用户名: 密码: 验证码:
单向张拉膜结构气弹模型风洞试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
张拉膜是一种新型的结构体系,其刚度是靠膜内预张力和一定几何形状而形成的,这类结构与传统的结构相比具有两个显著的特点“轻”和“柔”。这使得膜结构具有良好的抗震性能但对风荷载作用敏感,膜结构在风荷载的作用下会产生结构与风场之间的相互作用即所谓的“流固耦合”效应,在一定条件下会使结构发生破坏,因此其风振特性的研究对该类结构的设计非常重要。
     膜结构形式多样,一般为复杂的三维体系,因此其流固耦合特性的影响因素很多。本文以单向张拉膜结构作为研究对象,其结构形式简单且不失张拉膜结构的一般性,对于机理性研究是最好的选择。此外单向张拉膜结构受力特性简单明确,在一定条件下可以简化为二维,使得解析求解或数值模拟相对简单,有助于以后试验与理论求解的相互验证。本文正是基于这样的思想对该类结构进行气弹模型风洞试验,通过改变结构特性参数和流场特性参数,来研究风与结构之间的流固耦合特性。主要工作如下:
     1.制定了气弹模型试验的研究方案,从结构特性参数的改变包括不同膜内预张力、不同膜材和流场特性参数的改变包括不同来流、不同底部支撑条件,这几个方面来讨论空气和膜之间的流固耦合性能。
     2.运用π定理对单向张拉膜结构气弹模型试验需要满足的相似条件进行了推导;设计了单向张拉膜结构的开敞式和封闭式气弹模型;采用不同的方法对乳胶薄膜、防雨绸这两种膜材进行了材性试验。
     3.对单向张拉膜气弹模型进行了风洞试验,预张力变化试验包括10N/m、20N/m、30N/m三种情况;下部支撑情况包括开敞式和封闭式;地貌情况包括均匀流和B类地貌;膜材变化包括防雨绸和乳胶薄膜两种并对结果进行了分析。
     4.综合运用了巴特沃斯带通滤波(BBF)、希尔伯特——黄变换(HHT)以及改进的随机减量法(MRDT)对气弹模型低阶模态的频率和阻尼比进行了求解与分析。
Tensioned membrane structure is a new type of structure system, which stiffness is given by the pre-tensioned stress within membrane and the geometry of pre-formed. The structure compared with traditional ones has two significant features, that is the "lightweight" and "flexibility". The above characteristics also determine membrance structure has a good seismic performance, but sensitive to wind load. Under the effect of wind load, one interaction between membrane structure and wind may be occured, which is called "fluid-structure interaction"(FSI). In some circumstances, this interaction will lead to damage in the structure. Therefore, wind-induced vibration characteristics of research play an important role in this kind of structure.
     Membrance structure in various forms, is gengeally a complex three- dimensional system, many factors affect the properties of its fluid-structure interaction. Due to its simplity and universality, the present paper have processed numbers of mechancial investigation on one-way type tensioned membrane structure. Besides, it could be easily simplified into two-dimensional structure systerm in some conditions, which simplifies the simulation and analytical method and also very useful in comparing the experimental and analytical results. Based on this principle, multiparameter comparison (including the structural parameters and the aerodynamic characteristics of flow parameters) wind tunnel tests were conducted to study wind-induced response characteristics for aeroelastic models of one-way type tension membrane structures. Main tasks are as follows:
     1. A comprehensive scheme of wind tunnel test on aeroelastic modelshas been studied and made. We studied the FSI performance between the wind and membrance structure in aspects of different structural characteristic and flow characteristic parameters.
     2. Theπtheorem is adopted to induce the similarity criterion about aeroelastic model tests of one-way type tensioned membrane structure; Designing and making one-way type of tensioned membrane structure aeroelastic models, including both the opened and closed ones. In order to get material properties of water-resistant silk and latex film, both of different test methods were adopted.
     3. Wind tunnel test of aeroelastic model was performed, laser displacement meters was used to measure the time-history displacement of some points and also applied certain methods for data processing and analysis.
     4. Based on the data from the test, comprehensive use of Butterworth band-pass filter (BBF) , Hilbert-Huang transform (HHT) and the modified random decrement technique (MRDT) to identify both the lower frequency and damping ratio of the aeroelastic model.
引文
[1] D. S. Wakefield. Engineering Analysis of Tension Structures: Theory and Practicel[J]. Engineering Structures,1999,21:680-690.
    [2]李阳.建筑膜材和膜结构的力学性能研究与应用[D].上海:同济大学博士学位论文,2007:18-20.
    [3]刘瑞霞.薄膜结构气弹动力稳定性研究的解析方法[D].北京:北京交通大学博士学位论文,2004:1-3.
    [4]王丽玫,蒋希雁,崔丽英.张力膜结构在建筑工程中的应用[J].河北建筑工程学院学报,2004,22(3):38-39.
    [5]陈波,武岳,沈世钊.张拉式膜结构抗风设计[J].工程力学,2006,23(07):65-71.
    [6] Zhou Qianxiang,Lian Shunguo. Development of Rendezvous and Docking Technology[J]. Aerospace China,1998,1:25-28.
    [7]沈世钊.大跨空间结构若干关键理论问题研究[C]//第九届空间结构学术会议论文集.北京:中国建筑科学研究院建筑结构研究所,2000:1-9.
    [8] Quick Dome Fix Will Let NFL Falcons fly[J]. Engineering News-Recorded ,1995,235(9):14.
    [9]刘瑞霞,杨庆山.薄膜结构的气弹动力失稳临界风速[J].中国安全科学学报,2004,14(6):95-99.
    [10]刘振华.膜结构流体——结构耦合作用风致动力响应数值模拟研究[D].上海:同济大学博士学位论文,2006:1-5.
    [11]孙晓颖.薄膜结构风振响应中的流固耦合效应研究[D].哈尔滨:哈尔滨工业大学博士学位论文,2007:1-15.
    [12] J. B. Frandsen. Numerical Bridge Deck Studies Using Finite Elements[J]. Fluid and Structures,2004,19(2):171-186.
    [13]刘瑞霞.考虑流体分离时薄膜结构的气弹稳定分析[J].钢结构,2008,6(23):32-36.
    [14] R. Sygulski. Dynamic Analysis of Open Membrane Structures Interacting with Air[J]. Numerical Methods in Eingeering,1994,34(11):1807-1823.
    [15]苏波,袁行飞,聂国隽等.流固耦合理论研究评述[C]//第七届全国现代结构工程学术研讨会论文集.北京:工业建筑杂志社,2007:703-709.
    [16] S. Kawamura,E. Kimoto. Aerodynamic Stability Criteria of One-Way Types of Hanging Roofs in Smooth Uniform Flow[C]//5th international Conference on Wind Engineering,1981:939-948.
    [17] E. Kimoto ,S. Kawamura. Aerodynamic Criteria of Hanging Roofs for Structural Design[J]. Shell Membranes and Space Frame,1986,2:249-256.
    [18] H. Kunieda. Flutter of Hanging Roofs and Curved Membrane Roofs[J]. Solids Structures,1975,11:477-492.
    [19] M. Glück,M. Breuer,F. Durst,A. Halfmann,E. Rank. Computation of Fluid-Structure Interaction on Lightweight Structures[J]. Wind Engineering and Aerodynamics,2001,89(14-15):1351-1368.
    [20] M. Glück,M. Breuer,F. Durst,A. Halfmann,E. Rank. Computation of Wind-Induced Vibrations of Flexible Shells and Membranous Structures[J]. Fluids and Structures,2003,17:739-765.
    [21]朱川海.大跨度屋盖气弹模型风洞试验需要满足的相似条件[J].空间结构,2005,11(4):46-53.
    [22]张万路.热线风速仪在线测量的修正模型[J].计量技术,2004,5:27-28.
    [23] Tschanz T,Daverport A G. The Base Balance Technique for the Determination of Dynamic Wind Load[J]. Wind Engineering and Industrial Aerodynamic,1983,13:429-439.
    [24]陈尚,薛晨阳,张文栋.基于介观压阻效应的高g值加速度计设计[J].传感技术学报,2008,21(3):446-449.
    [25] Jaw S. Y.,Chen J. H.,Wu P. C. Measurement of Pressure Distribution from PIV Experiments[J]. Visualization,2009,12(1):27-35.
    [26]许联锋,陈刚,李建中等.粒子图像测速技术研究进展[J].力学进展,2003,33(4):533-540.
    [27]李鑫.直线电机气隙检测装置[J].城市轨道交通研究,2010,3:69-71.
    [28] Kazuyuki Nakakita. Development of the Pressure-Sensitive Paint Measurement for Large Wind Tunnels at Japan Aerospace Exploration Agency[C]//24th International Congress of the Aeronautical Sciences,2004:1-11.
    [29] A. Miyake,T. Yoshimuar,M. Makino. Aerodynamic Instability of Suspended Roof Models[J]. Wind Engineering and Aerodynamics,1992,41(44):1471-1482.
    [30] E. Kimoto,S. Kawamura. Aerodynamic Behavior of One-Way Type Hanging Roof[J]. Wind Engineering and Industrial Aerodynamics,1983,13:395-405.
    [31] S. Kawamura,E. Kimoto. Aerodynamic Stability Criteria of One-Way Types of Hanging Roofs in Smooth Uniform Flow[C]//5th international Conference on Wind Engineering,1981:939-948.
    [32] Y. Uematsu,K. Uchiyama. Aeroelastic Behavior of an H.P.-Shaped Suspended Roof[C]//Proceedings of IASS Symposium. IASS,Osaka,1986,2:241-248.
    [33] H. Irwin and,R. L. Wardlaw. A Wind Tunnel Investigation of a Retractable Fabric Roof for the Montreal Olympic Stadium[C]//5th International Conference on Wind Engineering,1981:925-938.
    [34]向阳,沈世钊,赵臣.张拉式薄膜结构的弹性模型风洞实验研究[J].空间结构,1998,4(3):31-36.
    [35]王吉民.薄膜结构的风振响应分析和风洞试验研究[D].杭州:浙江大学博士学位论文,2001:40-62.
    [36]武岳.考虑流固耦合作用的索膜结构风致动力响应研究[D].哈尔滨:哈尔滨工业大学博士学位论文,2003:49-125.
    [37]马燕红.脊骨式膜结构风致振动的试验研究[D].浙江:浙江大学硕士学位论文,2005:20-53.
    [38]张亮泉.索膜结构气弹性能试验研究[D].哈尔滨:哈尔滨工业大学硕士学位论文,2003:11-23.
    [39] Kassem M. Dynamics of Lightweight Roofs[D]. London Ontario:University of Western Ontario,1990:20-65.
    [40]徐闻.张拉膜结构的风荷载分析和流固耦合效应分析[D].南京:东南大学博士学位论文,2008:4-11.
    [41]张开聪,夏开全.膜结构工程的一些关键技术[J].工业建筑,2002,32(11):58-60.
    [42] H. Minami,Y. okuda,S. kawamura. Experimental Studies on the Flutter Behaviour of Membranes in a Wind Tunnel[J]. Space Structures. 1993,4:935-945.
    [43]张誉.大跨度钢桁架拱桥风洞试验研究[D].重庆:重庆大学硕士学位论文,2007:23-24.
    [44]黄本才,汪丛军.结构抗风分析原理及应用(第二版)[M].上海:同济大学出版社,2008:108-124.
    [45] Yunqiu Jia,B. L. Sill,T. A. Reinhold. Effects of Surface Roughness Element Spacing on Boundary Layer Velocity Profile Parameters. Wind Engineering and Industrial Aerodynamics. 1998,73(3):215-230.
    [46]中国建筑科学研究院主编.中华人民共和国国家标准,建筑结构荷载规范(GB 5009-2001)(2006)[S].北京:中国建筑工业出版社,2006:24-25.
    [47]石碧青,洪海波,谢壮宁等.大气边界层风洞流场特性的模拟[J].空气动力学学报,2007,25(3):376-380.
    [48]罗敏杰.刚性悬挑平板网格结构风振响应分析[D].北京:北京工业大学硕士学位论文,2007:13-15.
    [49]邵友元.对量纲分析法与定量的理解与应用[J].东莞理工学院学报,2010,17(3):106-109.
    [50]王雪亮,陆岩.量纲分析法在结构动力试验中的应用[J].国外建材科技,2008,29(1):115-117.
    [51]王基盛.风荷载与薄膜结构的耦合作用参数分析及试验研究[D].北京:北京交通大学硕士学位论文,2003:49-59.
    [52] Davenport A G. The Response of Tension Structures to Turbulent Wind:the Role of Aerodynamic Damping[M]. 1st Oleg Kerensky Memorial Conference,1988:41-47.
    [53]王献孚,熊鳌魁.高等流体力学[M].武汉:华中科技大学出版社,2003:11-23.
    [54] B.V. Tryggvason. Aeroelastic Modeling of Pneumatic and Tensioned Fabric Structures[C]//5th International Conference on Wind Engineering , 1981 :1061-1072.
    [55]顾明,朱川海.体育场主看台弧形挑篷气弹模型风洞试验和响应特性[J].土木工程学报,2006,39(10):54-59.
    [56]卢旦,李承铭.上海世博会日本馆风荷载特性的数值模拟研究[J].建筑结构,2009,39:840-844.
    [57]张之颖,谭高铭,吕西林.环境激励下房屋建筑阻尼比的识别方法[J].西安建筑科技大学学报(自然科学版),2007,39(6):767-772.
    [58]张亮泉.索膜结构气弹性能试验研究[D].哈尔滨:哈尔滨工业大学硕士学位论文,2003:43-45.
    [59] Peng Z K,Peter W T, Chu F L. A Comparison Study of Improved Hilbert-Huang Transform and Wavelet Transform : Application to Fault Diagnosis for Rolling Bearing[J]. Mechanical Systems and Signal Processing,2005,19:974-988.
    [60] D. Gordon,E. Robertson,James J. Dowling. Design and Responses ofButterworth and Critically Damped Digital Filters[J]. Electromyography Kinesiology,2003,13(6):569-573.
    [61] Huang N E,Shen Z,Long S R. The Empirical Mode Decomposition and the Hilbert Spectrum for Nonlinear and Non-Stationary Time Series Analysis[J]. Proceedings of Royal Society London A,1998,454:903-995.
    [62]任春. HHT在结构动力分析中应用的探讨[D].上海:同济大学硕士学位论文,2005:1-8.
    [63]陶奇,廖海黎,李明水等.苏通长江公路大桥最大单悬臂施工状态结构模态参数识别[J].四川建筑科学研究,2009,35(5):40-44.
    [64]潘峰,孙炳楠,楼文娟.基于Hilbert-Huang变换的大跨屋盖气动阻尼识别[J].浙江大学学报(工学版),2007,41(1):65-70.
    [65]顾元生,李春祥,刘畅.基于希尔伯特——黄变换的超高层建筑模态参数识别[J].建筑科学,2009,25(3):44-48.
    [66]孙旭峰,董石麟.索穹顶结构的气动阻尼识别[J].空气动力学学报,2009,27(2):206-209.
    [67]黄大吉,赵进平,苏纪兰.希尔伯特—黄变换的端点延拓[J].海洋学报,2003,25(1):1-11.
    [68] Cole H A. On-the-line Analysis of Random Vibrations[C]//Proceeding of AIAA/ASME 9th Structures,Structural Dynamics and Materials Conference,AIAA,1968:68-288.
    [69] Yang J C S,Caldwell D. Measurement of Damping and the Detection of Damages in Structures by the Random Decrement Technique[J]. Shock and Vibration Bulletin,1976,46(4):129-136.
    [70] A. Kassem,K. Gurley. Damping in Structures:Its Evaluation and Treatment of Uncertainty[J]. Wind Engineering and Industrial Aerodynamics,1996,59:131-157.
    [71]张西宁,曲梁生.一种改进的随机减量信号提取方法[J].西安交通大学学报,2000,34(1):106-108.
    [72]杨毅.屋盖结构的风振响应和气动阻尼[D].浙江:浙江大学硕士学位论文,2004:1-27.
    [73]史文海,李正农,陈联盟.随机减量技术的研究现状及进展[J].防灾减灾工程学报,2008,28:52-57.
    [74]任春,张继承,罗奇峰. HHT方法在结构模态参数时域识别中的应用[J].长江大学学报(自然科学版),2008,5(4):115-118.
    [75]汪家慰,刘正士,王慧. HHT法识别结构模态频率和阻尼比的改进[J].合肥工业大学学报(自然科学版),2010,33(5):647-651.
    [76]金涌,顾明.方形断面高层建筑的气动阻尼研究[J].工程力学,2004,21(1):30-33.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700