用户名: 密码: 验证码:
黄瓜属种间遗传资源的创制及其细胞学和分子遗传学定性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本项研究在黄瓜属种间杂交取得突破性进展的基础上,以黄瓜属种间双二倍体Cucumis hytivus Chen & Kirkbride、及其双亲(栽培黄瓜“北京截头”和野生种C.hystrix Chakr.)等为核心材料,成功地培育了不同基因型的种间杂种F_1(“二早子”/C.hystrix)、黄瓜属异源三倍体以及两个“黄瓜—C.hystrix”单体异附加系;建立了种间杂种F_1和异源三倍体的无性繁殖体系;并运用细胞遗传学和分子标记等分析手段完成了对这些新合成的特异种间材料的定性研究。
     1.黄瓜属种间杂种F_1离体繁殖以及定性研究
     运用不同的授粉方式、以4个生态型黄瓜栽培种“A309”、“二早子”、“白丝条”、“北京截头”作亲本,与野生种C.hystrix进行正、反杂交,结合胚胎拯救技术,最终获得“二早子”/野生种C.hystrix的种间杂种F_1。通过体细胞染色体记数(2n=2x=19)和POD同工酶分析,并结合田间形态学观察,确定了“二早子”/野生种C.hystrix杂种的真实性。
     在对正反交杂种F_1的形态和育性差异进行比较研究的同时,研究了杂种F_1的花粉母细胞减数分裂过程。结果表明:当以黄瓜栽培种为母本时,杂种植株呈现雌雄高度不育,染色体加倍后杂种的育性仍然非常低;而当以C.hystrix为母本时,杂种植株虽然仍高度不育,但受外来花粉刺激后能结大量的果实,加倍后雌雄育性均得到恢复。减数分裂研究发现,正反杂种减数分裂行为无明显差异,终变期和中期Ⅰ,主要以17条单价体(Ⅰ)和1个二价体(Ⅱ)构成;整个花粉母细胞的减数分裂行为异常,经常可见后染色体滞后和中期纺锤丝定向紊乱。
     利用胚胎拯救获得的杂种F_1无菌苗的茎尖或腋芽建立了杂种F_1的快速繁殖体系。离体繁殖的结果表明,杂种F_1不定芽增殖具有杂种优势,极易增殖。在只添加BA 0.5~1.0mg·L~(-1)的培养基上,其增殖系数达7.6以上。高于这个范围,增殖系数随着浓度的增加而下降。而在无激素的MS基本培养基上不分化出丛生芽。
     2.异源三倍体的培育及离体繁殖研究
     通过胚胎拯救和体细胞突变加倍获得的完全可育的黄瓜属双二倍体种(Cucumis hytivus Chen and Kirkbride,2n=4x=38)是转移野生种有用性状的桥梁。对C.hytivus与栽培黄瓜的回交后代进行鉴定和定性研究是黄瓜属作物种间基因渐渗的主
    
    摘要
    要内容。将双二倍体(母本)和栽培黄瓜“北京截头”(e sarivus ev.Beijin自ietou.,
    2n二2x=14)(父本)的杂种胚进行培养,获得无菌苗。将无菌苗的顶芽和腋芽用
    于离体快繁,结果表明,Ms+2.2 mg·L一,6一BA和Ms+3.0 mg·L一,KT+0.2
    mg·t-IN从为最佳增殖培养基,繁殖系数分别为6.53和“3;丛生芽在Ms+0.2
    mg·L-16一BA的培养基上伸长,大约10d后取整齐一致的芽用于生根,在1/2 Ms+
    0.2 mg·L’IBA上生根率达92.80,0.
     驯化成活的异源三倍体组培苗形态整齐但不同于父母本的植株.其体细胞染色体
    数为2n=3x=26·异源三倍体单性结实能加匕“双亲”更强;果刺黑色,与.c.
    匆tl’vus相同;叶深绿色,不同于双二倍体特有的淡黄绿色而与“北京截头”一致;
    花粉粒的醋酸洋红可染率不到10%.
    3.单体异附加系的培育及其细胞遗传学和分子标记研究
     以异源三倍体离体茎尖为材料,采用不同浓度梯度(0 .0%,0.2%,0.4%,0.8%)
    的秋水仙素处理。在驯化成活的252棵植株中有4棵变异植株,编号分别为02-
    517、02一87、02一13和02一43.02一517植株叶形为戟形,02一87为深陷的掌状形,两棵
    植株的果刺均为白色,不同于异源三倍体的五角心状形和黑刺,果实比异源三倍体
    的长,更接近普通黄瓜.经细胞学鉴定发现,02一517和02一87为单体异附加系,而
    02一13和02一43为混倍体。
     单体异附加系02一517和02一87在终变期和中期I染色体构型主要(94%以上)是
    711+1I,三价体(m)的频率为4一5%;后期I不均等分裂,一极为8条染色体,而
    另一极为7条。在后期n,18.2~2 5.2%花粉母细胞中的外源染色体滞后.
     POD同工酶和RAPD标记分析表明,02一517和02一87中的外源染色体来源于野
    生种C hystrix.引物E一19,N一20,A一9,A一11,Allg,AH13,AJ18和^J20在02一517和
    02一87能扩增出具有与野生种共有条带,而在栽培黄瓜“北京截头”中则不能扩增出
    该条带.其中引物E一19扩增出的野生种c hystrix染色组条带为300 bp的片段.引
    物A巧,N一12,N一20和AJ 13能在02一517和02一87中扩增出各自的特征带.
    4.不同倍性种间杂种的离体繁殖研究
     以杂种F,、异源三倍体和双二倍体为试材,探讨了不同倍性的黄瓜属种间杂种
    离体繁殖率的差异.试验结果表明:种间杂种F;和异源三倍体具有杂种优势,两种
    材料不管是在离体条件下还是在田间,长势都要超过栽培黄瓜和双二倍体C
    勺tivlls,杂种Fl和异源三倍体在单一细胞分裂素BA的培养基上繁殖系数能达到最
    大值,浓度分别为0.5一1 .0 mg·L一,和1.5一2.2mg·LI,增殖系数分别为8.6和
    
    摘要
    6.5。双二倍体生长缓慢,以培养基Ms+TDz 0.05mg·L一,和Ms十2.2 mg·L一,BA
    效果最好,增殖系数分别为4.6和3.9。不同倍性的种间杂种材料在1/2 MS+0.2
    mg·L一,IBA上生根率达80%以?
Based on the achieving interspecific hybridization progress aiming at gene introgression from C. hystrix Chakr to C. sativus, the amphidiploid C. hytivus Chen & Kirkbride and its parental C. sativus L. cv. Beijingjietou and wild species C. hystrix et al. were used as core material for further investigation. Novel genotype interspecific hybrids FI, allotriploids and two monosomic alien addition lines have been sucessfully produced in the present study. At the same time, micropropagation system of FI and allotriploid has been established. The development new germplasm were characterized by cytogenetic and molecular - marker analyses.
    1. Micropropagation and characterization of Cucumis sativus X Cucumis hystrix hybrids
    Four cucumber cultivars (A309, Erzaozi, Baisitiao and Beijingjietou) were crossed with C. hystrix with different pollination methods. Young embryos were rescued in vitro, and interspecific hybrids were only obtained from the cross between Erzaozi and C. hystrix. The metaphase chromosomes of FI hybrids were counted to be 19. The hybrid was also identified by morphological comparison and electrophoresis of isozyme.
    The difference in fertility and morphology between the reciprocal plants was found, and the meiosis behaviors in FI were investigated. When cucumber was used as the female parent, both tetraploid and diploid hybrid plants were highly sterile and did not set any fruits. However, When C. hystrix was used as female parent, there were not female flowers in the diploid (2n = 2x = 19) hybrids and the male male flower would be wilt before flowering. In pollen mother cells (PMCs) of the diploid hybrids, the major chromosome configuration was 17 univalents and 1 bivalent at diakinesis and metaphse I (M I). The abnormal meiotic behaviors such as chromosome lagging and spindle misorientation were frequently observed.
    Apical and axillary buds of hybrids FI, which was obtained through embryo rescuing, were used as explants to establish the micropropagation system. The result indicatied that hybrids F1(dihaploid) proliferated quickly. The proliferation ratio was more than 7.6 on the media with supplemented 0.5 -1.0 mg·L-1 BA only. The multiplication ratio would
    
    
    reduced if the concentration was higher than over 1.0 mg·L-1. The shoots would not multiplictate on free plant growth regulator media.
    2. An allotriploid derived from a amphidiploid X diploid mating in Cucumis : production, micropropagation and verification
    A fully fertile interspecific hybrid (Cucumis hytivus Chen and Kirkbride, 2n = 4x = 38) between Cucumis hystrix Chakr. (2n = 2x = 24) and C. sativus L. (2n = 2x - 14) was previously produced by means of FI (2n =19) embryo rescue and subsequent chromosome doubling. This amphidiploid, a new synthetic species, may serve as a genetic bridge in Cucumis, and thus is a source for broadening the genetic base of C. sativus. The identification and characterization of fertile progeny possessing lower ploidy levels would facilitate bridge among Cucumis species. Putative allotriploids (2n = 26) were recovered from C. hytivus X C. sativus matings by means of embryo culture. Experiments were designed to confirm their genetic constitution, describe their morphology, and establish an efficient protocol for their micropropagation. Apical and axillary buds of these putative allotriploid plants were used as explants to establish a micropropagation system for subsequent verification and characterization of ploidy. Of the array o
    f micropropagation media tested, the most effective for the induction of adventitious buds (desginated Stage II) was a Murashige and Skoog (MS) growth media containing 3.0 mg· L-1 BA + 0.2 mg · L-1 NAA or containing 2.2 mg · L-1 BA only. The mean number of adventitious buds per explant in the two media was 6.8 and 6.5, respectively. Shoots resulting from adventitious buds produced roots (Stage III) in relative abundance (39 of 42, 92.8%) on half-strength MS medium containing 0.2 mg · L-1 IBA. The survivorship of rooted plantlets after acclimatization as assessed
引文
1.陈劲枫,罗向东,余纪柱,等.异源三倍体黄瓜的离体繁殖和鉴定,植物生理学通讯.2003a,32(2):109~112.
    2.陈劲枫,罗向东,钱春桃,等.附加Cucumis hystix Chakr.染色体的两个黄瓜单体异附加系.园艺学报.2003b(在版)
    3.陈劲枫,钱春桃.利用几种园艺作物卷须制片鉴定染色体数目的研究.园艺学报,2002,29(4):378~380.
    4.陈劲枫,庄飞云,娄群峰,等.Cucumis属植物种间正反交差异研究.园艺学报.2002b,29(5):483~485.
    5.钱春桃,陈劲枫,庄飞云,等.弱光条件下黄瓜属种间杂交新种的某些光合特性.植物生理学通讯.2002.38(4):336~338.
    6.陈劲枫,林茂松,钱春桃等.黄瓜属野生种及其与黄瓜种间杂交后代抗根结线虫初步研究.南京农业大学.2001,24(1):21-24.
    7.陈振光,王家福.柑橘合子胚早期离体培养获得植株.福建农业大学学报.1986,15(4):271-276.
    8.董凤高,陈佩度,刘大均.簇毛麦染色体的改良C-分带.遗传学报.1991,18(6):525~528.
    9.葛颂.酶电泳资料和系统与进化植物学研究综述.1994.12(1):71-83.
    10.何忠效,张树政.主编.电泳.北京:科学技术出版社.1999,284~287.
    11.李加旺,张文珠,何忠魁.黄瓜资源筛选与育种研究及其发展趋势.天津农业科学.1999,5 (4):36~38.
    12.李懋学.作物染色体及其研究技术.北京:中国农业出版社,1996
    13.李平路,王洪刚.小麦-中间偃麦草双体异附加系的选育及形态学和细胞学鉴定研究.西北植物学报.2002,22(3):535~542.
    14.李平路,郭建军,刘莉,等.普通小麦异附加系的选育和鉴定研究进展.山东农业科学.2001,5:42~44.
    15.李锁平,袁俊水,贺德先,等.节节麦远缘杂种胚的培养.植物生理学通讯.1999,35(1):13~14.
    16.梁正兰.棉花远缘杂交的遗传与育种.北京:科学出版社,1999.1~17.
    17.刘大钧.细胞遗传学.北京:中国农业出版社,1999.162~166
    18.柳李旺,汪隆植,龚义勤,等.栽培茄(Solamon melongena)与野生茄种间杂交及F1鉴定.江苏农业学报,1999,15(2):100~103.
    
    
    19.孟金陵.植物生殖遗传学.1997北京:科学出版社,333~334.
    20.平培元.胚培养在营救水稻种子上的应用.中国农学通报.1999,15(2):60~61.
    21.任正隆,张怀琼.小麦-黑麦染色体小片段易位系的诱导.中国科学(C辑).1997,27(3):258~263.
    22.双志福,王振富,降彩霞,等.节节麦与小麦、黑麦或小黑麦的杂种幼胚的离体培养.遗传学报.1984,11(6)461~465.
    23.沈季孟,樊路,邓景扬.带有中间偃麦草抗白粉病基因的普通小麦-中间偃麦草单体异附加系的培育.北京农业科学.1996,14 (1):19.
    24.王纪方,金波,高秀云,等编著.蔬菜组织培养.上海:上海科学技术出版社.1983,76~103.
    25.王艳飞,孙玉河,李怀智.我国黄瓜良种繁育研究进展.长江蔬菜.2002,1:31-33.
    26.吴鹤鸣,等.园艺学报.1990,(17):4,281~2874.
    27.吴俊,李旭锋,李琳,等.油菜诸葛菜属植物杂交亲和性研究.西南农业大学学报.1999,21(5):412~416.
    28.吴沿友,罗鹏.芥菜型油菜与诸葛菜属间杂种F_1可育性研究.种子.1995,(2):24~26.
    29.奚元龄,颜昌敬.编译 物细胞培养手册:离体胚培养,北京:农业出版社.1992,158~170.
    30.徐利远,杨吉,秀宣朴,等.油菜与蓝花子远缘杂交的研究.西南农业大学学报.1995,17(2):102~106.
    31.许智宏.植物生理学和生物工程.植物生理学通讯.1994,30(3):228~240.
    32.伊华林,邓秀新.培养三倍体柑橘植株的研究.果树科学.1998,15(3):212~216.
    33.余诞年,吴定华,陈竹均.番茄遗传学.长沙:湖南科学技术出版社,1999,200-226.
    34.张成合,张书玲.申书兴,等.‘青露’菜薹三倍体的获得及其胚胎学观察.园艺学报.2001,28(4):317~322.
    35.张桂芳,刘建文,黄远樟,等.普通小麦与东方旱麦草异附加系和异代换系的选育与原位杂交检测.遗传学报.2000,1(1):56~61.
    36.张海英,王永健,许勇,等.黄瓜种质资源遗传亲缘关系的RAPD分析.园艺学报,1998,25(4):345~349.
    37.张炎,吴郁文,张翠兰.克服节节麦与普通小麦杂交不亲和的研究.作物学通报.1982,8 (2):137~140.
    38.赵秀娟,吴定华.黄瓜的组织培养.华南农业大学学报.1998,19(4):125~126.
    39.周长久.现代蔬菜育种学.北京:科学技术文献出版社,1996,147-150.
    40. Agnihotri A, Shivanna KR, Raina SN, et al., Production of Brassica napus×Raphanobrassica hybrids by embryo rescue: An attempt to introduce shattering resistance into B. napus. Plant Breeding. 1990, 105:292~299.
    
    
    41. Amemiya A. Effect of peptone on growth office embryos. Ⅳ. Studies on the embryo culture in rice plant. Bull. Natl. Inst. Agric. Tokyo Ser. D. Plant Physiol. 1964, 11:151~210
    42. Andronescu DI. Germination and further development of the embryo of Zea mays separated from the endosperm. Am. J. Bot. 1919, 6: 443~452.
    43. Ansano Y. Studies on crosses between distanly related species of lilies. Ⅲ. New hybrids through embryo culture. J. Japan. Soc. Hort Sci. 1978, 105:620~631.
    44. Asano,Y., Studies on crosses between distantly related species of Lilies. Ⅳ, The culture of immature hybrid embryos 0.3-0.4 mm long. J Japan. Soc. Hort. Sci. 1980, 49:114~118.
    45. Bajaj YPS, Mahajan SK, Labana, KS. Interspecific hybridization of Brassicia napus and B. juncea through ovary, ovule and embryo culture. Euphytica. 1986, 35:103~109.
    46. Barthes L, Ricroch A. Interspecific chromosomal rearrangements in monosomic addition lines of Allium. Genome. 2001, 44: 929-935.
    47. Batra S. interspecific hybridization in the genus Cucumis. Sci. Culture. 1953, 18:445~446.
    48. Baudracco AS, Pitrat M. A genetic map of melon (Cucumis melo L.) with RFLP, RAPD, isozyme, disease resistance and morphological markers. Theor. Appl. Genet. 1996, 93: 1-2, 57~64.
    49. Biyashev RM, Ragab RA, Maughan PJ, et al. Molecular mapping, chromosomal assignment, and genetic diversity analysis of phytochrome loci in barley (Hordueum vulgare). J Heredity. 1997, 88:21~26.
    50. Blackman SA, Brown KL, Manalo JR, et al., Embryo culture as a means to rescue deterorated maize seeds. Crop Sci. 1996, 36:1693~1698.
    51. Blake LM, Some results of crosses of early ripening varieties. Proc. Amer. Soc. Hort. Sci. 1939, 37: 232~241.
    52. Blakeslee AF, Satin S. New hybrids from incompatible crosses in Datura through culture of excised embryos on malt media. Science. 1944, 99:331~334.
    53. Bradeen JM, Staub JE, Wye C et al. Towards an expanded and integrated linkage map of cucumber (Cucumis sativus L.). Genome. 2001, 44:111~119.
    54. Brar DS, Khush GS. Alien introgession in rice. Plant Mol Bio. 1997, 35:35~47.
    55. Brettell BRIS, Banks PM, Cauderon Y, et al. A single wheatgrass chromosome reduces the concentration of barely yellow dwarf virus in wheat. Annals of applied biology. 1988, 113(6):599~603.
    56. Brown HT. On the culture of excised embryos of barley on nutrient solutions containing nitrogen in different forms. Trans. Guiness Res. Lab. 1906, 1:288~299.
    
    
    57. Buckner GD, Kastle JH, The growth of isolated plant embryos. J. Biol. Chem. 1917, 29:209~213.
    58. Cameron DR, Moav R. Inheritance in Nicotiana tabacum. ⅩⅩⅦ. Pollen killer, an alien genetic locus inducing abortion of mierospores not carrying it. Genetics. 1957, 42:326~335.
    59. Ceoloni C, Biagetti M, Ciafi Met al. Wheat chromosome enginerdng at the 4x level: the potential of different alien gene transfers into durum wheat. Euphytiea. 1996, 89:87~97.
    60. Chen JF, Luo XD, Qian ChT, et al. Cucumis monosomic alien addition lines: morphological, cytological, and RAPD marker analyses Theor. Appl. Genet. 2004, (in press)
    61. Chen JF, Staub JE, Qian CT et al. Reproduction and cytogenetie characterization of interspecific hybrids from Cucumis hystrix Chakr.×C. sativus L. Theor. Appl. Genet. 2003,106: 688~695.
    62. Chen JF, Staub JE, Adelberg J. Synthesis and prelimary characterization of a new species(amphidiploid) in Cucumis. 2002, 123:315~322.
    63. Chen JF, Adelberg J. Interspecifie hybridization in Cucumis-progress, problem, and perspectives. HortSeience. 2000, 35:11~15.
    64. Chen JF, Joseph H, Kirkbride Jr. A new synthetic species Cucumis (Cucurbitaceae) from interspecifie hybridization and chromosome doubling. Brittonia. 2000, 52:315~319.
    65. Chen JF, Adelberg JW, Staub JE, et al. A new synthetic amphidiploid in Cucumis from a C. sativus ×C. hystrix F_1 interspeeific hybrid. In: J. McCreight (ed): Cucurbitaceae '98-Evaluation and enhancement of Cucurbit germplasm. ASHS Press, Alexandria, Va. U.S.A. 1998, 336~339
    66. Chen, JF, Staub JE, Tashiro Y et al. Successful interspecific hybridization between Cucumis sativus L.and C. hystrix Chakr. Euphytica. 1997a, 96: 413~419.
    67. Chen JF, Isshiki S, Tashiro Y, et al. Biochemical affinities between Cucumis hystrix Charkr. and two cultivated Cucumis species (C. sativus L. and C. melo. L.) based on isozyme analysis. Euphytica. 1997b, 97: 139~141.
    68. Chen JF, Staub JE, Attempts at colchicine doubling of an interspecific hybrid of Cucumis sativus L.×C.hystrix Chakr. Cucurbit Genet Coop Rpt. 1997, 20:24~26.
    69. Chen Q. Indentification of wheat Agropyron cristum monosomic addition lines by RFLP analysis using a set of assigned wheat DNA probes Theor Appl. Genet. 1994, 89:70~75.
    70. Chen Q, Jahhier J, Cauderon Y. Production and eytogenetic analysis of BC_1, BC_2 and BC_3 progeneies of an intergenetic hybrid between Triticum aestivum(L.)Thell and tetraplopid Agropyron cristatun. Theor Appl Genet. 1992, 84:698~703.
    71. Cheng BF, Henen WK, Chen BY. Mitotic karyotypes of Brassica campestris and Brassica alboglabra and identification of the B. alboglabra chromosome in an additon line. Genome. 1995, 38:313-319.
    
    
    72. Chetelat RT, Rick CM, Cisneros P, et al. Identification, transmission, and cytological behavior of Solanum lycopersicoides Dun. monosomic alien addition lines in tomato (Lycopersicon esculentum Mill.). Genome. 1997, 41:40~50.
    73. Chiang MS, Crete R. Transfer of resistance to race 2 of Plasraodiophora brassicae from Brassica napus to cabbage (B. oleraced ssp. capitata). V. The inheritance of resistance. Euphytica. 1983, 32:497-483.
    74. Compton ME, Brenda L, Piersson, et al. Micropropagation for recovery of Cucumis hystrix. Plant Cell Tiss and Org Cult. 2001, 64:63~67.
    75. Crawford DJ. Enzyme electrophoresis andplant systematics. In: Soltis D E,Soltis P S. Eds. Isozymys in plant biology. Portiand: Dioscoddes Press. 1989, 146~164.
    76. Custer JBM, Bergervouet JHW. In vitro culture of embryos of cucumis spp: heart-stage embryos have a higher ability of direct plant formation than advanced-stage embryos. Sex Plant Report. 1990, (3): 152~159.
    77. De Lautour G, Jones WT, Ross MD. Production of interspecific hybrids in Lotus aided by endosperm transplants. N.Z.J. Bot. 1978, 16:61~458
    78. Devos KM, Gale MD. The use of random amplified polymorphic DNA marker in wheat. Theor Appl Genet. 1992, 84:567~72.
    79. Dricoll CJ, Sears ER. Individual addition of the chromosomes of Imperical'rye to wheat. Agr Abstr. 1971, 6.
    80. Dubard M, Urbain JA, Del infuence de I'albumen sur development de I'embryon. C.R. Acad. Sci. Paris 156: 1086~1089.
    81. Fassuliotis G, Nelson BV. Interspecific hybrids of Cucumis metuliferus×C, angurita obtained through embryo culture and somatic embryogenensis. Euphytica. 1988, 37:53~60.
    82. Fernandez JA, Jouve N. The addition of Hordeum chilense chromosomes to Triticum turgidum conv. durum, biochemical, karyological and morphlolgical characterization. Euphytica. 1988, 37: 247-259.
    83. Fukui, K., and Iijima, K., 1991, Somatic chromosome may of rice by imaging methods. Theor. Appl. Genet. 81:589~596.
    84. Gao D, Jung C, Monosomic addition lines of Beta corolliflora in sugar beet: plant morphology and leaf spot resistance. Plant breeding. 2002, 121:81~86.
    85. Gao D, Guo D, Jung C. Monosomic addition lines of Betra corolliflora Zoss in sugar beet: cytological and molecular-marker analysis Theor. Appl. Genet. 2001, 103:240~247.
    86. Gao D, Schmidt T, Jung C. Molecular characterization and chromosomal distribution of species-
    
    specific repetitive DNA sequences from Beta corolliflora, a wild relative of sugar beet. Genome. 2000, 43: 1073~1080.
    87. Garriga-Calderé F, Huigen D J, Angrisano A, et al. Transmission of alien tomato chromosomes from BC_1 to BC_2 progenies derived from backerossing potato (+) tomato fusion hybrids to potato: the selection of single additions for seven different tomato chromosomes. Theor Appl Genet 1998, 96:155~163.
    88. Haider Ali SN, Ramanna MS, Jacobsen E, et al. Establishment of a complete series of a monosomic tomato chromosome addition lines in the cultivated potato using RFLP and GISH analyses. Theor Appl Genet. 2001, 103:687~695.
    89. Hanning E. Zur Physiologic Pflanzicher Embryonen. I. Uber die Kultur von Crucifer-Embryonen ausserhalb des Embryosacks. Bot. Ztg. 1904, 62:45~80.
    90. Hernandez P, Hemmat M., et al., Theor Appl Genet. 1999a, 39(6):1702~1706
    91. Hernandez P. Martin A., et al. Molecular Breeding. 1999b, 5(3):245~253.
    92. Lotfi M, Kashi A, Onsinejad R et al. Induction of parthenogenetic embryos by irradiated pollen in cucumber. Acta-Horticulturae. 1999,492:323~328.
    93. Iijima K, Kakeda K, Fukui K. Identification and characterization of somatic rice chromosome by imaging methods. Theor. Appl. Genet. 1991, 81:597~4505.
    94. Iyer RD, Sulbha K, Ramanujam S. Embryo culture studies in jute and tomato. Ind. Bot. Sci. 1959.2:30~35.
    95. Jacobsen E, de Jong JH, Kamstra SA, et al. Genomie in situ hybridization (GISH) and RFLP analysis for the identification of alien chromosomes in the back cross progeny of potato (+) tomato fusion hybrids. Heredity. 1995, 74:250~257.
    96. Jena KK, Khusch GS. Monosomie alien addition lines of rice: production, morphology, cytology and breeding behavior. Genome, 1989, 32:449~455.
    97. Kasha KJ. (Ed.) Haploids in higher plants: Advances and potential. Guelph: Guelph Univ. 1974
    98. Kent NF, Brink RA. Growth in vitro of immature Hordeum embryos. Science. 1947, 106: 547~548.
    99. Kimber G. Evolutionary relationships and their influence on plant breeding. In: Gustafson JP. (ed.) Gene manipulation in plant improvement. Plenum Press, New York. 1984, 281~293.
    100. King IP, Morgan WG, Armstead IP, et al. lntrogression mapping in the grasses. Ⅱ. Meiotic analysis of the Lolium perennel/Festuca pratensis triploid hybrid. Heredity. 1999, 82:107-112.
    101. Kirkbride Jr JH. Biosytematic monograph of the genus Cucumis (Cucurbitaceae). Parkaway Publ., Boone, N.C. 1993
    102. Kruse A. Hordeum×triticum crosses. Hereditas. 1973, 73:157~161.
    
    
    103. Kruse A. Hordeum×Agropyron hybrids, Hereditas. 1974a, 78:291~294.
    104. Kruse A. An in vivo/vitro technique. Hereditas. 1974b, 77:219~224.
    105. Laibach F. das Taubwerden yon Bastardsamen und die kumstliche Aufzucht fruh abserbender Bastardembryonen. Z. Bot. 1925, 17:417~459.
    106. Laibach F. Ectogenesis in plants. J. Hered. 1929, 20. 201~208.
    107. Lesley JW, Bonner J, The development of normal peach seedlings from seeds of early-maturing varieties. Proc Amer Soc Hort. Sci. 1952, 60:238~242.
    108. Li Z, Wu JG, Liu Y, et al. Production and cytogenetics of the intergeneric hybrids Brassicajuncea×Orychophragmus violaceus and B. carinata×O, violaceus. Theor. Appl. Genet. 1998, 96: 251~265.
    109. Mauney JR. The culture in vitro of immature cotton embryo. Bot. Gaz. 1961, 122:205-209.
    110. Miller TE, Reader SM. A guide to the homology of chromosome with in the tritilleease. Theor.Appl. Genet. 1987, 74:214~217.
    111. Morgan WG, King LP, Koch S, et al. Introgression of chromosomes of Festuca arundinacea var. glaucescens into Lolium multiflorum revealed by genomic in situ hybridization (GISH). Theor. Appl. Genet. 2001, 103: 696~701.
    112. Naraynaswaswami S, Norstog K. Plant embryos culture. Bot. Rev. 1964, 30:587~528.
    113. Nikolova V, Rodeva V, Aiexandrova, et al. Effect of gamma irradiation for induction of gynogenesis in cucumber (Cucumis sativus L.) Bulgarian-Journal-of-Agricultural-Science. 2001, 7: 4-5, 415~420
    114. Nikova VM, Zagorska NA. Overcoming hybrid incompatibility between Nicotiana africana Merxm. and N. tabacum and development of cytoplasmically male sterile tobacco forms. Plant cell, Tissue and Organ Culture. 1990, 23:71~75.
    115. Nostog KJ. Embryo Cultures as a tool in the study of comparative and development morphology. In: Plant Cell, Tissue and Culture. (Sharp, W.R., Larsen, P.O., Paddock E.F. and Roghavan V. eds.). Ohio State Univ. Press, Columbus. 1979, 179~202,
    116. Norstog KJ. The growth of barley embryos on coconut milk media. Bull. Torrey. Bot. Club. 1956, 83:27~29.
    117. O'mara JG. Cytologenetic studies on Tritical. I. A method for determining the effects of individual Secale chromosomes on Triticum. Genetics. 1940, 25:401-408
    118. Oliver M, Garcia MJ, Cardus M, et al. Construction of a reference linkage map for melon. Genome. 2001, 44:836~845
    119. Pierce LK, Wehner TC. Review of genes and linkage of groups in cucumber. HortScience. 1990,
    
    25:605~615
    120. Pinfield N J, Stobart AK. Homonai regulation of germination and early seedling development in Acer pseudoplatanus L. Planta. 1972, 104:134~135.
    121. Pinto ACQ, Byrne DH, Rogers SMD. Growth of immature peach embryos in response to media, ovule support method, and ovule per formation. Hortsci. 1994, 29(9): 1081~1083.
    122. Prakash S, Kirti PB, Bhat SR. A Moricandia arvensis-based cytoplasmic male sterility and fertility restoration system in Brassiea juncea. Theor Appl Genet. 1998, 97:488~492.
    123. Quazi, MH. Interspecifie hybrids between Brassica napus L. and B. oleracea L. developed by embryo culture. Theor. Appl. Genet. 1988, 75:309~318
    124. Raamsdonk LWD, Den Nijs APM, Jongerius MC. Meiotic analyses of Cucumis hybrids and an evolutionary evaluation of the genus Cucumis (Cucurbitaceae). Plant systematies and evolution.1989, 163 (3/4): 133~146.
    125. Raghavan V, Srivastava PS, Embryo culture. In: B.M. Johri(Ed.) Experimental Embryology of vascular plants. Springer verlag, Berlin. 1982, 195~230.
    126. Raghavan V, Torrey JG. Inorganic nitrogen nutrition of the seedlings of the orchid. Cattleya. Am. J. Bot. 1964, 51:264-274
    127. Ramming DW. The use of embryo culture in fruit breeding. Hortsci. 1990, 25:393~398.
    128. Reamon-Ramous SM, Wricke G. A full of set of monosomie addition lines in Beta vulgris from Beta webbiana: morphology and isozyme markers. Theor. Appl. Genet. 1992, 84:411~418.
    129. Reed SM, Collins GB. Interspecific hybrids in Nicoticana through in vitro culture of fertilized ovules. J. Hered. 1978, 69:311~315.
    130, Reinert J, Bajaj YPS Applied and fundamental aspects of plant cell, tissue, and organ culture. Springer-Verlag Berlin Heideberg New York. 1977
    131. Rick CM. Hybrids between Lycopeisiconwsculen. Mill and Solanum lycopersicoides Dun. proc. Natl. Acad. sci. 1951, 37:741~744.
    132. Rietsema J, Satina S, Blakeslee AF. The effect of sucrose on the growth of Datura stramonium embryos in vitro. Am. J Bot. 1953, 40:538~545.
    133. Rijiven AHGC. In vitro studies on the embryos of Capsella bursa pastoris. Acta Bot. Neerl. Ⅰ: 1952, 157~200.
    134. Ryczkowski M. Changes of the osmotic value during the development of ovule. Planta. 1960. 55:343~356.
    135. Ryczkowski M. Changes in the specific gravity of the central vascular sap in developing ovules.
    
    Bull. Acad. Polon. Sei. Ser. Sci. Biol. 1961, 9:261-266.
    136. Ryczkowski M. Changes in osmotic value of the central vacuole and endosperm sap during growth of embryo and ovule. Z. Pflanzephysiol. 1969, 61:422-429;
    137. Sari N, Abak K, Pitrat M, et al. Induction of parthenogenetic haploid embryos after pollination by irradiated pollen in watermelon. Hort Science. 1994, 29: 10, 1189~1190.
    138. Savitsky H. Nematode (Heterodera schachtii) resistance and meiosis in diploid plants from entersopecific Beta vulgaris×Beta procumbens hybrids. Can. J. Genet. Cytol. 1978, 20:177~186.
    139. Schopfer WH. Plants and Vitamins. Chronica Botaniea Co., Waltham. 1943,
    140. Sears ER. Genetics in plant breeding. Brooleh symp. Biol. 1956, 9:1~12.
    141. Sharp PJ, et al, The isolation, characterization and application in the Triticeace of a set of wheat RFL probes identifying each homological chromosome. Theor. Appl. Genet. 1988,78:342~348.
    142. Shigyo M, Iino M, Isshiki S, et al. Morphological characteristics of a series of alien monosomic additon of Japanese bunching onion (Alliumfistulosum L.) with extra chromosomes from shallot (A. cepa L. Aggregatum group). Genes Genet. Syst. 1997, 72:181~186.
    143. Shigyo M, Tashiro Y, Isshiki S, et al. Chromosomal locations of five isozyme gene loci (Lap-1, Got-1,6-Pgdh-2, Adh-1 and Gdh-1) in shallot (A. cepa L. Aggregatum group). Jpn. J. Genet. 1995, 70:399~407.
    144. Skirm GW. Embryos culturing as an aid to plant breeding. J. Hered. 1942, 33:211~215
    145. Smith JG. Embryo development in phaseolus valgaris IL Analysis of selected inorganic ions, ammonia, organic acids, amino acids and sugars in the endosperm liquid. Plant Physiol. 1973, 51:454~458.
    146. Stewart JM. In vitro fertilization and embryo rescue. Env. Exp. Bot. 1981, 2l:301~315.
    147. Staub JE, Danin-Poleg Y, Fazio G, et al. Comparative analysis of cultivated melon groups (C. melo L.) using random amplified polymorphic DNA and simple sequence repeat markers. Euphytica. 2000, 115: 225~241.
    148. Staub JE, Serquen FC, Horejsi T, et al. Genetic diversity in cucumber (Cucumis sativus L.). Ⅳ. An evaluation of Chinese germplasm. Genetic resources and crop evolution. 1999, 46(3):297~310.
    149. Staub JE, Fredric L, Marty TL. Electrophoretic variation in cross compatible wild diploid species of Cucumis. Can. J. Bot. 1987, 65: 792~798.
    150. Sugiyama K, Morishita M, Nishino E. Seedless watermelons produced via soft-X-irradiated pollen. HortSci. 2002, 7: 2, 292~295.
    151. Takatsu Y, Kasumi M, Manabe T, et al. Temperature effects on interspecific hybridization between Gladiolus ×grandiflora and G. tristis. HortSci. 2001, 36 (2): 341~343.
    
    
    152. Tsuchiya T, Gupta PK. Chromosome Engineering in Plants: Genetics, Breeding, Evolution Part B. Elsevier Science Publishers B.V. 1991, 201~227.
    153. Tukey HB, Artificial culture of sweet cherry embryos. J. Hered. 24: 7~12.
    154. Van Overbeek J, Conklin ME, Blakeslee AF. Cultivation in vitro of small Datura embryos. Am. J. Bor. 1942, 29:472~477.
    155. Whitaker TW, Davis GN. Cucurbits-Botany, cultivation and utilization. Leonard Hill, London. 1962.
    156. Witaker TW. Chromosome number in cultivated cucurbits. Am. J. Bot. 1930, 17:1033-1040
    157. Yanmaz R, Ellialtioglu S, Taner KY. The effects of gamma irradiation on pollen viability and haploid plant formation in snake cucumber (Cueumis melo L. var. flexuosus Naud). Acta- Horticulturae. 1999, 492:307~310.
    158. Zagaja SW. The effect of gibberellic acid on cherry seedling growth. Hortic. Res. 1962a 1:81~84.
    159. Zagaja SW. After- ripening requirements on immature fruit trees embryos. Hortic. Res. 1962b 2:19~34.
    160. Zagaja SW, Hough LF, Bailey CH. The responses of immature peach embryos to low temperature treatments. Proc. Amer. Sci. Hort. Sci. 1960, 75: 171~180.
    161. Ziebur NF, Brink RA, The stimulative effect of Hordeum endosperm on the growth of immature plant embryo in vitro. Am. J.Bot. 1951, 28:253~256.
    162. Zohary D, Feldman M. Hybridization between amphidiploids and the evolution of polyploid in the wheat (Aegilops Triticum) group. Evolution. 1962, 16: 44-61.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700