用户名: 密码: 验证码:
薄膜结构风振响应中的流固耦合效应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
薄膜结构是近年来应用十分广泛的一种新型大跨度柔性屋盖结构,其基本力学特点是“轻”和“柔”,因而对脉动风荷载的作用十分敏感,风荷载是结构设计中的主要控制荷载。膜结构在风荷载的作用下通常会产生较大的变形和振动,这种大幅的变形和振动反过来也会影响到其表面风压分布,产生所谓的“流固耦合”效应。因此,要对膜结构的风荷载以及风振响应做出准确估算,除了借助常规分析手段外,还需要特别关注流固耦合的影响。但是由于膜结构的外形和自身力学性能的复杂性,特别是几何非线性的影响,使得对膜结构流固耦合问题的研究异常复杂。目前国内外在这一领域的研究均处于起步阶段。
     本文首先基于弱耦合分区求解策略,在Compaq Visual Fortran6.5环境下搭建了薄膜结构三维流固耦合效应的数值模拟平台(本文称之为“直接数值模拟方法”)。程序采用模块化编程思想,主要包含几何建模、流体分析、结构分析和数据交换四个模块。其中几何建模模块采用自行编制的膜结构找形分析程序;流体分析模块采用经过二次开发的计算流体力学软件FLUENT6.0;结构分析模块采用自行编制的膜结构动力分析程序MDLFX;在数据交换模块中,编制了基于薄板样条法的插值计算程序,以实现流固交界面上不同区域网格间的数据传递问题,编制了基于代数法和迭代法的动网格变形程序,以实现流固耦合运算中的动网格更新。基于该软件平台,对单向柔性屋盖和鞍形膜结构屋盖进行了流固耦合数值模拟,验证了方法的有效性。
     鉴于直接数值模拟方法的计算量巨大,缺乏工程可操作性,本文又提出了一种更为实用的简化数值模拟方法。该方法的基本思想是,先将结构响应分为平均响应、背景响应和共振响应三部分,再针对这三种响应分量的不同性质,采用不同的求解方法,以达到尽量减少CFD运算时间的目的。在平均响应部分,主要考虑由于结构变形所导致的体型系数变化,是一个静态过程,可以直接利用CFD稳态模型求解;在背景响应部分,主要考虑脉动风的空间相关性对结构整体振动的影响,是一个拟静态过程,可以利用CFD技术和POD方法求得与结构最不利变形模态对应的风荷载分布模式;在共振响应部分,主要考虑脉动风中的较高频成分与结构之间的动力耦合作用,由于此时的结构振幅较小,可以忽略几何非线性的影响,采用常规的随机振动时程分析方法求解,并适当考虑附加质量和气动阻尼的作用。应用上述简化数值模拟方法对单向柔性屋盖和鞍形膜结构屋盖进行了分析,并将计算结果与直接数值模拟方法对比,验证了简化数值模拟方法的精确性和高效性。为定量衡量结构的流固耦合效应,本文定义了流固耦合影响因子。在此基础上,对单向柔性屋盖和三维薄膜结构的流固耦合性能进行了系统研究,探讨了风速、风向角、矢跨比(或高跨比)和初始预张力等参数对结构流固耦合效应的影响,并给出了流固耦合影响因子的取值范围。
     此外,本文还基于能量守恒原理推导了附加质量和气动阻尼的解析公式,并运用气动弹性力学原理对附加质量和气动阻尼中的气动力项进行了推导。在此基础上,探讨了风向角、风速、矢跨比(或高跨比)和初始预张力等参数变化对附加质量和气动阻尼的影响,给出可供设计参考的附加质量和气动阻尼的取值范围。
Membrane structures are widely used as long-span structures. As being characterized by lightweight and flexibility, they are highly susceptible to the wind action, in particular, to the effects of fluctuating pressure. Membrane structures often produce rather big vibration under wind excitation, which may even affect the wind pressure distribution. That is to say, the interacting occurs between wind and structures, which is called“fluid-structure interaction”in the fluid dynamics. It is necessary to pay attention to“fluid-structure interaction”besides using the traditional analysis methods in order to accurately estimate the wind load and wind-induced vibration response on membrane structures. Because of complexity of mechanical property, especially geometrical non-linearity, the wind-structure interaction of membrane structure is very sophisticated. So at the present, the study of“fluid-structure interaction”is in the starting step.
     Firstly, based on loose coupling partitioned method, a wind-structure interaction numerical simulating platform of membrane structure has been established in the environment of Compaq Visual Fortran 6.5 (the method is called“the direct numerical simulation”). The program is modularized, in which geometry modeling modul, fluid module, structure module and data interface modul keep independent each other. In geometry modeling modul, the form-finding analysis program of membrane structure is adopted. In fluid analysis modul, the CFD software FLUENT6.0 is adopted. In structure analysis modul, the dynamic analysis program MDLFX is adopted. In data interface modul,“Thin-Plate Splines”is adopted to resolve the data transfer on coupling boundary between CFD and CSD. And the problem on dynamic mesh is effectively resolved by using algebra method and iteration method. Finally, the numerical simulation of the wind-structure interaction of one-way long-span roofs and three-dimensioned saddle-shaped membrane structure are carried out to validate the method.
     Because of the hundredfold time-consuming of simulating the three-dimensioned problem and lack of engineering operability by using the direct numerical simulation, a simplified numerical approach of a time-dependent wind-structure interaction is presented. The general idea of this approach is to divide the structural response into three components: mean response, background response and resonant response. The first component is a static interaction process, which is due to the change of structural geometry under mean wind pressure. The second component can be regard as a qusi-static interaction process, which relates to the motion of large scale eddies. The last component can be called as a transient interaction process, in which the dynamic magnification effect should be considered mainly. Due to the different characteristics of each component, different methods should be adopted respectively. For static and quasi-static interaction, the suitable method is CFD simulation, in which the wind pressure change due to structural deformation will be considered mainly; for transient interaction, the suitable method is nonlinear random vibration analysis in time domain considering the influence of added mass and aerodynamic damping.
     Effect factor of Fluid-Structure Interaction (FSI) is defined to consider the influence of fluid-structure interation. Then, systemically studies on the behaviors of one-way long-span roofs and three-dimensioned membrane structures are carried out. The effects of several factors, such as wind velocity, wind direction, height-span ratio and pretension force et al, are investigated, and the effect factor of FSI is advised.
     Furthermore, based on energy conservation law, the analytic formula of added mass and aerodynamic damping is present. Then the aerodynamic force in the formula is derived by using aeroelasticity theory. Finally, the effects of several factors to the added mass and aerodynamic damping of membrane structures, such as wind velocity, wind direction, height-span ratio and pretension force et al, are investigated.
引文
1 沈世钊. 大跨空间结构的发展—回顾与展望. 土木工程学报. 1998,31(3):5~14
    2 S. Z. Shen, T. T. Lan. A Review of the Development of Spatial Structures in China. Int. J. Space Struct. 2001, 16(3): 157~172
    3 R. Bradshaw, D. Campbell, et al. Special Structures: Past, Present, and Future. J. Structural Engineering. 2002, 128(6): 691~709
    4 沈世钊 . 膜结构 - 发展迅速的新型空间结构.哈尔滨建筑大学学报.1999,32(2):11~15
    5 蓝天. 膜结构—成就、问题与展望. 第九届空间结构学术会议论文集. 浙江萧山,2000: 27~34
    6 H. Berger. Form and Function of Tensile Structures for Permanent Structures. Engrg. Struct. 1999, 21(8): 669~679
    7 Curt Siegel. Structure and Form in Modern Architecture. Crosby Lockwood & Son Ltd. London, 1962: 198~200
    8 石井一夫. 日本膜结构的发展. 世界建筑. 1999, 3: 70~73
    9 D. S. Wakefield. Engineering Analysis of Tension Structures: Theory and Practice. Engrg. Struct. 1999, 21(8): 680~690
    10 J. M. Roesset, J. T. P. Yao. State of the Art of Structural Engineering. J. Structural Engineering. 2002, 128(8): 965~975
    11 M. Saitoh. Recent Development of Tension Structures. Current and Emerging Technologies of Shell and Spatial Structures, 1997: 105~118
    12 J. Schlaich. On Some Recent Lightweight Structures. IASS Symposium 2001, Nagoya, SP4: 1~12
    13 沈世钊. 大跨空间结构若干关键理论问题研究. 第九届空间结构学术会议论文集. 浙江萧山,2000: 1~9
    14 龙 文 志 . 北 京 奥 运 会 体 育 场 游 泳 馆 的 幕 墙 . 中 国 建 筑 装 饰 . 2004,169(1):15~19
    15 Seung-Deog Kim. On the Membrane Collapse of JEJU World Cup Stadium by Typhoon. IASS2003. Korea,2003:321~328
    16 武岳.考虑流固耦合作用的索膜结构风致动力响应研究.哈尔滨工业大学博士论文. 2003: 1~120
    17 武岳,向阳,沈世钊. 威海体育场挑篷索膜结构风洞试验研究. 建筑结构. 2001, 31(6): 66~68
    18 Shizhao Shen, Qingshan Yang. Wind-induced response analysis and wind-resistant design of hyperbolic paraboloid Cable Net Structures. J. Space Structures, 1999, 14(1): 57~65
    19 向阳,沈世钊,李君.薄膜结构的非线性风振响应分析.建筑结构学报.1999, 20(6): 38~46
    20 陈波,武岳,沈世钊. 张拉伞形膜结构风振响应分析. 第十一届全国结构风工程学术会议论文集. 海南三亚,2003:298~303
    21 陈波. 张拉膜结构风振响应分析. 哈尔滨工业大学硕士论文.2003:28~57
    22 邢景棠,周盛,崔尔杰.流固耦合力学概述. 力学进展. 1997, 1:19~31
    23 王其政. 结构耦合动力学. 宇航出版社.1999: 21~211
    24 M. S. A. Sharekh, S. K. Pathak et al. Turbulent Boundary Layer over Symmetric Bodies with Rigid and Flexible Surface. J. Engng. Mech. 2000, 126(4): 422~431
    25 Vladimir. V. Bolotin. Dynamic Instabilities in Mechanics of Structures. Appl. Mech. Rev. 1999, 52: R1~R9
    26 E. Simiu and R. H. Scanlan. Wind Effects on Structures—An Introduction to Wind Engineering. The 3rd Edition, John Wiley & Sons, INC. 1995: 33~99.
    27 黄本才. 结构抗风分析原理及应用. 同济大学出版社,2001: 14~46
    28 陈政清. 桥梁风工程. 人民交通出版社,2005:10~89
    29 Theodorsen T. Genernal theory of aerodynamic instability and the mechanism of flutter. NACA Report No.496, Langley, Va.1995: 2~7
    30 Scanlan R.H, Tomko J.J. Airfoil and bridge deck flutter derivatives. Journal of Engineering Mechanics,ASCE, 1971, 97(6):1171~1737
    31 R. H. Scanlan. Observations on Low-speed Aeroelasticity. J. Structural Engineering. 2002, 128(12): 1254~1258
    32 C. Dyrbe and A. O. Hansen. Wind Loads on Structures. John Wiley &Sons, INC. 1996: 19~49
    33 S. Kawamura and E. Kimoto. Aerodynamic Stability Criteria of One-way Types of Hanging Roofs in Smooth Uniform Flow. Proc. 5th Int. Conf. on Wind Eng., Pergamon, 1981: 939~948
    34 E. Kimoto and S. Kawamura. Aerodynamic Behavior of One-way Type Hanging Roof. J. Wind Eng. Ind. Aerodyn. 1983, 13: 395~405
    35 E. Kimoto and S. Kawamura. Aerodynamic Criteria of Hanging Roofs for Structural Design. Shell Membranes and Space Frame, Proceeding IASS Symposium, Osaka, 1986, 2: 249~256
    36 Ivovich V A, Pokrovskii L N. Dynamic analysis of suspended roof systems. A.A.Balkema/Rotterdam. 1991:11~17
    37 H. Kunieda. Flutter of Hanging Roofs and Curved Membrane Roofs. Int. J. Solids Structures. 1975, 11: 477~492
    38 R. Sygulski. Dynamic Analysis of Open Membrane Structures Interacting with Air. Int. J. Numer. Methods. Engrg. 1994, 37: 1807~1823
    39 R. Sygulski. Dynamic Stability of Pneumatic Structures in Wind: Theory and Experiment. Journal of Fluids and Structures. 1996, 10:945~963
    40 R. Sygulski. Numerical Analysis of Membrane Stability in Air Flow. Journal of Sound and Vibration.1997, 207(3):281~292
    41 刘瑞霞.薄膜结构气弹动力稳定性研究的解决方法. 北京交通大学博士论文. 2004:82~123
    42 H. Minami, Y. Okuda and S. Kawamura. Experimental Studies on the Flutter Behaviour of Membranes in a Wind Tunnel. Space Structures 4. Thomas Telford, London, 1993: 935~945
    43 A.Miyake, T.Yoshimura, M.Makino. Separated Shear Layer Instability and Vortex Excitation of Bluff Bodies with Elongated Cross-Sections. Journal of Wind Engineering and Industrial Aerodynamics. 1988, 37: 349~354 International Colloquium on Bluff Body Aerodynamics and its Application. Kyoto. 1988: 347~354
    44 T. Matsumoto. An Investigation on the Response of Pretensioned One-way Types Suspension Roofs. J. Wind Eng. Ind. Aerodyn. 1983, 13: 383~394
    45 T. Matsumoto. Self-excited Oscillation of a Pretensioned Cable Roof with Single Curvature in Smooth Flow. J. Wind Eng. Ind. Aerodyn. 1990, 34:303~318
    46 Y. Uematsu,K. Uchiyama. Aeroelastic Behavior of an H.P. Shaped Suspended Roof. Shells, Membrane and Space Frames, Proceedings of IASS Symposium, Osaka, 1986, 2: 241~248
    47 H. P. A. H. Irwin and R. L. Wardlaw. A Wind Tunnel Investigation of a Retractable Fabric Roof for the Montreal Olympic Stadium. Proc. 5th Int. Conf. on Wind Eng., Pergamon, 1981: 925~938
    48 D. W. Boggs. Validation of the Aerodynamic Model Method. J. Wind Eng. Ind. Aerodyn. 1992, 41-44: 1011~1022
    49 张亮泉.索膜结构气弹性能试验研究. 哈尔滨工业大学硕士论文. 2003: 11~23
    50 王基盛. 风荷载与薄膜结构的耦合作用参数分析及试验研究. 北方交通大学硕士学位论文.2003:31~81
    51 Daw D J, Davenport A G. Aerodynamic damping and stiffness of a semi-circular roof in turbulent wind. J. Wind Eng. Ind. Aerodyn. 1989, 32: 83~92
    52 Takeshi Ohkuma and Hjsao Marukawa, Vibration-induced wind pressure on large span plat roof and its application. Proc. Of 2nd Asia-Pacific Symposium on Wind Engineering, Beijing, China, June 26-29, 1989:19~25
    53 武岳,杨庆山,张亮泉,王基盛,沈世钊. 索膜结构风致动力响应性能的风洞实验研究. 第十一届全国结构风工程学术会议论文集. 海南三亚, 2003:254~259
    54 张亮泉,武岳,沈世钊. 索膜结构风振研究中的气动阻尼识别. 第十一届全国结构风工程学术会议论文集. 海南三亚, 2003:506~511
    55 Larson A., Walther J.H. Aeroelastic analysis of bridge girder section based on discrete vortex simulations. Journal of Wind Engineering and Industrial Aerodynamics.1997, 67&68: 253~265
    56 曹丰产. 桥梁气动弹性问题的数值计算. 同济大学博士论文. 1999: 119~169
    57 Kataoka, H. and Mizuno, M. Numerical flow computation around aeroelastic 3D square cylinder using inflow turbulence. Wind and Structures. 2002, 5(2-4):379~392
    58 杨伟. 基于 RANS 的结构风荷载和响应的数值模拟研究. 同济大学博士论文. 2004:119~169
    59 M. Glück, M. Breuer, F. Durst, A. Halfmann, E. Rank. Computation of Fluid-Structure Interaction on Lightweight Structures. J. Wind Eng. Ind. Aerodyn. 2001, 89(14-15): 1351~1368
    60 M. Breuer, M. Glück, N. Jovivcic, C. Bartels. High-Performance Computing: Applications to the Numerical Simulation of Turbulent Flows. Thermal Science. 2001, 5(1): 47~74
    61 A. Halfmann, E. Rank, M. Glück, M. Breuer, F. Durst, J. Bellmann, C. Katz. Computational Engineering for Wind-Exposed Thin-Walled Structures. Lecture Notes in Computational Science and Engineering. 2002, 21: 63~70
    62 M. Glück, M. Breuer, F. Durst, A. Halfmann, E. Rank. Computation of Wind-Induced Vibrations of Flexible Shells and Membranous Structures. J. of Fluids and Structures. 2003,(17):739~765
    63 A. Halfmann, E. Rank, M. Glück, M. Breuer, F. Durst. A Partitioned Solution Approach for the Fluid-Structure Interaction of Wind and Thin-Walled Structures. IKM 2000 Conference, Weimar, Germany, 2000: 22~24
    64 M. Glück, M. Breuer, F. Durst, A. Halfmann, E. Rank. Computation of Fluid-Structure Interaction on Lightweight Structures. 4th Int. Colloq. on Bluff Body Aerodynamics and Applications, Bochum, Germany, 2000: 11~14
    65 A. Halfmann, E. Rank, M. Glück, M. Breuer, F. Durst. A Geometrical Model for Fluid-Structure Interaction of Wind-Exposed Structures. The Ninth Int. Conference on Computing in Civil and Building Engineering, Taipei, Taiwan, 2002:4~9
    66 B. Hubner, E. Walhorn and D. Dinkler. Simultaneous Solution to the Interaction of Wind Flow and Lightweight Membrane Structures. Proc. Int. Conf. On Lightweight Structures in Civil Engineering, Warsaw, 2002: 519~523
    67 张雄,陆明万,王建军.任意拉格朗日-欧拉描述法研究进展.计算力学学报. 1997, 1:91~102
    68 V. Shankar and H. Ide. Aeroelastic Computations of Flexible Configurations. Comput & Struct. 1988, 30: 15~28
    69 L. Demkowicz. Some Remarks on Moving Finite Element Methods. Comput. Meths. Appl. Mech. Engrg. 1984, 46: 339~349
    70 V. Kalro, T. E. Tezduyar. A Parallel 3D Computational Method for Fluid-Structure Interactions in Parachute Systems. Comput. Meths. Appl. Mech. Engrg. 2000, 190: 321~332
    71 沈世钊,武岳. 大跨度柔性结构考虑流固耦合效应的风振性能研究。第十一届全国结构风工程学术会议论文集. 海南三亚.2003: 12~19
    72 沈世钊,武岳. 大跨度张拉结构风致动力响应研究进展.同济大学学报.2002, 30(5): 533~538
    73 武岳. 计算流体力学及其在膜结构风振分析中的应用.国家自然科学基金重大项目专题年度研究报告. 1999: 1~15
    74 John D.Anderson, JR. Computational Fluid Dynamics (the Basics with Applications).Tshinghua Press, 2002: 11~35
    75 S. Murakami. Past, present, and future of CWE: The view from 1999. Wind Engineering into 21st Century. Balkema: 1999:91~104
    76 Alan. G. Davenport. Past, present, and future of wind engineering. Journal of Wind Engineering and Industrial Aerodynamics. 2002, 90:1371~1380
    77 K. Nozawa, T. Tamura. Large eddy simulation of the flow around a low-rise building immersed in a rough-wall turbulent boundary layer. Journal of Wind Engineering and Industrial Aerodynamics. 2002, 90: 1151~1162
    78 H.Nada, A.Nakayama. Reproducibility of flow past two-dimensional rectangular cylinders in a homogeneous turbulent flow by LES. Journal of Wind Engineering and Industrial Aerodynamics. 2003, 91: 265~278
    79 Da-hai Yu, Ashan Kareem. Numerical simulation of flow around rectangular prism. Journal of Wind Engineering and Industrial Aerodynamics. 1997, 67&68: 195~208
    80 J.Franke, W.Frank. Large eddy simulation of the flow past a circular at Re D = 3900. Journal of Wind Engineering and Industrial Aerodynamics. 2002, 90: 1191~1206
    81 W.Rodi. Comparison of LES and RANS calculations of the flow around bluff bodies. Journal of Wind Engineering and Industrial Aerodynamics. 1997, 67&68: 55~75
    82 R.Panneer Selvam. Computation of pressures on Texas Tech University buiding using large eddy simulation. Journal of Wind Engineering and Industrial Aerodynamics. 1997, 67&68: 647~657
    83 Jianming He, Charles C.S.Song. A numerical study of wind flow around the TTU building and the roof corner vortex. Journal of Wind Engineering and Industrial Aerodynamics. 1997, 67&68: 547~558
    84 Tayfun E. Tezduyar. CFD methods for three-dimensional computation of complex flow problems. Journal of Wind Engineering and Industrial Aerodynamics. 1999, 81: 97~116
    85 S.Becker, H.Lienhart, F.Durst. Flow around three-dimensional obstacles in boundary layers. Journal of Wind Engineering and Industrial Aerodynamics. 2002, 90: 265~279
    86 D.Bouris, G.Bergeles. 2D LES of vortex shedding from a square cylinder. Journal of Wind Engineering and Industrial Aerodynamics. 1999, 80: 31~46
    87 S.Murakami, A.Mochida. On turbulent vortex shedding flow past 2D square cylinder predicted by CFD. Journal of Wind Engineering and Industrial Aerodynamics. 1995, 54/55: 191~211
    88 S.Murakami. Overview of turbulence models applied in CWE-1997. Journal of Wind Engineering and Industrial Aerodynamics. 1998, 74-76: 1~24
    89 Theodore Stathopoulos. Computational wind engineering: Past achievements and future challenges. Journal of Wind Engineering and Industrial Aerodynamics. 1997, 67&68: 509~532
    90 Stefan Schmidt, Frank Thiele. Comparison of numerical methods applied to the over wall-mounted cubes. International Journal of Heat and Fluid Flow. 2002, 23: 330~339
    91 Lee.S. Bienkiewicz.B. Large eddy simulation of wind effects on bluff: bodies using the finite element method. Journal of Wind Engineering and Industrial Aerodynamics. 1997, 67&68: 253~265
    92 R.Panneer Selvam. Finite element modeling of flow around a circular cylinder using LES. Journal of Wind Engineering and Industrial Aerodynamics. 1997, 67&68: 129~139
    93 Pietro Catalano, Meng Wang, Gianluca Iaccarino, Parviz Moin. Numerical simulation of the flow around a circular cylinder at high Reynolds numbers. International Journal of Heat and Fluid Flow. 2003, 24: 463-469
    94 G.Iaccarino, A.Ooi, P.A.Durbin, M.Behnia. Reynolds averaged simulation of unsteady separated flow. International Journal of Heat and Fluid Flow. 2003, 24: 147~156
    95 E.Labourasse, P.Sagaut. Reconstruction of Turbulent Fluctuations Using a Hybrid RANS/LES Approach. Journal of Computational Physics. 2002, 182: 301~336
    96 H. L.übcke, St. Schmidt, T. Rung, F. Thiele. Comparison of LES and RANS in bluff-body flows. Journal of Wind Engineering and Industrial Aerodynamics. 2001, 89:1471~1485
    97 Sangsan Lee. Unsteady aerodynamic force prediction on a square cylinder using k ? εturbulence models. Journal of Wind Engineering and Industrial Aerodynamics. 1997, 67&68: 79~90
    98 K.Kondo, S.Murakami, A.Mochida. Generation of velocity fluctuations for inflow boundary condition of LES. Journal of Wind Engineering and Industrial Aerodynamics. 1997, 67&68: 51~64
    99 Thomas S. Lund. Generation of Turbulent Inflow Data for Spatially- Developing Boundary Layer Simulations. Journal of Computational Physics. 1998, 140: 233~258
    100 史忠军, 徐敏, 陈士橹. 动网格生成技术. 空军工程大学学报.2003, 4(1):61~64
    101 Yongsheng Lian, Wei Shyy. Three-Dimensional Fluid-Structure Interactions of a Membrane Wing for Micro Air Vehicle Application. AIAA Paper 2003-1726:1~10
    102 Yongsheng Lian, Jonas Steen, Marcus Trygg-Wilander, Wei Shyy. Low Reynolds number turbulent flows around a dynamically shaped airfoil. Computers & Fluids. 2003, 32: 287~303
    103 A.Halfmann, E.Rank, M.Glück, F.Durst. A geometric model for fluid-structure of wind-exposed structures. The Ninth International on Computing in Civil and Building Engineering. Taiwen, Taipei.2002:1~8
    104 FLUENT6.1 Documentation, Fluent Inc, 2003: 11~25
    105 H.M.Tsai, A.S.F.Wong. Unsteady flow calculations with a parallel multiblock moving mesh algorithm. AIAA Journal. 2001, 39(6):1021~1029
    106 F.Liu, J Cai, Y.Zhu. Calculation of Wing Flutter by a Coupled Fluid-Structure Method. Journal of Aircraft. 2001, 38(2):334~342
    107 Y.Lian, J.Steen, M.Trygg-Wilander, W.Shyy. Low Reynolds Number Turbulent Flows around a Dynamically Shaped Airfoil. AIAA 2001-2723:1~8
    108 Ramji Kamakoti, Yongsheng Lian, Sean Regisford, Andrew Kurdila Wei shyy. Computional Aeroelasticity Using a Pressure-based Solver. CMES. 2002, 3(6): 773~789
    109 H.Hodges, Carlos E.S.Cesnik. Evaluation of Computational Algorithms Suitable for Fluid-Structure Interactions. Journal of Aircraft. 2000, 37(2):282~294
    110 Karl Rohr, Mike Fornefett, H.Siegfried Stiehl. Approximating Thin-Plate Splines for Elastic Registration: Integration of Landmark Errors and Orientation Attributes. Lectures Notes in Computer Science 1613. 1999: 252~265
    111 S.Roberts, L.Stals. Discrete thin plate spline smoothing in 3D. ANZIAM J.2004, 45(E): 646~659
    112 孙晓颖, 武岳, 沈世钊. 鞍形屋盖平均风压分布特性的数值模拟.工程力学. 2006, 23(10): 7~14
    113 楼文娟, 李本悦, 陆峰. 大跨度屋盖风压拟合公式及风荷载取值.同济大学学报.2002, 30(5):588~593
    114 Stathopoulos T. Wind pressure functions for flat roof. Journal of the Engineering Mechanics Division,1981, 17(EM5):889~905
    115 Uematsu Y,Isyumov N. Wind pressures acting on low-rise buidings. Journal of Wind Engineering and Industrial Aerodynamics. 1999, 82:1~25
    116 A. G. Davenport. The response of tension structures to turbulent wind: therole of aerodynamic damping. 1st Oleg Kerensky Memorial Conference. 1988:1~6
    117 A. G. Davenport. How can we simplify and generalize wind loads? Journal of Wind Engineering and Industrial Aerodynamics. 1995, 54/55:657~669
    118 B.Bienkiewicz, Y.Tamura, H.J.Ham, H.Ueda, K. Hibi. Proper orthogonal decomposition and reconstruction of muti-channel roof pressure. Journal of Wind Engineering and Industrial Aerodynamics.1998,54/55: 369~381
    119 张建胜. 单层网壳结构风振响应分析的时域与频域方法研究. 哈尔滨工业大学工学硕士论文.2005:17~20
    120 张建胜,陈波,武岳,沈世钊. Ritz-POD 法及其在大跨屋盖结构风振分析中的应用. 第十二届全国结构风工程学术会议论文集. 陕西省西安市.2005:629~634
    121 陶青秋. 本征正交分解(POD)方法在建筑风荷载及其动态响应中的应用研究. 汕头大学硕士学位论文.2002:10~30
    122 Y. Tamura, S. Suganuma, H. Kikuchi, K. Hibi. Proper Orthogonal Decomposition of Random Wind Pressure Field. Journal of Fluids and Structures. 1999,13: 1069~1095
    123 Kikuchi H, Tamura Y, Ueda H, Hibi K. Dynamic wind pressures acting on a tall building model—proper orthogonal decomposition. J. Wind Eng. Ind. Aerodyn. 1997,69-71:631~646
    124 B.Bienkiewicz, H.J.Ham, and Y.Sun Proper orthogonal decomposition and reconstruction of roof pressure [J]. J. Wind Eng. Ind. Aerodyn. 1993, 50: 193~202
    125 肖智勇.本征正交分解(POD)方法在高层建筑风荷载及其动态相应中的应用研究. 汕头大学硕士学位论文.2001:9~150
    126 Loeve M. Probability Theory, 4th Edition, Chapter XI: Second order Properties Orthogonal decompositions, Springer-Verlag New York Inc. 1978:110~170
    127 江槕荣,倪振华. 本征正交分解技术在屋盖风场预测中的应用。第十二届全国结构风工程学术会议论文集. 陕西省西安市. 2005: 526~530
    128 Chen Y, Kopp G A and Surry D. Spatial extrapolation of pressure time series on low buildings using proper orthogonal decomposition . Wind and Structures. 2004, 7(6):373~392
    129 陈波. 大跨屋盖结构等效静风荷载精细化理论研究. 哈尔滨工业大学工学博士论文.2006:18~95
    130 李方慧,倪振华,谢壮宁. POD 方法在重建双坡屋盖风压场中的应用. 工程力学. 2005, 22,Sup: 177~182
    131 李方慧. 大跨屋盖风致响应及等效静风荷载研究. 哈尔滨工业大学工学博士论文.2006:9~23
    132 孙晓颖,武岳,沈世钊. 薄膜结构附加质量和气动阻尼的研究. 第十二届全国结构风工程学术会议论文集.2005:46~51
    133 张亮泉, 李惠, 武岳, 沈世钊. 基于小波变换的索膜结构风振频率与气动阻尼识别. 第十二届全国结构风工程学术会议论文集.2005:635~639
    134 武岳,王基胜,张亮泉,杨庆山. 索膜结构气弹力学性能研究. 大型复杂结构体系的关键科学问题及设计理论研究论文集(2001).哈尔滨工业大学出版社,2002: 205~212
    135 Dowell E H. Panel flutter: a review of the aeroelastic stability of panel and shells. AIAA Journal. 1970, 8:385~420
    136 徐华舫. 空气动力学基础.北京航空学院出版社.1987: 10~100
    137 陈再新,刘福长,鲍国华. 空气动力学.北航内部教材.2000: 17~46
    138 H.W.伏欣(著),沈克扬(译).气动弹性力学原理.上海科学技术文献出版社,1982:142~35
    139 H.Minami. Added mass of a membrane vibrating at finite amplitude. Journal of Fluids and Structures, 1998, 12:919~932
    140 毛国栋,孙炳楠,楼文娟.膜结构的附加空气质量.工程力学.2004,21(1):153~158
    141 毛国栋.索膜结构设计方法研究.浙江大学工学博士学位论文.2004: 115~141
    142 R.SYGULSKI. Dynamic stability of pneumatic structures in wind: theory and experiment. Journal of Fluids and Structures. 1996,10:945~963
    143 Bisplinghoff R L, Ashley H, Halfman R L. Aeroelasticity. Addision-Wesley. 1955: 59~350
    144 Kassem M. Dynamics of Lightweight Roofs. Dissertation of the University of Western Ontario.1990:10~21
    145 童秉纲,非定常流与涡运动.国防工业出版社,1993:21~40
    146 Sewall J L, Miserentino R, Pappa R S. Vibration studies of a lightweight three-sided membrane suitable for space application. NASA Technical Paper 2095, 1983:1~11
    147 Y.Yadykin, V.Tenetov, D.Levin. The added mass of a flexible plate oscillating in a fluid. Journal of Fluids and Structures.2003, 17:115~123
    148 (日)伯野元彦(主编),李明昭(译). 土木工程振动手册.中国铁道出版社.1992:15~31
    149 R.W.克拉夫 J. 彭津(著) 王光远(译). 结构动力学.哈尔滨工业大学,1983: 26~51
    150 曹树谦,张文德,萧龙翔. 振动结构模态分析.天津大学出版社,2001:8~9

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700