用户名: 密码: 验证码:
黄芩苷通过miR-126途径抑制乳腺癌机制的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的筛选受黄芩苷调控的差异miRNA,从miRNA角度探讨黄芩苷对乳腺癌的抑制可能的途径和机制。
     方法体外实验首选通过不同浓度黄芩苷作用于乳腺癌细胞MCF-7、MDA-MB-231细胞,免疫组化分析筛选出药物最低有效作用浓度,运用miRNA芯片筛选受药物调控的差异miRNA, qRT-PCR对芯片结果中上调的miRNA进行验证,再通过MTT法检测细胞生存率、Transwell实验检测细胞侵袭与转移、蛋白印迹技术检测凋亡相关蛋白表达变化及流式细胞术检测细胞凋亡情况。临床实验检验癌组织和正常组织细胞因子免疫组化差异及qRT-PCR检测miRNA表达的差异。
     结果
     体外实验
     1)黄芩苷作用于乳腺癌细胞后转化生长因子β (transforming growth factor-β, TGF-β)、血管内皮生长因子(vascular endothelial growth factors VEGF)免疫组化评分下降,最佳作用浓度为50μmol/L;
     2)黄芩苷作用于乳腺癌细胞,芯片筛选出miR-126表达上调最明显;
     3)黄芩苷和miR-126作用于乳腺癌细胞,细胞生长率和侵袭力显著降低;
     4)黄芩苷和miR-126作用后乳腺癌细胞中半胱氨酸天冬氨酸酶-3(Cysteinyl aspartate-specific proteinase-3, Caspase-3)、半胱氨酸天冬氨酸酶-9(Cysteinyl aspartate-specific proteinase-9, Caspase-9)、Bcl-2相关X蛋白(Bcl-2Associated X Protein, Bax)和p53基因的表达增加而B细胞淋巴瘤基因-2(B cell lymphoma2,Bcl-2)表达下降,同时丝裂原活化蛋白激酶(mitogen-activated protein kinase,p-38MAPK)活化亦增加;
     5)黄芩苷和miR-126作用后乳腺癌细胞凋亡增加。
     临床实验
     1)乳腺癌患者组织中TGF-β、VEGF的免疫组化评分与正常乳腺腺体组织相比,明显升高;
     2)乳腺癌组织中miR-126的相对表达较正常乳腺组织明显降低。
     结论
     1)乳腺癌细胞中miR-126表达下调;
     2)黄芩苷可上调miR-126等抑癌作用的miRNA基因;
     3)黄芩苷通过上调miR-126的表达抑制乳腺癌细胞的增殖和侵袭,并可能抑制癌细胞的转移。
Objective Screen differential miRNA which is regulated by the baicalin, from the perspective of miRNA,to explore the approaches and mechanism of the inhibitory effect of Baicalin on breast cancer.
     Methods In vitro experiments effect on breast cancer cell MCF-7、 MDA-MB-231by different concentrations of baicalin, Immunohistochemical analysis showed that the lowest effective drug concentration, by using miRNA chip,screening differentially miRNA by drug regulation. qRT-PCR for upregulated miRNA microarray results validate, and then detect cell survival by MTT assay, detection of cell invasion and metastasis by transwell experiment, detection of apoptosis-related protein expression by western blot and flow cytometry to detect apoptosis.clinical trials testing cancer tissue and normal tissue cytokine's immunohistochemistry difference and qRT-PCR to detect differences in miRNA expression.
     Results
     In vitro experiments
     1) After baicalin effect on breast cancer cell, TGF-β(transform growth factorp), VEGF(vascular endothelial growth factors), immunohistochemical score decreased, the best concentration was50μmol/l;
     2) baicalin effect on breast cancer cell, microarray screens miR-126expression increased most;
     3) baicalin and miR-126effect on breast cancer cell, the rate of cell growth and invasiveness was significantly lower;
     4) baicalin and miR-126effect on breast cancer cell,the expression of Caspase-3(Cysteinyl aspartate-specific proteinase-3), Caspase-9(Cysteinyl aspartate-specific proteinase-9), Bax (Bcl-2Associated X Protein) and P53increased and the expression of Bcl-2(B cell lymphoma2) decrease, at the same time P-38(mitogen-activated protein kinase) activation also increased;
     5) baicalin and miR-126effect on breast cancer cell, apoptosis of breast cancer cells increased;
     Clinical trials
     1) compared with normal mammary gland tissue, immunohisto-chemical score of TGF-β, VEGF significantly increased in breast tissue;
     2) The relative expression of miR-126in breast cancer tissue was significantly lower than normal breast tissue;
     Conclusion
     1) Expression of miR-126in breast cancer cells decrease;
     2) Baicalin upregulates tumor suppressor miRNA genes such as miR-126;
     3) By upregulating the expression of miR-126, baicalin inhibits the proliferation and invasion, probably inhibit metastasis of breast cancer cells.
引文
[1]Seitz HK,Pelucchi C,Bagnardi V,et al. Epiderniology and pathophysiology of alcohol and breast cancer:Update 2012[J]. Alcohol Alcohol.2012,47(3):204-212.
    [2]Abreu EB,Martinez P,Betancourt L,et al. Treatment plan for breast cancer with sentinel node metastasis[J].Ecancer medical science.2014,8(1):382-340.
    [3]Li YY,Fu S,Wang XP,et al. Down-regulation of c9orf86 in human breast cancer cells inhibits cell proliferation, invasion and tumor growth and correlates with survival of breast cancer patients[J]. PLoS One.2013,8(8):71764-71775.
    [4]Mohammed ZM1,McMillan DC,Edwards J,et al. The relationship between lymphovascular invasion and angiogenesis, hormone receptors, cell proliferation and survival in patients with primary operable invasive ductal breast cancer[J]. BMC Clin Pathol.2013,13(11):31-40.
    [5]Ahmad A1,Wang Z,Kong D,et al. FoxMl down-regulation leads to inhibition of proliferation, migration and invasion of breast cancer cells through the modulation of extra-cellular matrix degrading factors[J]. Breast Cancer Res Treat.2010,122(2): 337-346.
    [6]Qian N1,Ueno T. Is dysfunction of caveolin-1 a link between systemic sclerosis and breast cancer, opening a window on bothetiologies?[J]. Arch Med Res.2010, 41(4):297-301.
    [7]Weiner AS 1,Boyarskikh UA,Voronina EN,et al. Polymorphisms in the folate-metabolizing genes MTR, MTRR, and CBS and breast cancer risk[J]. Cancer Epidemiol.2012,36(2):e95-100.
    [8]Yuan Y1,Curtis C,Caldas C,et al. A sparse regulatory network of copy-number driven gene expression reveals putative breast cancer oncogenes[J]. IEEE/ACM Trans Comput Biol Bioinform.2012,9 (4):947-954.
    [9]Hwang-Verslues WW1,Chang KJ,Lee EY,et al. Breast cancer stem cells and tumor suppressor genes[J]. J Formos Med Assoc.2008,107 (10):751-766.
    [10]汤钊猷.现代肿瘤学(第三版)[M].上海:复旦大学出版社,2011,661-678.
    [11]Gregory RI, Yan KP,Amuthan G,et al. The microprocessor complex mediates the genesis of microRNA [J]. Nature.2010,432 (7014):235-240.
    [12]Thomas R. Geiger, Daniel S,et al. Meta stasismt Brhallignlg [J].Biochim Biophys Acta.2009,1796(2):293-308.
    [13]Lehmann U. Aberrant DNA methylation of microRNA genes in human breast cance-a critical appraisal[J]. Cell Tissue Res.2014,9(2):S00441-A00449.
    [14]Kong W,Yang H,He L,et al. MicroRNA-155 isregulated by the transforming growth factor beta/Smad pathway and contributes to epithelial cell plasticity by targeting RhoA[J]. Mol Cell Biol.2008,28(22):6773-6784.
    [15]Drusco A1,Pekarsky Y,Costinean S,et al. Common fragile site tumor suppressor genes and corresponding mouse models of cancer[J]. J Biomed Biotechnol.2011, 29(12):984505.
    [16]Gao D,Mittal V. Tumor microenvironment regulates epithelial-mesenchymal transitions in metastasis [J]. Expert Rev Anticancer Ther.2012,12(7):857-859.
    [17]Wendt MK,Schiemann BJ,Parvani JG,et al. TGF-β stimulates Pyk2 expression as part of an epithelial-mesenchymal transition program required for metastatic outgrowth of breast cancer[J]. Oncogene.2013,32(16):2005-2015.
    [18]Arora H,Qureshi R,Park WY,et al. miR-506 Regulates Epithelial Mesenchymal Transition in Breast Cancer Cell Lines[J].Mol Cell Biol.2013,8(5):4273-4274
    [19]Gregory PA, Bert AG, Paterson EL, et al. The miR-200c200 family and miR-200c205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1[J].Nat Cell Biol.2008,10(5):593-601.
    [20]Gregory PA,Bracken CP,Smith E,et al. An autocrine TGF-beta/ZEB/miR-200 signaling network regulates establishment and maintenance of epithelial-mesenchymal transition[J].Mol Biol Cell.2011,22(10):1686-1698.
    [21]Hurteau GJ, Carlson JA, Spivaek SD, el al. Overexpression of the microRNA hsamiR-200c leads to reduced expression of transcription factor 8 and increased expression of E-cadherin [J].CancerRes.2007,67 (17):7972-7976.
    [22]Liang YJ,Wang QY,Zhou CX,et al. MiR-124 targets Slug to regulate epithelial-mesenchymal transition and metastasis of breast cancer[J].Carcinogenesis.2013,34 (3):713-722.
    [23]Ibrahim SA,Yip GW,Stock C,et al. Targeting of syndecan-1 by microRNA miR-10b promotes breast cancer cell motility and invasiveness via a Rho-GTPase-and E-cadherin-dependent mechanism[J].Int J Cancer.2012,131(6):884-896.
    [24]Negrini M,calin GA. Breast cancer metastasis:a microRNA story[J]. Breast Cancer Res.2008,10(2):203-212.
    [25]WF Shen,YL Hu,L Uttarwar,et al. MicroRNA-126 Regulates HOXA9 by Binding to the Homeobox[J].Mol Cell Biol.2008,28(14):4609-4619.
    [26]C Guo,JF Sah,L Beard,et al.The noncoding RNA,miR-126,suppresses the growth of neoplasti Cells by targeting phosphatidylinositol 3-kinase signaling and is frequently lost in colon cancers [J]. Genes Chromosomes Cancer.2008,47(11):939-946.
    [27]Whelan JT,Ludwig DL,Bertrand FE. HoxA9 induces insulin-like growth factor-1 receptor expression inB-lineage Aeute lymphoblastic leukemia. Leukemia.2008, 22(6):1161-1169.
    [28]Meng F, Hanson R, WehbeJanek H,et al. MicroRNA-21 regulates expression of the PTEN tumor suppressor gene human hepatocellular cancer[J]. Gastroen-terology.2007,133(2):647-658.
    [29]Zhu S. Wu H. Wu F, et al. MicroRNA-21 targets tumor suppressor genes in invasion and metastasis[J]. Cell Res,2008,18(3):350-359.
    [30]Zhang HF,Xu LY,Li EM. A Family of Pleiotropically Acting MicroRNAs in Cancer Progression,miR-200:Potential Cancer Therapeutic Targets[J].Curr Pharm Des.2013,19(7):647-654.
    [31]Li L,Luo J,Wang B,et al.Microrna-124 targets flotillin-1 to regulate proliferation and migration in breast cancer. Mol Cancer.2013,13 (12):163-167.
    [32]Krishnan K,Steptoe AL,Martin HC,et al. miR-139-5p is a regulator of metastatic pathways in breast cancer[J].RNA.2013,19(12):1767-1780.
    [33]Verghese ET,Drury R,Green CA,et al. MiR-26b is down-regulated in carcinoma- associated fibroblasts from ER-positive breast cancers leading toenhanced cell migration and invasion[J]. J Pathol.2013,231 (3):388-399.
    [34]Li N,Fu H,Tie Y,et al.miR-34a inhibits migration and invasion by down-regulation of c-Met expression in human hepatocellular carcinoma cells[J]. Cancer Lett,2009, 275(1):44-53.
    [35]Liang Z,Wu H,Reddy S,et al. Blockade of invasion and metastasis of breast cancer cells via targeting CXCR4 with an artificial microRNA[J]. Biochem Biophys Res Commun.2007,63(3):542-546.
    [36]Ma F,Zhang J,Zhong L,et al. Upregulated microRNA-301a in breast cancer promotes tumor metastasis by targeting PTEN and activating Wnt/β-catenin signaling[J]. Gene.2014,535(2):191-197.
    [37]Johansson J,Berg T,Kurzejamska E,et al. MiR-155-mediated loss of C/EBPp shifts the TGF-β response from growth inhibition to epithelial-mesenchymal-transition,invasion and metastasis in breast cancer[J]. Oncogene.2013,32(50): 5614-5624.
    [38]Lee IK,Kang KA,Zhang R,et al. Mitochondria protection of baicalein against oxidative damage via induction of manganese superoxide dismutase[J]. Environ Toxicol Pharmacol.2011;31(1):233-241.
    [39]Lea MA,Ibeh C,Deutsch JK,et al. Inhibition of growth and induction of alkaline phosphatase in colon cancer cells by flavonols and flavonol glycosides[J]. Anticancer Res,2010,30(9):3629-3635.
    [40]Niknami M,Vignarajan S,Yao S,et al. Decrease in expression or activity of cytosolic phospholipase A2alpha increases cyclooxygenase-1 action:A cross-talk between key enzymes in arachidonic acid pathway in prostate cancer cells[J]. Biochim Biophys Acta.2010,1801 (7):731-737.
    [41]Kuo HM,Tsai HC,Lin YL,et al. Mitochondrial-dependent caspase activation pathway is involved in baicalein-induced apoptosis in human hepatoma J5cells[J]. Int J Oncol.2009,35(4):717-724
    [42]Siegel R,Naishadham D,Jemal A. Cancer statistics,2013[J].CA Cancer J Clin,2013, 61(3):11-30.
    [43]FAN L, ZHENG Y, YU K D, et al. Breast cancer in a transitional society over 18 years; trends and present status in Shanghai,China[J]. Breast Cancer Res Treat, 2009,117(2):409-416.
    [44]李树玲.乳腺肿瘤学(精)[M].北京:科学技术文献出版社,2007.
    [45]Soon P, Kiaris H.MicroRNAs in the tumour microenvironment:big role for small players[J].Endocr Relat Cancer.2013,20(5):257-267.
    [46]Ma L,Teruya-Feldstein J,Weinberg RA. Tumour invasion and metastasis initiated by microRNA-10b in breast cancer[J].Nature.2007,449(3):682-688.
    [47]Negrini M,Calin GA. Breast cancer metastasis:a microRNA story[J].Breast Cancer Res.2008,10(2):203-212.
    [48]Zhu S,Wu H,wu F,et al. MicroRNA-21 targets tumor suppressor genes in invasion and metastasis[J].Cell Res,2008,18(3):350-359.
    [49]Asangani IA,Rasheed SA,Nikolova DA, et al. MicroRNA-21(miR-200c21)post transcriptionally downregulates tumor suppressor Pdcd4 and stimulates invasion, intravasation and metastasis in colorectal cancer[J]. Oncogene.2008,27(15):2128-2136.
    [50]Kong W,Yang H,He L,et al. MicroRNA-155 is regulated by the transforming growth factor beta/Smad pathway and contributes to epithelial cell plasticity by targeting RhoA[J].Mol Cell Biol,2008,28 (22):6773-6784.
    [51]Tavazoie SF,Alarc6n C,Oskarsson T,et al. Endogenous human microRNAs that suppress breast cancer metastasis[J]. Nature.2008,451 (5):147-152.
    [52]Wu ZS,Wu Q,Wang CQ,et al. iR-339-5p inhibits breast cancer cell migration and invasion in vitro and may be a potential biomarker for breast cancer prognosis[J]. BMC Cancer.2010,10(3):542-551.
    [53]Tavazoie SF,Alarc6n C,Oskarsson T,et al. Endogenous human microRNAs that suppress breast cancer metastasis[J].Nature.2008,451 (5):147-152.
    [54]Bhaumik D, Scott GK, Schokrpur S, et al. Expression of microRNA-146 suppresses NF-kappaB activity with reduction of metastatic potential in breast cancer Cells[J].Oncogene.2008,27 (42):5643-5647.
    [55]Hurst DR,Edmonds MD,Scott GK,et al. Breast cancer metastasis suppresses up-regulates miR-146, which suppresses breast cancer metastasis[J].Cancer Res.2009, 69(4):1279-1283.
    [56]Volinia Stefano. A microRNA expression signature of human solid tumors defines cancer gene targets[J].PNAS.2009,103(4):2257-2261.
    [57]Slaby O, Svoboda M, Fabian P, et al. Altered expression of miR-21,miR-31, miR-143 and miR-145 is related to clinicopathologic features of colorectal cancer [J]. Oncology.2007,72(5-6):397-402.
    [58]Akao Y,Nakagawa Y,Kitade Y,et al. Downregulation of microRNAs-143 and-145 in B-cell malignancies[J].Cancer Sci.2007,98(12):1914-1920.
    [59]Lui WO, Pourmand N, Patterson BK,et al. Patterns of known and novel small RNAs in human cervical cancer[J].Cancer Res.2007,67 (7):6031-6043.
    [60]Vamholt H,Drebber U,Schulze F,et al. MicroRNA gene expression profile of hepatitis C virus-associated hepatocellular carcinoma [J].Hepatology.2008,47(4): 1223-1232.
    [61]Iorio MV,Visone R,Di Leva G,et al. MicroRNA signatures in human ovarian cancer[J].Cancer Res.2007,67(8):8699-8707.
    [62]Zhu N,Zhang D,Xie H,et al. Endothelial-specific intron-derived miR-126 is down-regulated in human breast cancer and targets both VEGFA and PIK3R2[J]. Mol Cell Biochem.2011,351(1-2):157-164.
    [63]S.F.Tavazoie,C.Alarcon,T.Oskarsson,D.Padua,Q.Wang,P.D.Bos,W.L.Gerald,and J. Massague,Endogenous human microRNAs that suppress breast cancer metastasis [J]. Nature.2008,451(6):147-152.
    [64]Gabriely G,Teplyuk NM,Krichevsky AM. Context effect:microRNA-1 Ob in cancer cell proliferation, spread and death[J]. Autophagy.2011,7(11):1384-1386.
    [65]Farazi,T.A.et al.MicroRNA sequence and expression analysis in breast tumors by deep sequencing[J]. Cancer Res.2011,71:4443-4453.
    [66]Bouyssou JM,Manier S,Huynh D,et al. Regulation of microRNAs in cancer metastasis [J]. Biochim Biophys Acta.2014,22(2):S0304-S0314.
    [67]Kim E,Cook-Mills J,Morgan G,et al.Increased expression of vascular cell adhesion molecule 1 in muscle biopsy samples from juvenile dermatomyositis patients with short duration of untreated disease is regulated by miR-126[J]. Arthritis Rheum. 2012,64(11):3809-3817.
    [68]Eis, P. S.Accumulation of miR-155 and BIC RNA in human B cell lymphomas[J]. Proc. Natl Acad. Sci. USA.2009,102(11):3627-3632.
    [69]Liu S, Gao S, Wang XY, et al. Expression of miR-126 and Crk in endometriosis: miR-126 may affect the progression of endometriosis by regulating Crk expression[J].Arch Gynecol Obstet.2012,285(4):1065-1072.
    [70]Ebrahimi F,Gopalan V,Smith RA,et al. miR-126 in human cancers:Clinical roles and current perspectives[J]. Exp Mol Pathol.2014,96(1):98-107.
    [71]Bartel DP. MicroRNAs:target recognition and regulatory functions [J]. Cell. 2009,136(5):215-233.
    [72]G.A.Calin, M.Ferracin,A.Cimmino,et al. A MicroRNA signature associated with prognosis and progression in chronic lymphocytic leukemia[J].N Engl J Med.2009, 353(7):1793-1801.
    [73]Bernstein E, Caudy AA, Hammond SM,et al. Role for a bidentate ribonuclease in the initiation step of RNA interference [J].Nature.2008,409(10):363-366.
    [74]G.A.Calin,CG Liu,C.Sevignani,et al.MicroRNA profiling reveals distinct signatures in B cell chronic lymphocytic leukemias[J]. Proc Nat 1 Acad Sci U S A.2009,103 (7):11755-11760.
    [75]Baffa R,Fassan M,Volinia S,et al. MicroRNA expression profiling of human metastatic cancers identifies cancer gene targets[J]. J Pathol.2009,219(3):214-221.
    [76]Calin GA, Sevignani C, Dumitru CD, et al. Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers[J]. Proc Natl Acad Sci USA.2010,101(5):2999-3004.
    [77]Du J, Yang S, An D, et al. BMP-6inhibits microRNA-21 expression in breast cancer through repressing delta EF1 and AP-1[J].Cell Res.2010,19:487-496.
    [78]Forman JJ, Legesse-Miller A, Coller HA. A search for conserved sequences in coding regions reveals that the let-7 microRNA targets Dicer within its coding sequence[J].Proc Natl Acad Sci USA.2009,105::14879-14884
    [79]Baum B, Settleman J, Quinlan MP. Transitions between epithelial and mesenchymal states in development and disease[J].Semin Cell Dev Biol.2008,19:294-308.
    [80]Edmonds MD, Hurst DR, Vaidya KS, et al. Breast cancer metastasis suppressor 1 coordinately regulates metastasis-associated microRNA expression[J].Int J Cancer. 2009,125:1778-1785.
    [81]Yu SS, Spicer DV, Hawes D, et al. Biological effects of green tea capsule supplementation in pre-surgery postmenopausal breast cancer patients[J].Front Oncol.2013,13(3):291-299.
    [82]Tokgun O,Akca H,Mammadov R,et al.Convolvulus galaticus,Crocus antalyensis, and Lilium candidum extracts show their antitumor activity through induction of p53-mediated apoptosis on human breast cancer cell line MCF-7 cells[J].J Med Food.2012,15(11):1000-1005.
    [83]Daroqui MC,Vazquez P,Bal de Kier Joffe E,et al. TGF-β autocrine pathway and MAPK signaling promote cell invasiveness and in vivo mammary adenocarcinoma tumor progression[J].Oncol Rep.2012.28 (2):567-575.
    [84]Sui XQ,Xu ZM,Xie MB,et al. Resveratrol Inhibits Hydrogen Peroxide-Induced Apoptosis in Endothelial Cells via the Activation of PI3K/Akt by miR-126[J].J Atheroscler Thromb.2014,21 (2):108-118.
    [85]Baum B, Settleman J, Quinlan MP.Transitions between epithelial and mesenchymal states in development and disease.Semin Cell Dev Biol.2008,19:294-308.
    [86]张众,李连宏,Xiao Gray Guishan,等.MicroRNA与乳腺癌侵袭转移的关系[J].临床与实验病理学杂志.2012,28(7):713-716.
    [87]Cabodi S,Taverna D. Interfering with inflammation:a new strategy to block breast cancer self-renewal and progression?[J].Breast Cancer Res.2010,12:305.
    [88]Ebert MS, Neilson JR, Sharp PA. MicroRNA sponges:competitive inhibitors of small RNAs in mammalian cells[J].Nat Methods.2007,4:721-6.
    [89]Baffa R, Fassan M, Volinia S, et al. MicroRNA expression profiling of human metastatic cancers identifies cancer gene targets[J].J Pathol.2009,219:214-221.
    [90]Kwon SY,Lee JH,Kim B,et al. Complexity in Regulation of microRNA Machinery Components in Invasive Breast Carcinoma[J]. Pathol Oncol Res.2014,27(2): S1102-S1113.
    [91]Banin Hirata BK,Oda JM,Losi Guembarovski R,et al. Molecular Markers for Breast Cancer:Prediction on Tumor Behavior[J].Dis Markers.2014,28(1):513-524.
    [92]Bartel DP. MicroRNAs:target recognition and regulatory functions [J].Cell,2009, 136(4):215-233.
    [93]Baffa R, Fassan M, Volinia S,et al. MicroRNA expression profiling of human metastaticcancers identifies cancer gene targets.J Pathol.2009,219:214-221.
    [94]詹启敏.恶性肿瘤侵袭与转移(第1版)[M].安徽:时代出版传媒股份有限公司,安徽科学技术出版社.2011.
    [95]Cabodi S, Taverna D. Interfering with inflammation:a new strategy to block breast cancer self-renewal and progression?[J]Breast Cancer Res.2010,12(4):305-313.
    [96]Schwarzenbacher D, Balic M, Pichler M. The role of microRNAs in breast cancer stem cells[J].Int J Mol Sci.2013,14(7):14712-14723.
    [97]Chen W, Harbeck MC, Zhang W, et al.MicroRNA regulation of integrins[J]. Transl Res.2013,162(3):133-143.
    [98]Hong L,Yang Z,Ma J,et al. Function of miRNA in controlling drug resistance of human cancers[J]. Curr Drug Targets.2013,14 (10):1118-1127.
    [99]Li J,Shen L,Xiao XG,et al. MicroRNAs in breast cancer and breast cancer stem cells and their potential for breast cancer therapy[J]. Chin Med J (Engl).2013,126 (13):2556-2563.
    [100]Madhavan D, Cuk K,Burwinkel B, et al. Cancer diagnosis and prognosis decoded by blood-based circulating microRNA signatures [J]. Front Genet.2013,21(6):116-124.
    [1]Barringhaus KG, Zamore PD. MicroRNAs:Regulating a change of heart[J]. Circulation,2009,119(16):2217-2224.
    [2]van Rooij E. The art of microRNA research[J]. Circ Res,2011,108(2):219-234.
    [3]Iorio MV, Ferracin M, Liu CG, et al. MicroRNA gene expression deregulation in human breast cancer. Cancer Res,2005,65(16):7065-7070
    [4]Mattie MD, Benz CC, Bowers J, et al. Optimized high-throughput microRNA expression profiling provides novel biomarker assessment of clinical prostate and breast cancer biopsies. MolCancer,2006,19; 5:24
    [5]Fu S, Kurzrock R. Development of curcumin as an epigenetic agent[J]. Cancer, 2010,116(20):4670-4676.
    [6]Yang J, Cao Y, Sun J, et al. Curcunmin reduces the expression of Bcl-2by upregulating miR-15a and miR-16 in MCF-7 cells[J]. Med Oncol,2010,27(4): 1114-1148.
    [7]T sang WP, Kwok TT. Epigallocatechin gallate up-regulation of miR-16 and induction of apoptosis in human cancer cells [J]. J Nutr Biochem,2010,21(2): 140-146.
    [8]A li S, Ahmad A, Banerjee S, et al. Gemcitabine sensitivity can be induced in pancreatic cancer cells through modulation of miR-200 and miR-21 expression by curcumin or its analogue CDF[J]. Cancer Res,2010,70(9):3606-3617.
    [9]Mudduluru G. George-William JN, Muppala S, et al. Curcumin regulates miR-21 expression and inhibits invasion and metastasis in colorectal cancer[J]. Biosci Rep,2011,31(3):185-197.
    [10]万中英,佟慧丽,李庆章,等.中药王不留行增乳活性单体及催乳素对奶牛乳腺上皮细胞特异性miRNA的影响[J].中国畜牧兽医,2010,37(8):230-232.
    [11]DeWeerd tS. Food:The omnivore's labyrinth[J]. Nature,2011,471(7339): S22-S24.
    [12]Li Y, VandenBoom TG, Kong D, et al. Up-regulation of miR-200 and let-7 by natural agents leads to the reversal of epithelial-to-mesenchymal transition in gemcitabine-resistant pancreatic cancer cells[J]. Cancer Res,2009,69(16): 6704-6712.
    [13]Sun M, Estrov Z, Ji Y, et al. Curcumin(diferuloylmethane)alters the expression profiles of microRNAs in hum an pancreatic cancer cells[J]. Mol Cancer Ther, 2008,7(3):464-473.
    [14]Park CS, Yoo MH, Noh KH, et al. Biotransformation of ginsenosides by hydrolyzing the sugar moieties of ginsenosides using microbial glycosidases[J]. Appl Microbiol Biotechnol,2010,87(1):9-19.
    [15]Wu N, Wu GC, Hu R, et al. Ginsenoside Rh2 inhibits glioma cell proliferation by targeting microRNA-128[J]. Acta Pharmacol Sin,2011,32(3):345-353.
    [16]Li Y, Vandenboom TG, Wang Z, et al. miR-146a suppresses in vasion of pancreatic cancer cells[J]. Cancer Res,2010,70(4):1486-1495.
    [17]Gupta SC, Kannappan R, Reuter S, et al. Chemosensitization of tumors by resveratrol[J]. Ann N Y Acad Sci,2011,1215:150-160.
    [18]Zhang J, Zhang T, Ti x, et al. Curcumin promotes apoptosis in A549/DDP multidrug-resistant human lung adenocarcinoma cells through an miRNA signaling pathway[J]. Biochem Biophys Res Comm un,2010,399(1):1-6.
    [19]Zhang J, Du Y, Wu C, et al. Curcumin promotes apoptosis in human lung adenocarcinoma cells through miR-186 signaling path
    [20]Tili E, Michaille JJ, Adair B, et al. Resveratrol decreases the levels of miR-155 by upregulating miR-663,a microRNA targeting JunB and JunD[J].Carcinogenesis,2010,31(9):1561-1566.
    [21]Tili E, Michaille JJ, Alder H, et al. Resveratrol modulates the levels of microRNAs targeting genes encoding tumor-suppressors and effectors of TGFbeta signaling pathway in SW480 cells[J]. Biochem Pharmacol,2010, 80(12):2057-2065.
    [22]Guillot,P.V., et al. Stem cell differentiation and expansion for clinical applications of tissue engineering. J Cell Mol Med,2007,11(5):P935-44
    [23]Miao Z, Jin J, Chen L, et al. Isolation of mesenchymal stem cells from humanplacenta:comparison with human bone marrow mesenchymal stem cells[J]. Cell Biol Int.2006,30:681-687.
    [24]Iorio, MV, et al.2005. MicroRNA gene expression deregulation in human breast cancer. Cancer Res.65,7065-7070.
    [25]Ma L, Teruya-Feldstein J, Weinberg RA. Tumour invasion and metastasis initiated by microRNA-10b in breast cancer. Nature,2007,449(7163):682-688.
    [26]Negrini M, Calin GA. Breast cancer metastasis:a microRNA story. Breast Cancer Res,2008,10(2):203
    [27]Zhu S, Wu H, wu F, et al. MicroRNA-21 targets tumor suppressor genes in invasion and metastasis. Cell Res,2008,18(3):350-359.
    [28]Asangani IA, Rasheed SA, Nikolova DA, et al. MicroRNA-21(miR-21)post-transcriptionally downregulates tumor suppressor Pdcd4 and stimulates invasion, intravasation and metastasis in colorectal cancer. Oncogene, 2008,27(15):2128-2136.
    [29]Kong W, Yang H, He L, et al. MicroRNA-155 is regulated by the transforming growth factor beta/Smad pathway and contributes to epithelial cell plasticity by targeting RhoA. Mol Cell Biol,2008,28(22):6773-6784.
    [30]Tavazoie SF, Alarc6n C, Oskarsson T, et al. Endogenous human microRNAs that suppress breast cancer metastasis. Nature,2008,451(7175):147-152.
    [31]Wu zS, Wu Q, Wang CQ, et al. MiR-339-5p inhibits breast cancer cell migration and invasion in vitro and may be a potential biomarker for breast cancer prognosis. BMC Cancer,2010,10:542.
    [32]Bhaumik D, Scott GK, Schokrpur S, et al. Expression of microRNA-146 suppresses NF-kappaB activity with reduction of metastatic potential in breast cancer Cells. Oncogene,2008,27(42):5643-5647.
    [33]Hurst DR, Edmonds MD, Scott GK, et al. Breast cancer metastasis suppresses 1 up-regulates miR-146, which suppresses breast cancer metastasis. Cancer Res,2009,69(4):1279-1283.
    [34]Tavazoie SF, Alarc6n C, Oskarsson T, et al. Endogenous human microRNAs that suppress breast cancer metastasis. Nature,2008,451(7175):147-152.
    [35]Zhao JJ, Lin J, Yang H, et al. MicroRNA-221/222 negatively regulates estrogen receptor alpha and is associated with tamoxifen resistance in breast cancer. J Biol Chem,2008,283(45):31079-31086.
    [36]Zhao H, Shen J, Medico L, et al. A Pilot Study of Circulating miRNAs as potential biomarkers of early stage breast cancer. PLoS One,2010,5(10): e13735.
    [37]Mattie MD, Benz CC, Bowers J, et al. Optimized high-throughput microRNA expression profiling provides novel biomarker assessment of clinical prostate and breast cancer biopsies. MolCancer,2006,19; 5:24.
    [38]Sempere LF, Christensen M, Silahtaroglu A, et al. Altered MicroRNA expression confined to specific epithelial cell subpopulationsin breast cancer. CancerRes, 2007,67(24):11612-11620.
    [39]Kumar MS, Erkeland SJ, Pester RE, et al. Suppression of nonsmall cell lung tumor development by the let-7 microRNA family. Proc Natl Acad Sci USA, 2008,105(10):3903-3908
    [40]Iorio MV, Ferracin M, Liu CG, et al. MicroRNA gene expression deregulation in human breast cancer. Cancer Res,2005,65(16):7065-7070.
    [41]Camps C, Buffa FM, Colella S, et al. Has-miR-210 is induced by hypoxia and is an independent prognostic factor in breast cancer. Clin Cancer Res,2008, 14(5):1340-1348.
    [42]Si ML, Zhu S, Wu H, et al. MiR-21 mediated tumor growth Oncogene,2007, 26(19):2799-2803
    [43]Liang Z, Wu H, Reddy S, et al. Blockade of invasion and metastasis of breast cancer cells via targeting CXCR4 with an artificial microRNA. Biochem Biophys Res Commun,2007,363(3):542-546.
    [44]Yu F, Yao H, Zhu P, et al. let-7 regulates self renewal and tumorigenicity of breast cancer cells. Cell,2007,131(6):1109-1123.
    [45]Sun M, Estrov Z, Ji Y, et al. Curcumin(diferuloylmethane)alters the expression profiles of microRNAs in human pancreatic cancer cells[J]. Mol Cancer Ther, 2008,7(3):464-473.
    [46]杨静Twist调节乳腺癌细胞转移分子机制的初步研究[D].中国优秀硕士学位论文全文数据库,2008.
    [47]Montagut C, Tusquets I, Ferrer B, et al. Activation of nuclear factor-kappa Bis linked to resistance to neoadjuvant chemotherapy in breast cancer patients[J]. Endocr Relat Cancer,2006,13(2):607-616.
    [48]Keum YS,Han SS,Chun KS,et al. Inhibitory effects of the ginsenoside Rg3 on phorbol ester-induced cyclooxygenase-2 expression,NF-kappaB activation and tumor promotion[J].Mutat Res,2008,523-524(Feb-Mar):75-85.
    [49]Popovich DQKitts DD. Structure-function relationship exists for ginsenosides in reducing cell proliferation and inducing apoptosis in the human leukemia (THP-1)cell line [J].Arch Biochem Biophys,2006,406(1):1-8.
    [50]杨威,李博,乔世兴,等.人参皂甙Rg3抗鼠源性膀胱癌BBT739黏附、侵 袭和肺转移作用的研究[J].中国老年学杂志,2005,25(5):571-573.
    [51]刘基巍。赵翌,富力,等.人参皂甙Rg3在小鼠肝癌淋巴结转移模型中诱导细胞凋亡的作用[J].中国肿瘤临床,2004,31(19):1120-1122.
    [52]于雁,张广美,苏君,等.人参皂甙Rg3对大肠癌淋巴结微转移的影响[J].中华肿瘤杂志,2005,27(12):742-743.
    [53]YUE P Y, WONG D Y, WUPK, et al. The angiosuppressive effects of 20(R)-ginsenoside Rg3[J]. Biochem Pharmacol,2006,72(4):437-445.
    [54]陈明伟,倪磊,赵小革,等.人参皂苷Rg3对肿瘤血管生长调控因子蛋白表达抑制作用的研究[J].中国中药杂志,2005,30(5):357-360.
    [55]ZUCKER S, MIRZA H, CONNER CE, et al. Vascular endothelial growth factor induces tissue factor and matrix metalloprotelnase production in endothelial cells:conversion of prothrombin to thrombin results in progelatinase A activation and cell proliferation[J]. Int. J Cancer,2008,75(5):780-786.
    [56]PEPPER M S, MONTESANO E, MANDR1OTA S J, et al. Angiogenesis:a paradigm for balanced extracellular proteolysis during cell migration and morphognesis[J]. Enzyme Protein,2006 49(1-3):138-162.
    [57]PEPPER M S. Role of the matrix metalloproteinase and plasminogen activator-plasmin systems in angiogenesis [J]. Arterioscler Thromb Vasc Biol, 2001,21(7):1104-1117.
    [58]NAGASEH, WOESSNERJF. Matrix metalloproteinases[J].Biol Chem,2009, 274(31):21491-21494.
    [59]ZUCKER S, MIRZA H, CONNERCE, et al. Vascular endothelial growth factor induces tissue factor and matrix metalloprotejnase production in endothelial cells:conversion of prothrombin to thrombin results in progelatinase A activation and cell proliferation[J]. Int J Cancer,2008,75(5):780-786.
    [60]ZUCKER S, CONNER C, D1MASSIMO B I, et al.Thrombin induces the activati on of progelatinase A in vascular endothelial cells:physiologic regulation of angiogenesis[J].J Biol Chem,2005,270(40):23730-23738.
    [61]LIOTTA LA, STEEG PS, STETLER-STEVENSON W G. Cancer metastasis and angiogenesis:an imbalance of positive and negative regulation[J]. Cell, 2011,64(2):327-336.
    [62]YUE P Y, WONG D Y, WUPK, et al. The angiosuppressive effects of 20(R)-ginsenoside Rg 3[J]. Biochem Pharmacol,2006.72(4):437-445.
    [63]Iishi H, Tatsuta M, Baba M, et al. Inhibition by ginsennoside Rg3 of bombesin-enhanced peritoneal metastasis of intestinal adencareinomas induced by azoxymethane in Wistar rats[J]. Clin Exp Metastasis,2007,15(6):603-611.
    [64]厚权,姚明,邹寿椿,等.血管生成抑制剂Rg3对胃癌生长和转移抑制作用的实验研究[J].中华外科杂志,2002,40(8):606-608

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700