了20多倍,果糖提高了近60倍。
The Moving Chemical Reaction Boundary (MCRB) theory can be utilized for the on-line stacking of zwitterions. It had also been manifested that the MCRB technique can achieve effective stacking in a high-salt matrix, which is applicable to biofluids such as urine. On the other hand, the judgment expressions derived from MCRB theory can be used to determine the moving direction of the boundary, which provides new clues for the study of Isoelectric Focusing (IEF) dynamics.
     Rapid and sensitive profiling of urine holds evident significance for discovery of new biomarkers and for clinical diagnosis. A simple, rapid and sensitive moving chemical reaction boundary (MCRB)-induced stacking technique was described herein for the first time for the analysis of urine profiling by CE. The carefully designed MCRB was formed with acidic Gly-HCl sample buffer and alkaline Gly-NaOH running buffer. The experimental conditions such as the pHs, concentrations of the buffers and the applied voltage were optimized. Compared with the conventional CZE with only ten observable peaks and poor sensitivity, the MCRB could significantly improve the sensitivity of urine profiling: More than 90 stacking peaks had been observed and more than 20 fold sensitivity enhancement achieved. The results indicated that the MCRB-induced stacking is a useful and potential tool for urine profiling.
     The MCRB theory was also applied to re-investigate the instability of natural pH gradient of ampholytes in classic IEF. By using simple judgment expressions, the Rr value was used for the comparative analyses of the transference numbers of hydrogen ions in the acidic anolyte and hydroxyl ions in the alkaline catholyte in numerous IEF experiments cited from references. The re-investigations showed that (1) in the runs of cathodic drifting of pH gradient, all the values of Rr were evidently or slightly higher than the key important value of zero, namely the transference number of hydrogen ions in the anolyte was greater than that of hydroxyl ions in the catholyte; (2) conversely, in the anodic drifting, Rr < 0, namely the transference number of hydroxyl ions in the catholyte was over that of hydrogen ions in the anolyte. The paper supplied a novel viewpoint for the study of the instability of pH gradient in classic IEF.
     In the last part, the optimal experimental conditions for the simutaneous stacking of glucose and fructose were investigated. Sodium borate was chosen as the buffer andα- naphthylamine and NaBH3CN as the derivation agents. The optimal conditions were 60 mM pH 11 sodium borate buffer, 1.0 psi pressure injection for 90s. Compared with the normal CZE method, the detection sensitivity of glucose was enhanced by more than 20 times, and that of fructose nearly 60 times.
引文
[1]Krivankova L., Bocek P., Continuous free-flow electrophoresis, Electrphoresis, 1998, 19, 1064-1074
    [2]M. G. Khaledi, High Performance Capillary Electrophoresis, Theory, Techniques and Applications, New York, Wiley/Interscience, 1998,1-15
    [3]陈义,毛细管电泳技术及应用,北京,化学工业出版社,2000,1-5
    [4]Hjerten S., Free zone electrophoresis, Chromatogr. Rev., 1967, 9, 122-219
    [5]Mikkers F.E.P., Everaerts F.M., Verheggen Th.P.E.M., High performance zone electrophoresis, J. Chromatogr., 1979, 169, 11-20
    [6]Jorgenson J.W., Lukacs K.D., Zone electrophoresis in open-tubular glass capillary, Anal. Chem., 1981, 531, 1298-1302
    [7]Jorgenson J.W., Lukaes K. D., Capillary zone electrophoresis, Science, 1983, 222:266-272
    [8]高乐怡, 方禹之,21 世纪毛细管电泳技术及应用发展趋势,理化检验-化学分册, 2002,38(1), 1-6
    [9]罗国安,王义明,毛细管电泳简介,色谱,1995,13 (4),254-256
    [10]何金兰,邓延倬,高效毛细管电泳,北京,科学出版社,1996,1-5
    [11]林炳承,毛细管电泳导论,北京,科学出版社,1996,5-15
    [12]H.Shintoni, Handbook of Capillary electrophoresis, London, Blackie Academic&Processional, 1997
    [13]Issaq H.J., Atamna I. Z., Muschik G. M., et al., The effect of electric field strength, buffer type and concentration on separation parameters in capillary zone electrophoresis, Chromatographia, 1991, 32(3), 155-161
    [14]Reijenga J. C., Kenndler E., Computational simulation of migration and dispersion in free capillary zone electrophoresis: I. Description of the theoretical model, J. Chromatogr. A, 1994, 659, 403-415
    [15]Knox J. H., Thermal effects and band spreading in capillary electro-separation, Chromatographia, 1988, 26, 329-337
    [16]Lin B. C., Xu X., Luo G. A., Zone broading and simualation of migration process of peptides in capillary zone electrophoresis, Science in China 1994, 37(7), 807-819
    [17]Zhou X., Fan L. Y., Zhang W., Separation and determination of acrylamide in potato chips by micellar electrokinetic capillary chromatography, Talanta, 2007, 71, 1541-1545
    [18]甘尉棠,精细石油化工,现代化工分离技术讲座,2001,11(6),55-57
    [19]Hjerten S., High-performance electrophoresis: The electrophoresis counterpart of high-performance liquid chromatography, J. Chromatogr., 1983, 270, 1-6
    [20]林炳承, 郭栩, 薛俊等,毛细管电泳进展(第二卷),广州,华南理工大学出版社, 1995,75-85
    [21]Hjerten S., High-performance electrophoresis elimination of electroendosmosis and solute adsorption, J. Chromatogr., 1985, 347, 191-198
    [22]Hjerten S., Elembring K., Kilar F., et al., Carrier-free zone electrophoresis, displacement electrophoresis and isoelectric focusing in a high-performance electrophoresis apparatus, J., Chromatogr., 1987, 403:47-61
    [23]Hjerten A., Liao J., Yao K., Theoretical and experimental study of high-performance electrophoretic mobilization of isoelectrically focused protein zones, J. Chromatogr., 1987, 387, 127-138
    [24] Schmitz G, Mollers C, Richter V, Analytical capillary isotachophoresis:a routine technique for the analysis of lipoproteins ard lipoprotein subfractions in whole serum, J. Chromatogr. A, 1985, 320, 253-262
    [25]Terabe S., Electrokinetic chromatography: An interface between electrophoresis and chromatography, Trends Anal. Chem., 1989, 8, 129-134
    [26]Rebscher H., Pyell U., In-column versus on-column fluorescence detection in capillary electrochromatography, J. Chromatogr., 1996, 737, 171-180
    [27]Choudhary G., Horvath Cs., Dynamics of capillary electrochromatography: Experimental study on the electroosmotic flow and conductance in open and packed capillaries, J. Chromatogr. A, 1997, 781, 161-183
    [28]Yan C., Dadoo R., Zare R.N., etc., Gradient elution in capillary electrochromatography, Anal. Chem., 1996, 68, 2726-2730
    [29]罗国安,王义明,毛细管电泳最新动态和发展趋势,光谱仪器与分析,1997,1,26-28
    [30]罗国安,王义明,毛细管电泳展望,见:汪尔康,21 世纪的分析化学,北京,科学出版社,2001,103~105
    [31] 林炳承,诸新华,桂红等,人血胃泌素的毛细管电泳定量测定,分析测试学报,1993 ,12(4),56-60
    [32] 聂燕芳,毛细管电泳原理及其应用,中山大学研究生学刊,2003,23(2),38-44
    [33] 韩富大,薛俊,林炳承,毛细管电泳 DNA 片段多态性分析,色谱,1997 ,15(4),301-304
    [34] Timerbaev, A. R., Shpigun O. A., Recent progress in capillary electrophoresis of metal ions, Electrophoresis, 2000, 21, 4179-4191
    [35] 种康,高效毛细管电泳在 DNA 序列分析中的应用,植物学通报,1995,12(1),60 - 62
    [36] Felmlee T. A., Oda R. P., Persing D. A., et al., Capillary electrophoresis of DNA potential utility for clinical diagnoses, J Chromatog. A, 1995(717), 127-137
    [37]黄留玉,后基因组时代生命科学研究的几点思考,生物技术通讯,2001,12(2),13-15
    [38]李明珠,张部昌,黄留玉,蛋白质组学中的分离检测技术,生物技术通讯,2005,16(1),93-95
    [39] Ivanov A. R., Nazimov I. V., Lobazov A. P., et al., Direct determination of amino acids and carbohydrates by high performance capillary electrophoresis with refractometric detection, J. Chromatogr. A, 2000, 894, 253-257
    [40] Boris G. B., Galina E. K., Dmitry G. N., Modified capillary electrophoresis system for peptide,protein and double-stranded DNA analysis, J. Chromatogr. A, 2000, 879, 189-196
    [41] Mainka A., B?chmann K. UV detection of derivatized carbonyl compounds in rain samples in capillary electrophoresis using sample stacking and a Z-shaped flow cell, J. Chromatogr., A 1997, 767(1-2), 241-247
    [42] Albin M., Grossman P. D., Moring S. E., Sensitivity enhancement for capillary electrophoresis, Anal. Chem. 1993, 65(10), 489A-497A
    [43] 宋立国,陈洪,程介克,样品堆积——毛细管电泳的柱上浓缩技术,分析化学,1997,26(6),722-727
    [44] Chen Z. L, Lin J. M, Naidu R. Separation of arsenic species by capillary electrophoresis with sample-stacking techniques Anal. Bioanal. Chem., 2003, 375(5), 679-684
    [45] Zhang Y. K., Zhang L. H., Zhang W. B. High-efficiency on-line concentration technique of capillary electrochromatography, Anal. Chem. 2000, 72(22), 5744-5747
    [46] 杨永坛,梁冰,欧庆瑜,毛细管电泳中的样品浓缩技术,色谱,2000,18(2),115-119
    [47] Albert M., Debusschere L., Demesmay C., et al., Large-volume stacking for quantitative analysis of anions in capillary electrophoresis: II. Large-volume stacking without polarity switching, J. Chromatogr. A, 1997, 757, 291–296
    [48]张薇,曹成喜,毛细管电泳中高盐样品在线富集的研究进展,分析化学,2005,33(2),267-271
    [49] Shihabi Z. K., Peptide stacking by acetonitrile-salt mixtures for capillary zone electrophoresis , J. Chromatogr., A 1996, 744, 231-240
    [50] Shihabi Z. K., Friedberg M. Insulin stacking for capillary electrophoresis, J. Chromatogr., A 1998, 807(1), 129-133
    [51] Britz-McKbbin P., Wong J., Chen D. D. Y., Analysis of epinephrine from fifteen different dental anesthetic formulations by capillary electrophoresis, J. Chromatogr. A 1999, 853(1-2), 535-540
    [52] Britz-McKibbin P., Chen D.D.Y., Selective Focusing of catecholamines and weakly acidic compounds by capillary electrophoresis using a dynamic pH junction, Anal.Chem. 2000, 72 , 1242-1252
    [53] Palmer J., Munro N. J., Landers J. P., A universal concept for stacking neutral analytes in micellar capillary electrophoresis, Anal. Chem. 1999, 71(9), 1679-1687
    [54] Palmer J.; Landers, J. P. Stacking neutral analytes in capillary electrokinetic chromatography with high-salt-sample matrixes, Anal. Chem. 2000, 72(8), 1941-1943
    [55] Palmer J., Burgi D. S., Landers J. P. Electrokinetic stacking injection of neutral analytes under continuous conductivity conditions, Anal. Chem. 2002, 74(3), 632-638
    [56] Hadwiger M. E., Torchia S. R., Lunte C. E., et al., Optimization of the separation and detection of the enantiomers of isoproterenol in microdialysis samples by cyclodextrin-modified capillary electrophoresis using electrochemical detection, J. Chromatogr. B, 1996, 681(2), 241-249
    [57] Bachmann J.B., Investigation of matrix effects in capillary zone electrophoresis, J. Chromatogr. A, 1996, 734, 319-325
    [58] Cao C. X., Moving chemical reaction boundary formed by strong reaction electrolytes: Theory, Acta Phys.-Chim. Sin., 1997, 13(9), 827-832
    [59] Cao C.X., Moving chemical reaction boundary formed by weak reaction electrolytes: Theory Acta Chem. Scand., 1998, 52(6), 709-713
    [60] Cao C. X., Moving chemical reaction boundary and isoelectric focusing: I. Conditional equations for Svensson-Tiselius' differential equation of solute concentration distribution in idealized isoelectric focusing at steady state, J. Chromatogr. A, 1998, 813(1), 153-172
    [61] Cao C. X., He Y. Z., Li M., et al., Improving separation efficiency of capillary zone electrophoresis of tryptophan and phenylalanine with the transient moving chemical reaction boundary method, J. Chromatogr. A, 2002, 952(1-2), 39-46
    [62] Cao C. X., He Y. Z., Li, M. Et al., Stacking ionizable analytes in a sample matrix with high salt by a transient moving chemical reaction boundary method in capillary zone electrophoresis, Anal. Chem. 2002, 74(16), 4167-4174
    [1] Deman J., Precipitation during Electromigration of Ions, Anal Chem, 1970, 42, 321-324
    [2] Pospichal J., Deml M., Bocek P., Electrically controlled electrofousing of ampholytes between two zones of modified electrolyte with two different values of pH, J. Chromatogr. 1993, 638(2), 179-181
    [3] Cao C. X., Moving chemical reaction boundary formed by strong reaction electrolytes: Theory, Acta Phys.-Chim. Sin., 1997, 13(9), 827-832
    [4] Cao C.X., Moving chemical reaction boundary formed by weak reaction electrolytes: Theory Acta Chem. Scand., 1998, 52(6), 709-713
    [5] Cao C. X, He Y. Z, Li M., etc., Improving separation efficiency of capillary zone electrophoresis of tryptophan and phenylalanine with the transient moving chemical reaction boundary method, J Chromatogr, 2002, 952, 39-46
    [6] Cao C. X., Moving chemical reaction boundary and isoelectric focusing: I. Conditional equations for Svensson-Tiselius' differential equation of solute concentration distribution in idealized isoelectric focusing at steady state, J. Chromatogr. A, 1998, 813(1), 153-172
    [7] Cao, C. X., Zhu, J. H., Liu, H. et al., Judgment expressions for a moving chemical reaction boundary and isoelectric focusing, Acta Chem. Scand. 1999, 53(11), 955-962
    [8] Li C. J., Cao C. X.., Fan L. Y. et al., Investigations on moving chelation boundary and its stacking efficiency, Chem Res. Chinese Univ., 2006, in press
    [9]Lehn J. M.著,沈兴海译,超分子化学——概念和展望,北京,北京大学出版社,2000,3-17
    [10] Wang Q. L, Zhang X. H, Fan L. Y, et al., Quantitative analysis of pyoluteorin in anti-fungal fermentation liquor of Pseudomonas species by capillary zone electrophoresis with UV-vis detector, J. Chromatogr. B, 2005, 826, 252.e1 – 252.e6
    [11] Wang Q. L., Zhang W, Fan L. Y, et al., Sensitive analysis of two barbiturates in human urine by capillary electrophoresis with sample stacking induced by moving reaction boundary, Anal. Chim., Acta., 2006, 580(2), 200-205
    [12] Cao C. X., He Y. Z., Li, M. Et al., Stacking ionizable analytes in a sample matrix with high salt by a transient moving chemical reaction boundary method in capillary zone electrophoresis, Anal. Chem. 2002, 74(16), 4167-4174
    [13] Cao C. X., Moving chemical reaction boundary and isoelectric focusing: II. Existence of quasi/equal fluxes (or transference numbers) of hydrogen and hydroxyl ions in stationary electrolysis and Svensson’s isoelectric focusing, J Chromatogr, 1998, 813, 173-177
    [14] Cao C. X., Zheng Q. S., Chen W. K., et al., The unvalidity of Kohlrausch’s regulating function for Svensson’s isolelctric focusing and stationary electrolysis at steady state, J Chromatogr, 1999, 863, 219-226
    [15] Cao C. X., MRB and isoelectric focusing: III. Comparison between transference numbers of hydrogen ion in the acids of HBr, HCl and HI, and hydroxyl ion in alkali KOH, Prog. Nat. Sci., 1999, 9, 602-609
    [16]Li C. J., Cao C. X., Fan L. Y., et al., Moving chelation boundary: Model, theory and its stacking efficiency, submitted
    [17]Cao C. X., Li C. J., Zhou W. R., et al., Completeness of stacking mechanism in “Analysis of metal ions by sweeping via dynamic complexation and cation-selective exhaustive injection in capillary electrophoresis” with moving chemical chelation boundary, submitted
    [18]何金兰,邓延倬,高效毛细管电泳,北京,科学出版社,1996,1-5
    [19]林炳承,毛细管电泳导论,北京,科学出版社,1996,5-15
    [20]Guan Y. Q., Wu T., Ye J. N., Determination of uric acid and p-aminohippuric acid in human saliva and urine using capillary electrophoresis with electrochemical detection: Potential application in fast diagnosis of renal disease, J. Chromatogr. B, 2005, 821, 229-234
    [21]Gatti R., Lazzarotto V., De Palo C. B., A rapid urine creatinine assay by capillary zone electrophoresis, Electrophoresis 1999, 20, 2917-2921
    [22]Garcia A., Muros M., Barbas C., Measurement of nephrolithiasis urinary markers by capillary electrophoresis, J. Chromatogr. B, 2001, 755, 287-295
    [23]Kong Y., Zheng N., Zhang Z. C., High-performance capillary zone electrophoretic assay for markers of diabetic nephropathy in plasma and urine, J. Chromatogr. A, 2003, 987, 477-483
    [24]Liu J. F., Cao W. D., Qiu H B., Determination of sulpiide by capillary elctrophoresis with end-olumn electrogenerated chmiluminescence detection
    [25] García, A., Barbas, C., Aguilar, R., et al., Capillary electrophoresis for rapid profiling of organic acidurias, Clin. Chem. 1998, 44, 1905-1911
    [26] Svensson Harry, Isoelectric fractionation, analysis, and characterization on ampholytes in natural pH gradients: I. The differential equation of solute concentrations at a steady state and its solution for simple cases, Acta Chem Scand, 1961, 15, 325-341
    [27] Svensson Harry, Isoelectric fractionation, analysis, and characterization on ampholytes in natural pH gradients: II. Buffering capacity and conductance of isoionic ampholytes, Acta Chem Scand, 1962, 16, 456-466
    [28] Vesterberg O., Svensson, H., Isoelectric fractionation, analysis, and characterization of ampholytes in natural pH gradients. IV. Further studies on the resolving power in connection with separation of myoglobins, Acta Chem Scand, 1966, 20, 820-834
    [29] Vesterberg, O., Isoelectric fractionation, analysis, and characterization of ampholytes in natural pH gradients. V. separation of myoglobins and studies on their electro-chemical differences, Acta Chem Scand, 1967, 21, 206-216
    [30] Murel A., Kirjanen I., Kirret O., Instability and non-linearity of the pH gradient formed in isoelectric focusing, J Chromatogr, 1979, 174, 1-11
    [1]Friedberg M. A., Shihabi Z. K., Urine protein analysis by capillary electrophoresis, Electrophoresis, 1997, 18, 1836-1841
    [2] Jenkins M. A., Kulinskaya E., Martin H. D., et al., Evaluation of serum protein separation by capillary electrophoresis: Prospective analysis of 1000 specimens, J. Chromatogr. B, 1995, 672, 241-251
    [3] Chen Fu. A., Rapid protein analysis by capillary electrophoresis, J. Chromatogr., 1991, 559, 445-453
    [4] García A., Barbas C., Capillary Electrophoresis for the determination of organic acidurias in body fluids: A review, Clin. Chem., 2003, 41, 755-761
    [5] 侯振江,新编临床检验医学,北京:军事医学科学出版社,2004,151-177
    [6]Barbas C., Adeva N., Aguilar R., Quantitative determination of short-chain organic acids in urine by capillary electrophoresis, Clin. Chem., 1998, 44(6), 1340-1342
    [7]Kuhara T., Diagnosis and monitoring of inborn errors of metabolism using urease-pretreatment of urine, isotope dilution, and gas chromatography-mass spectrometry, J. Chromatogr. B, 2002, 781, 497-517
    [8] Nicholson J.K, Lindon J.C., Holmes E., "Metabonomics": Understanding the metabolic responses of living systems to pathophysiological stimuli via multivariatestatistical analysis of biological NMR spectroscopic data, Xenobiotica, 1999, 29, 1181 - 1189
    [9] Nicholson J. K., Connelly J, Lindon J.C., et al., Metabonomics: a platform for studying drug toxicity and gene function, Nat Rev Drug Discov, 2002, 1, 153 -161
    [10]许国旺,杨军,代谢组学及其研究进展,色谱,2003,21(4),316-320
    [11]Taylor J., King R.D., Altmann H., et al., Application of metabolomics to plant genotype discrimination using statistics and machine learning, Bioinformatics, 2002, 18, 241 – 248
    [12]Shockcor, J.P., Unger, S.E., Wilson, I.D., et al., Combined HPLC, NMR spectroscopy and ion trap mass spectrometry with application to the detection and characterization of xenobiotic and endogenous metabolites in human urine. Anal. Chem. 1996, 68, 4431-4435
    [13]Keun H.C., Beckonert O., Griffin J.L., et al., Cryogenic probe 13C NMR spectroscopy of urine for metabonomic studies, Anal. Chem., 2002, 74, 4588-4593
    [14]Liebich H. M., Stefano C., Wixforth A., et al., Quantitation of urinary nucleosides by high- performance liquid chromatography, J. Chromatogr. A, 1997, 763, 193-197
    [15]Xu G., Stefano Di, Liebich C., et al., Reversed-phase high performance liquid chromatographic investigation of urinary normal and modified nucleosides of cancer patients, J. Chromatogr. B., 1999, 732, 307-313
    [16]Pham-Tuan H, Kaskavelis L, Daykin C A, et al., Method development in high-performance liquid chromatography for high-throughput profiling and metabonomic studies of biofluid samples, J. Chromatogr. B, 2003, 789, 283
    [17]Kim K. R., Park H. G., Paik M. J., Gas chromatographic profiling and pattern recognition analysis of urinary organic acids from uterine myoma patients and cervical cancer patients, J. Chromatogr. B. 1998, 712, 11-22
    [18]Xu K, Wang L, Cai H, et al., Screening for newborn errors of metabolism using gas chromatography-mass spectrometry, J. Chromatogr. B, 2001, 758, 75-80
    [19] Jardines D., Correa T., Ledea O., Gas chromatography-mass spectrometry profile of urinary organic acids of Wistar rats orally treated with ozonized unsaturated triglycerides and ozonized sunflower oil, J. Chromatogr. B., 2003, 783, 517-525
    [20]Cao C. X, Zhou S. L, He Y. Z, et al., Experimental study on moving neutralization reaction boundary created with the strong reactive electrolytes of HCl and NaOH in agarose gel, J Chromatogra, 2000, 891, 337-347
    [21]Cao C. X, Zhou S. L, He Y. Z, et al., Corrections to moving chemical reaction boundary equation for weak reactive electrolytes under the existence of background electrolyte KCl in large concentrations, 2001, 907, 347-352
    [22]Cao C. X, Li R. Z, Zhou S. L, et al., Stable colloid of Co(OH)2 prepared by moving chemical reaction boundary method (MCRBM) in agarose gel, Physicochemical and Engineering Aspects, 2001, 180, 17-21
    [23]Cao C. X, Li R. Z, Zhou S. L, Qian Y. T, et al., Experimental investigation on moving chemical reaction boundary theory for weak acid–strong base system with background electrolyte KCl in large concentration, J Chromatogr, 2001, 922, 283-292
    [24]Cao C. X, He Y. Z, Li M., et al., Stacking ionizable analytes in a sample matrix with high salt by a transient moving chemical reaction boundary method in capillary zone electrophoresis, Anal Chem, 2002, 4167-4174
    [25]Cao C. X, He Y. Z, Li M., etc., Improving separation efficiency of capillary zone electrophoresis of tryptophan and phenylalanine with the transient moving chemical reaction boundary method, J Chromatogr, 2002, 952, 39-46
    [26]Cao C. X, Li R. Z, Zhou S. L, Qian Y. T, et al., Investigations on factors that influence the moving neutralization reaction boundary method for capillary electrophoresis and isoelectric focusing, 2002, 952, 29-38
    [27]Wang Q. L, Zhang X. H, Fan L. Y, et al., Quantitative analysis of pyoluteorin in anti-fungal fermentation liquor of Pseudomonas species by capillary zone electrophoresis with UV-vis detector, J. Chromatogr. B, 2005, 826, 252.e1 – 252.e6
    [28]Wang Q. L., Zhang W, Fan L. Y, et al., Sensitive analysis of two barbiturates in human urine by capillary electrophoresis with sample stacking induced by moving reaction boundary, Anal. Chim., Acta., 2006, 580(2), 200-205
    [29]Deman J., Precipitation during Electromigration of Ions, Anal Chem, 1970, 42, 321-324
    [30]Pospichal J., Deml M., Bocek P., Electrically controlled electrofousing of ampholytes between two zones of modified electrolyte with two different values of pH, J. Chromatogr. 1993, 638(2), 179-181
    [31]Cao C. X., Moving chemical reaction boundary and isoelectric focusing: II. Existence of quasi/equal fluxes (or transference numbers) of hydrogen and hydroxyl ions in stationary electrolysis and Svensson’s isoelectric focusing, J Chromatogr, 1998, 813, 173-177
    [32]郝希山,王殿昌,腹部肿瘤学,北京:人民卫生出版社,2003,176-194
    [33]Fiehn O., Combining genomics, metabolome analysis, and biochemical modeling to understand metabolic networks, Comp. Funct. Genom., 2001, 2, 155-168
    [34]Goodacre R., Vaidyanathan S., Dunn W. B., Metabolomics by numbers: acquiring and understanding global metabolite data, Trends in Biotechnology, 2004, 22(5), 245-252
    [35]邱德有,黄璐琦,代谢组学研究——功能基因组学研究的重要组成部分,分子植物育种,2004,2(2),165-177
    [36]Fiehn O., Kopka L., Dormann P., et al., Metabolite profiling for plant functional genomics, Nature Biotechnology, 2000, 18, 1157-1161
    [37]Roessner U., Willimitzer L., Fernie A. R., High-resolution metabolic phenotyping of genetically and environmentally diverse patato tuber systems, identification of phenocopies, Plant Physiol., 2001, 127, 749-764
    [38]Roessner U., Luedemann A., Brust D., Metabolic profiling allows comprehensive phenotyping of genetically or environmentally modified plant systems, 2001, Plant Cell, 13(1), 11-29
    [1] Svensson Harry, Isoelectric fractionation, analysis, and characterization on ampholytes in natural pH gradients: I. The differential equation of solute concentrations at a steady state and its solution for simple cases, Acta Chem Scand, 1961, 15, 325-341
    [2] Svensson Harry, Isoelectric fractionation, analysis, and characterization on ampholytes in natural pH gradients: II. Buffering capacity and conductance of isoionic ampholytes, Acta Chem Scand, 1962, 16, 456-466
    [3]Rightii P. G, Isoecletric focusing: Theory, methodology and applications, Amsterdam, Elsevier, 1983
    [4] Vesterberg O., Svensson, H., Isoelectric fractionation, analysis, and characterization of ampholytes in natural pH gradients. IV. Further studies on the resolving power in connection with separation of myoglobins, Acta Chem Scand, 1966, 20, 820-834
    [5] Vesterberg, O., Isoelectric fractionation, analysis, and characterization of ampholytes in natural pH gradients. V. separation of myoglobins and studies on their electro-chemical differences, Acta Chem Scand, 1967, 21, 206-216
    [6] Carlstrom, A., Vesterberg, O., Isoelectric focusing and separation of the subcomponents of lactoperoxidase, Acta Chem Scand, 1967, 21, 271-278
    [7] Hjerten, S, Free zone electrophoresis, Chromatogr. Rev., 1967, 9, 122 -219
    [8] Hata R, Nagai Y, A Micro Colorimetric determination of acidic glycosaminoglycans by two dimensional electrophoresis on a cellulose acetate strip, Anal. Biochem., 1973, 52(2), 652-656
    [9] O'Farrell P. H, High resolution two-dimensional electrophoresis of proteins, J. Biol. Chem., 1975, 250(10), 4007-4021
    [10] Loo R. R, Cavalcoli J. D, VanBogelen R. A, et al, Virtual 2-D gel electrophoresis: Visualization and analysis of the E. coli proteome by mass spectrometry, Anal. Chem. 2001, 73(17), 4063-4070
    [11] Son W. K, Lee D. Y, Lee S. H, et al, Analysis of proteins expressed in rat plasma exposed to dioxin using 2-dimensional gel electrophoresis, Proteomics, 2003, 3(12), 2393-401
    [12] Chang J. S, Van Remmen H, Ward W. F, et al, Processing of data generated by 2-dimensional gel electrophoresis for statistical analysis: Missing data, normalization and statistics. J. Proteome Res., 2004, 3, 1210-1218
    [13] Finlayson G. R., Isoelectric focusing in polyacrylamide gel and its prepartive application, Anal Biochem, 1971, 40, 292-311
    [14] Nguyen Y., McCormick A. G, Chrambach A., Stabilization of pH gradients formed by ampholine, Anal. Biochem, 1977, 82, 226-235
    [15] Nguyen Y., McCormick A. G, Chrambach A., Anodic drift of pH gradients in isoelectric focusing on polyacrylamide gel, Anal Biochem, 1978, 88, 186-195
    [16]Baumann G., Chrambach A., In: Rightti P. G, Progress in isoelectric focusing and isotachophoresis, Amsterdam, North-Holland Pulishing Co., 1975, 13-23
    [17] Rilbe H., Stable pH Gradients: A key problem in isoelectric focusing, In: B.J Radola, D. Graeslin, electrofocusing and isotachophoresis, Berlin, Walter de Gruyter, 1977, 35-50
    [18]Delincee H., In: B.J Radola, Electrophoresis ’79, Berlin, Walter de Gruyter, 1979, 165-171
    [19] Murel A., Kirjanen I., Kirret O., Instability and non-linearity of the pH gradient formed in isoelectric focusing, J Chromatogr, 1979, 174, 1-11
    [20]Pollack S, Isoelectric focusing without ampholyte, Biochem. Biophys. Res. Commun. 1979, 87(4), 1252-1255
    [21]Mosher R. A, Thormann W, Experimental and theoretical dynamics of isoecletric focusing: IV. Cathodic, anodic and symmetrical drifts of the pH gradient, Electrophoresis, 1990, 11, 717-723
    [22]Mosher R. A, Thormann W, Bier M, Experimental and theoretical Dynamics of isoelectric focusing: Elucidation of a general separation mechanism, J. Chromatogr., 1986, 351, 31-38
    [23]Mosher R. A, Thormann W, Bier M, Experimental and theoretical dynamics of isoelectric focusing: II. Elucidation of the impact of the electrode assembly, J. Chromatogr., 1988, 436, 191-204
    [24]Mosher R. A, Saville, D. A, Thormann W, The dynamics of electrophoresis, Germany, Weinheim, 1992, 194-207
    [25] Bier, M, Palusinski, O. A., Mosher, R. A., et al, Electrophoresis: Mathematical modeling and computer simulation, Science, 1983, 219, 1281-1287
    [26] Mao Qing-lu, Pawliszyn J., Thormann W., Dynamics of capillary isoelectric focusing in the absence of fluid flow: High-resolution computer simulation and experimental validation with whole column optical imaging, Anal Chem, 2000, 72, 5493-5502
    [27] Mosher R. A, Thormann W, High-resolution computer simulation of the dynamics of isoelectric focusing using carrier ampholytes: The post-separation stabilizing phase revisited, Electrophoresis,2002, 23, 1803–1814
    [28]Cao C. X., Moving chemical reaction boundary and isoelectric focusing: I. Conditional equations for Svensson-Tiselius' differential equation of solute concentration distribution in idealized isoelectric focusing at steady state, J. Chromatogr. A, 1998, 813(1), 153-172
    [29] Cao C. X., Moving chemical reaction boundary and isoelectric focusing: II. Existence of quasi/equal fluxes (or transference numbers) of hydrogen and hydroxyl ions in stationary electrolysis and Svensson’s isoelectric focusing, J Chromatogr, 1998, 813, 173-177
    [30] Cao C. X., Zheng Q. S., Chen W. K., et al., The unvalidity of Kohlrausch’s regulating function for Svensson’s isolelctric focusing and stationary electrolysis at steady state, J Chromatogr, 1999, 863, 219-226
    [31] Cao, C. X., Zhu, J. H., Liu, H. et al., Judgment expressions for a moving chemical reaction boundary and isoelectric focusing, Acta Chem. Scand. 1999, 53(11), 955-962
    [32] Reijenga J.C., Kenndler E., Computational simulation of migration and dispersion in free capillary zone electrophoresis, part I, Description of the theoretical model, J. Chromatogr. A, 1994, 659(2), 403-415
    [33] Reijenga J.C., Kenndler E., Computational simulation of migration and dispersion in free capillary zone electrophoresis, part II, Results of simulation and comparison with measurements, J. Chromatogr. A, 1994, 659(2), 417-426
    [34] Friedl W., Reijenga J.C., Kenndler E., Ionic strength and charge number correction for mobilities of multivalent organic anions in capillary electrophoresis, J. Chromatogr. A, 1995, 709(1), 163-170
    [35]Cao C. X., MRB and isoelectric focusing: III. Comparison between transference numbers of hydrogen ion in the acids of HBr, HCl and HI, and hydroxyl ion in alkali KOH, Prog. Nat. Sci., 1999, 9, 602-609
    [36]Xu Y. J., Fan L. Y., Zhang W., Moving chemical reaction boundary and isoelectric focusing: VI. Simple predictions of Hjerten’s mobilization, submitted
    [37]http://www.natur.cuni.cz/gas
    [38]Adamson A. W., A textbook of physical chemistry, New York, Academic Press Inc., 1973, 502-513
    [39]David R. L., CRC Handbook of chemistry and physics (73rd Ed.), Boca Raton, CRB Press, 1992-93, 167
    [1]沈同,王镜岩,生物化学(第二版),北京,高等教育出版社,1991,1-17
    [2]Varki A., Cummings R., Esko J., Essentials of Glycobiology, New York, Cold Spring Harbour Laboratory Press, 2000, 31-65
    [3]张传慧,黄腾飞,朱劲松,不同花型蜂蜜三种糖比较分析,安徽大学学报(自然科学版) , 1998,22(4),99 – 101
    [4]史琦云,贠建民,旋光法检验蜂蜜中掺入糖类的研究,食品科学,2003,24(9),111-114.
    [5]张存洁,蜂王浆口服液中 10-HDA 的直接快速测定法,中国养蜂,1993,5,5-8
    [6]李敬慈,丁天惠,高效液相色谱法分析蜂蜜中的糖,分析测试学报,1995,14(5),62-65
    [7]Goodall I., Dennis M.J., Parker I., et al., Contribution of high-performance liquid chromatographic analysis of carbohydrates to authenticity testing of honey, J. Chromatogr. A, 1995, 706, 353 - 359
    [8]Horvath K, Molnar-Perl I, Simultaneous GC-MS quantitation of o-phosphoric, aliphatic and aromatic carboxylic acids, proline, hydroxymethylfurfurol and sugars as their TMS derivatives, J. Chromatogr. A, 1998, 48, 120-126
    [9] Rojas E. Elba, Alarcón J. Ana, Elizalde G. Patricia, et. al., Optimization of carbohydrate salivation for gas chromatography, J. Chromatogr. A, 2004, 1027, 117-120
    [10]王义明,魏伟,罗国安,高效毛细管电泳在糖分析中的应用,分析化学,1996,24(12),1459-1463
    [11]贾国惠,糖类的高效毛细管电泳分析,中国医院药学杂志,2003,23(8),492-493
    [12]张建波,田庚元,糖类的高效毛细管电泳,有机化学,1998,18,88-96
    [1]Wilson Ian D., Nicholson Jeremy K., Castro-Perez Jose, et al., High resolution "ultra performance" liquid chromatography coupled to oa-TOF mass spectrometry as a tool for differential metabolic pathway profiling in functional genomic studies, Journal of Proteome Research, 2005, 4(2), 591-598
    [2]Chen Minjun, Zhao Liping, Jia Wei, Metabonomic Study on the biochemical profiles of a hydrocortisone-induced animal model, Journal of Proteome Research, 2005, 4(6), 2391-2396
    [3]Fiehn O., Kopka L., Dormann P., et al., Metabolite profiling for plant functional genomics, Nature Biotechnology, 2000, 18, 1157-1161
    [4]Roessner U., Willimitzer L., Fernie A. R., High-resolution metabolic phenotyping of genetically and environmentally diverse patato tuber systems, identification of phenocopies, Plant Physiol., 2001, 127, 749-764
    [5]Roessner U., Luedemann A., Brust D., Metabolic profiling allows comprehensive phenotyping of genetically or environmentally modified plant systems, 2001, Plant Cell, 13(1), 11-29
    [6]张焱,生物多元分析,重庆,西南师范大学出版社,1999,137-161
    [7]方开泰,实用多元统计分析,上海,华东师范大学出版社,1989, 291-320
    [8]张雪洪,杭晓敏,胡洪波,计算机在生命科学中的应用,上海,上海交通大学出版社,2003,133-146
    [9]王沫然,MATLAB6.0 与科学计算,北京,电子工业出版社,2001,277-303

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700