用户名: 密码: 验证码:
基于脉冲耦合神经网络的图像处理若干问题研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
脉冲耦合神经网络(Pulse Coupled Neural Networks, PCNN)是基于生物视觉系统机理形成的具有模数混合处理、串并联混合处理及动态自适应处理的一种空时编码新型人工神经网络。由于PCNN模型的动态变阈值、非线性调制耦合、同步脉冲发放、动态脉冲发放及时空总和等特性,使其在图像处理、自动目标识别、组合优化、人工生命等领域的研究和应用得到国内外的广泛重视。
     本文围绕图像处理中脉冲噪声滤除、高斯噪声滤除、弱小目标检测、二值图像自动分割、多值图像自动分割及基于内容的图像检索等若干关键问题,针对脉冲耦合神经元结构复杂性及其在图像信号处理中存在阈值反复衰减、自适应性能差和无法自动选择最佳处理结果等一些不足,研究了PCNN模型的机理,并提出改进思路与方法。论文主要内容如下:
     1.为有效滤除图像中严重脉冲噪声的干扰,提出了基于脉冲耦合神经网络噪声检测的两级脉冲噪声滤波算法。首先在改进自适应单位连接PCNN(AULPCNN)模型的基础上,利用其同步脉冲发放特性区分定位脉冲噪声点和信号像素点位置,其次根据噪声点局部邻域信息对噪声点进行第1级自适应滤波,然后再对前一级的滤波输出利用具有保护边缘细节特点的多方向信息中值第2级细微辅助滤波。该算法在噪声检测中无需设定检测阈值,噪声检测精度较高;在去噪过程中不但有效滤除噪声干扰,而且能很好地保护图像边缘细节等信息,具有较好的主观视觉效果和客观评价指标,去噪能力强、信噪比高和适应性好,特别是对受严重噪声污染的图像,显示了更大的优越性。
     2.针对图像高斯噪声的去除,提出了一种基于改进型脉冲耦合神经网络的双边滤波算法。在考虑图像高斯噪声特征的前提下,引入平滑抑制因子和自适应链接强度,并与相似神经元同步激活特性相结合,形成平滑抑制自适应连接PCNN(SIAL-PCNN)模型,然后应用在含噪图像预滤波迭代处理中,在滤除极值噪声的同时形成反映图像空时信息的赋时矩阵,最后将生成的赋时矩阵信息运用在双边滤波中,并对其进行了自适应性改进与滤除高斯噪声的处理。该算法在较好保护图像边缘细节等信息的情况下,能有效地滤除平滑区域噪声,在信噪比和去噪能力方面都有一定的提高。
     3.从含单一弱小目标图像特征出发,提出了结合灰度熵变换的脉冲耦合神经网络小目标图像检测算法。该方法在对含随机噪声和有复杂背景的图像进行非线性灰度熵变换滤波的基础上,考虑灰度熵值映射图在满足目标背景比先验概率的条件下,利用局部最小交叉熵判据,自动选取包含单一小目标局部窗口作为处理图像区域,并进行改进型PCNN迭代检测处理。该算法能自动可靠地检测出复杂背景及随机噪声干扰下的弱小目标。
     4.为自动对图像进行二值分割,提出了一种新的自适应迭代全局阈值图像自动分割算法。首先对二维超模糊集隶属函数进行自适应修正,并将其引入到图像超模糊熵概念中,然后从适应图像分割角度考虑,将传统脉冲耦合神经网络模型改进为具有单调指数上升阈值函数的单位链接脉冲耦合神经网络(ULPCNN)抑制捕获模型,最后把ULPCNN与最大超模糊熵判据相结合对图像进行自动分割。该算法能自动确定最佳分割阈值,对图像目标划分清晰、细节保持较好,改善了图像的分割性能。
     5.考虑原始图像与分割图像之间的相互关系,以最大互信息为分割目标,以互信息熵差作为一种新的分类判据,在对传统脉冲耦合神经网络模型改进的基础上,提出了一种基于最大互信息改进型PCNN多值图像自动分割算法。该算法能够自动确定最佳分割迭代次数及最佳分割灰度类数,对分割图像具有良好的特征划分能力,且在分割类数较少的情况下,能较好地保持图像细节、纹理及边缘等信息,对图像分割精度高,具有较强的适用性。
     6.为简单有效地提取图像重要特征信息,从而更好地提高检索图像的精度,提出了一种基于脉冲耦合神经网络的图像归一化转动惯量(NMI)特征提取及检索算法。首先利用改进简化PCNN模型相似神经元同步时空特性及指数衰降机制,将图像分解为一系列具有相关性的二值图像,然后提取能反映原图像目标形状、结构分布的系列二值图像的一维NMI特征矢量信号,并将其应用在图像检索中。同时,考虑到系列二值图像间的相关性及不同图像间NMI序列值的差异性,引入了马氏距离结合Pearson积矩相关法的综合相似性度量方法。所提算法对图像特征矢量序列具有良好抗几何畸变不变特性及对图像表述的唯一性,且有较好的图像检索效果。
Pulse Coupled Neural Networks (PCNN) , which is provided with analog-digital mixed processing, series-parallel mixed processing and dynamic adaptive processing technologies,is a novel space-time coding artificial neural network developed on basis of the mechanism of biological visual system. Since the characteristics of dynamic threshold, nonlinear modulation coupling, synchronous pulse bursts, dynamic pulse bursts and space-time summation, PCNN is emphasized in numerous fields such as image processing, automatic target recognition, combinatorial optimization, and artificial life at home and abroad.
     This paper discusses several key problems of image process, such as impulse noise and Gaussian noise filtering, small target detection, automatic segmentation of binary images, automatic segmentation of multi-threshold images and content-based image retrieval. According to the complex structure of pulse coupled neurons and its defects in image process, such as repeat attenuation of threshold, low adaptive capacity and lack of the automatic selection ability of optimal processing result, this paper studies the model principle of PCNN, proposes improved method, and makes some progresses as follows:
     1. In order to effectively remove high dense impulse noise in images, a novel two-stage impulse noise filtering algorithm based on improved PCNN noise detection is put forward. Firstly, on the basis of improved adaptive unit-linking PCNN (AULPCNN), the noisy points and signal points are distinguished and located using the synchronous pulse burst property of AULPCNN, and then the noisy points are smoothed by the first adaptive filter based on their local adjacent information of the noisy points. Secondly, the assistant filtering using the second multi-direction information median filter, which can protect edges details, is adopted. The proposed algorithm needs no detection threshold, which has higher accuracy in the noise detection, the impulse noise can be effectively removed, and edges and details can be preserved well. Meanwhile, the de-noise images obtained by the proposed algorithm have better objective quality and subjective vision effect than other filtering algorithm. This algorithm presents higher signal to noise ratio, stronger capability to reduce noise and better adaptive, and more advantage especially to the high noisy polluted image.
     2. Aim at the removal of image Gaussian noise in images, bilateral filtering algorithm based on improved PCNN is put forward. Firstly, on the basis of the characteristics of Gaussian noise in images, the smooth inhibitory factor and adaptive linking strength is introduced, combined with the synchronized activation of similar neurons, and then the adaptive linking PCNN with smooth inhibitory factor (SIAL-PCNN) model is formed. Secondly, the noisy image is processed by using SIAL-PCNN pre-de-noise iteration. The extreme value noise is removed and the time matrix that can reflect image spatial-temporal information is also generated. Finally, the time matrix is operated in bilateral filtering which is given adaptive improvement and de-noise application. The proposed algorithm can effectively remove noise in smooth region in the case of good preserving image edges and details. Meanwhile, its signal to noise ratio and the capability to reduce noises are better increased.
     3. A new method based on PCNN and gray scale entropy,is proposed for image segmentation and detection,starting from the aspect of characteristics of single small target image.Based on nonlinear gray scale entropy transform on an image with complex background and stochastic noise,this algorithm takes into account the condition that the mapping images of gray scale entropy satisfy the prior probability of the object to background ratio,and select the local region including a single small target which can be regarded as image processing part.Iterative detection using improved PCNN is utilized under the criterion of local minimum cross-entropy.The novel method can detect small target with the disturbance of complex background and random noise reliably.
     4.In order to process the binary segmentation of an image automatically, a new adaptive iterative image segmentation algorithm with the property of global threshold is proposed. Firstly, the membership function is adaptively modified and introduced into the concept of image ultra-fuzzy entropy on the basis of analysis and discussion of two-dimension ultra-fuzzy sets theory. Secondly, the traditional PCNN model is improved into the restraining capture PCNN model with the monotony exponential raised threshold function from the point of view of image segmentation. Finally, the improved ULPCNN is combined with the criterion of maximum ultra-fuzzy entropy, which the best image segmentation is processed. The proposed algorithm automatically determines the number of iterative times, chooses the best threshold, separates the objects in the image clearly, preserves most of the details, and enhances the performance of image segmentation.
     5. The traditional PCNN model is improved firstly, a new algorithm of multi-threshold image segmentation using improved PCNN based on the maximization of mutual information is put forward according to the relationship between original image and segmented image, which is based on the object of maximal of mutual information and a new measurement criterion for determining the clusters of an image called difference of mutual information. The new algorithm can automatically determine the optimal cyclic iterative times and the optimal number of gray-scale clusters, has a favorable capability to carve up characteristics and maintain the edges, texture and details of images, has higher precision in image segmentation and can be more adaptability.
     6.In order to simply and effectively extract the information of important features in the image so as to improve the accuracy of the image retrieval, a novel algorithm of image normalized moment of inertia (NMI) feature extraction and retrieval based on PCNN is put forward. Firstly, the image is segmented into a series of binary correlation images using synchronous spatial-temporal characteristics of similar neurons and exponential attenuation mechanism of improved and simplified PCNN, and then a one-dimensional NMI feature vector signal of the binary series images, which can reflect the target shape and structure of the original image, is extracted, and applied to the image retrieval. Meanwhile, considering the correlation of binary series images and NMI sequence values differences between different images, the method of compounded similarity measurement of the combination of Mahalanobis distance and Pearson product-moment correlation is introduced. The proposed algorithm has good performance of anti-geometric distortions and the uniqueness for different images expression to the vector sequence of image features, and has better image retrieval results.
引文
[1]边肇祺,张学工等.模式识别(第二版)[M].北京:清华大学出版社, 1999.
    [2]韩力群.人工神经网络理论、设计及应用[M].北京:化学工业出版社, 2007.
    [3]沈世镒.神经网络系统理论及其应用[M].北京:科学出版社, 2000.
    [4]胡守仁,余少波,戴葵.神经网络导论[M].长沙:国防科技大学出版社, 1993.
    [5]蒋宗礼.人工神经网络导论[M].北京:高等教育出版社, 2003.
    [6]张军,詹志辉.计算智能[M].北京:清华大学出版社, 2009.
    [7]飞思科技产品研发中心. MATLAB6.5辅助神经网络分析与设计[M].北京:电子工业出版社, 2003.
    [8] W. S. Mcculloch, W. Pitts. A logical calculus of the ideas immanent in nervous activity[J]. Bulletin of Mathematical Biophysics, 1943, 5:115-133.
    [9] D. O. Hebb. The organization of behavior[M]. New York: Wiley, 1949.
    [10] F. Rosenblatt. The perceptron: a probabilistic model for information storage and organization in the brain[J]. Psychological Review, 1958, 65(6):386-408.
    [11] B. Widrow. Generalization and information storage in networks of adaline neurons in self-organizing systems[M]. Washington DC: Spartan, 1962
    [12] M. Minsky, S.Papert. Perceptrons[M]. Cambridge Massachusetts: MIT Press,1969.
    [13] K. Fukushima. Cognition: A self-organizing multilayered neural network [J]. Biological Cybernetics, 1975, 20(3-4):121-136.
    [14] G. A. Carpenter, S. Grossberg. The ART of adaptive pattern recognition by a self- organizing neural network[J]. Computer, 1988, 21(3): 77-88.
    [15] Teuvo Kohonen. Automatic formation of topological maps of patterns in a self-organizing system[C]. Proc. of 2th. Conf. on Image Analysis, Helsinki, Finland, 1981, 214-220.
    [16] Shunichi Amari, Akikazu Takeuchi. Mathematical theory on formation of category detecting nerve cells[J]. Biological Cybernetics, 1978, 29(3):127-136.
    [17] J. J. Hopfield. Neural networks and physical systems with emergent collective computational abilities[J]. Proceedings of the National Academy of Sciences of USA, 1982, 79: 2554-2558.
    [18] J. J. Hopfield. Neurons with graded response have collective computational properties like those of two-state neurons[J].Proceedings of the National Academy of Sciences of USA, 1984, 81: 3088-3092.
    [19] G. E. Hinton, T. J. Sejnowski, D. H. Ackley. Boltzmann machines: Constraint satisfaction networks that learn[R].Carnegie-Mellon University, Pittsburgh, 1984.
    [20] D. E. Rumelhart, J. L. Mcclelland. Parallel distributed processing: explorations in themicrostructure of cognition[M]. psychological and Biological Models, MIT Press, 1986.
    [21] R. Hecht-Nielson. Nearest matched filter classification of spatiotemporal patterns[J]. Applied Optics, 1987, 26: 1892- 1899.
    [22] L. O. Chua, L. Yang. Cellular neural networks: theory[J]. IEEE Trans on CAS, 1988, 35(10):1257-1272.
    [23] J. H. Holland. Adaptation in natural and artificial systems[M]. USA:MIT Press,1992.
    [24] M. Gerald. Edelman. Neural darwinism: selection and reentrant signaling in higher brain function[J]. Neuron, 1993, 10(2): 115-125.
    [25] P. J. Angeline, G. M. Saunders, J B Pollack. An evolutionary algorithm that constructs recurrent neural networks[J]. IEEE Transactions on Neural Networks, 1994, 5(1): 54-65.
    [26] Deliang Wang , David Terman . Locally excitatory globally inhibitory oscillator networks[J]. IEEE Transactions on Neural Networks, 1995, 6(1): 283-286.
    [27] Jianwei Shuai, Zhenxiang Chen, Riutang Liu, et al. Self-evolution neural model[J]. Physics Letters A,1996,221:311-316.
    [28]许锋,卢建刚,孙优贤.神经网络在图像处理中的应用[J].信息与控制,2003, 32 (4):344-350.
    [29] A. L. Hodgldn, A. E. Huxley. The dual effect of membrane potential on sodium conductance in the giant axon of Loligo[J]. J.Pjysiol.1952, 116: 497-506.
    [30] A. L. Hodgkin,A. E. Huxley. A quantitative description of membrane and its application to conduction and excitation in nerve[J]. J. Pjysiol. 1952, 117:500-544.
    [31] R. Eckhorn, H. J. Reitboeck, M. Arndt, et al. A neural network for future linking via synchronous activity: Results from cat visual cortex and from simulations[J]. models of Brain Function, 1989, 255-272.
    [32] C. M. Gray, W. singer. Stimulus-specific neuronal oscillations in the orientation columns of cat visual cortex[J]. Proc, Nat. Academy Sci., 1989, 86(5):1699-1702.
    [33] R. Eckhorn, H. J. Reitboeck, M. Arndt, et al. Feature linking via synchronization among distributed assemblies: simulation of results from cat cortex[J]. Neural Comput, 1990, 2(3): 293-307.
    [34] R. Eckhorn, A. Frien, R. Bauer, et al. High frequency oscillations in primary visual cortex of awake monkey[J]. NeuroRep, 1993, 4(3):243-246.
    [35] A. Frien, R. Eckhorn, R. Bauer, et al. Stimulus-specific fast oscillations at zero phase between visual areas V1 and V2 of awake monkey[J]. Neuro Rep., 1994, 5(17):2273-2277.
    [36] J. L. Johnson, L. M. Padgett. PCNN models and applications[J]. IEEE Trans on Neural Networks, 1999, 10(3):480-498.
    [37] H. S. Ranganath, G. Kuntimad, J. L. Johnson. Pulse coupled neural networks for image processing[C]. Proc. of IEEE Southeast Raleigh, NC, 1995, 37-43.
    [38] J. L. Johnson, H. S. Ranganath, G. Kuntimad, et al. Pulse coupled neural networks[C]. Omidvar O and Dayhoff J, Ed. Neural Networks and Pattern Recognition San Diego, CA: Academicpp, 1998, 1-56.
    [39] J. L. Johnson, D. Ritter. Observation of periodic waves in a pulse-coupled neural network[J]. Opt. Lett., 1993, 18(15):1253-1255.
    [40] J. L. Johnson. Pulse-coupled neural nets: Translation, rotation, scale, distortion and intensity signal invariance for images. [J] Appl. Opt, 1994,33(26): 6239-6253.
    [41] Lzhikevich, M. Eugene. Theoretical foundations of pulse-coupled models[C]. Proceedings of the 1998 IEEE International Joint Conference on Neural Networks. Part 3: IEEE World Congress on Computational Intelligence. 1998, 2547-2550.
    [42] Lzhikevich, M. Eugene. Class 1 neural excitability, conventional synapses, weakly connected networks, and mathematical foundations of pulse-coupled models[J].IEEE Transactions on Neural Networks, 1999, 10(3):499-507.
    [43] Lzhikevich. Weakly pulse-coupled oscillators, FM interactions, synchronization, and oscillatory associative memory[J] IEEE Trans.Neural Networks, 1999, 10(3):508-526.
    [44] M. Werner Kistler, J. Leo van HemmenWe. Modeling synaptic plasticity in conjuction with the timing of pre-and postsynaptic action potentials[J]. IEEE Trans. On Neural Networks, 2000, 12(2):385-405.
    [45] E. Hans Plesser, Wulfram Gerstner. Noise in integrate-and-fire neurons: from stochastic input to escape rates[J]. IEEE Trans. On Neural Networks, 2000, 12(2):367-384.
    [46] Gustavo Deco, Bernd Schürmann. An information-theoretic analysis of temporal coding strategies by spiking central neurons[J]. Lecture Notes In Computer Science, 1997, 1327:73-78.
    [47] Ahissar.Temporal-code to rate-code conversion by neuronal phase-locked loops[J]. Neural Computation, 1998, 10(3): 597-650.
    [48] H. Haken. Effect of delay on phase locking in a pulse coupled neural network[J]. Eur.Phys, 2000, 18: 545-550.
    [49] P. C Bressloff, S. Coombes. Symmetry and phase-locking in a ring of pulse-coupled oscillators with distributed delays[J]. Nonlinear Phenomena, 1999, 126(1-2): 99-122.
    [50] A. N. Burkitt, G. M. Clark. New technique for analyzing integrate and fire neurons[J]. Neurocomputing, 1999, 26-27:93-99.
    [51]顾晓东,张立明. PCNN与数学形态学在图像处理中的等价关系[J].计算机辅助设计与图形学学报, 2004, 16(8):1029-1032.
    [52]马义德,齐春亮.基于遗传算法的脉冲耦合神经网络自动系统的研究[J].系统仿真学报, 2006, 18(3):722-725.
    [53]毕晓君,施展.基于克隆选择算法的PCNN参数自动选取算法研究[J].自动化技术与应用,2009, 28(2):4-9.
    [54]赵峙江,赵春晖,张志宏.一种新的PCNN模型参数估算方法[J].电子学报, 2007, 35(5):996-1000.
    [55]姚畅,陈后金,李居朋.改进型脉冲藕合神经网络在图像处理中的动态行为分析[J].自动化学报, 2008, 34(10):1291-1297.
    [56]于江波,陈后金,王巍,李居朋.脉冲耦合神经网络在图像处理中的参数确定[J].电子学报, 2008, 36(1):81-85.
    [57] Zhaobin Wang, Yide Ma, Feiyan Cheng, et al. Review of pulse-coupled neural networks[J]. Image and Vision Computing, 2010, 28:5-13.
    [58] G. Kuntimad, H. S. Ranganath. Perfect image segmentation using pulse coupled neural networks[J]. IEEE Trans. Neural Networks, 1999, 10(3):591-598.
    [59] R. D. Stewart, I. Fermin, M. Opper. Region growing with pulse-coupled neural networks: an alternative to seeded region growing[J]. IEEE Transactions on Neural Networks. 2002, 13 (6): 1557-1562.
    [60] Na Chen, Zhibai Qian, Shixin Zhao, et al. Region growing based on pulse coupled neural network[C]. Proceedings of the Sixth International Conference on Machine Learning and Cybernetics, Hong Kong, 2007, 19-22.
    [61] X. D. Gu, L. M. Zhang, D. H. Yu. General design approach to Unit-linking PCNN for image processing[C]. Proc. of the International Joint Conference on Neural Networks, 2005, 1837-1841.
    [62] X D. Gu, D. H. Yu, L. M. Zhang. Image shadow removal using pulse coupled neural network[J]. IEEE Transactions on Neural Networks, 2005, 16 (3): 692-698.
    [63] X D. Gu. A new approach to image authentication using local image icon of Unit-linking PCNN[C]. Proc. of the International Joint Conference on Neural Networks, 2006, 1036-1041. [ 64 ] J. A. Karvonen. Baltic sea ice SAR segmentation and classification using modified pulse-coupled neural networks[J]. IEEE Transactions on Geoscience and Remote Sensing, 2004, 42 (7):1566-1574.
    [65] M. Guo, L. Wang, X. Yuan. Car plate localization using pulse coupled neural network in complicated environment[C]. Proc. of the 9th Pacific Rim International Conference on Artificial Intelligence, 2006, 1206-1210.
    [66] K. M. Iftekharuddln, M. Prajna, S. Samanth, et al. Mege voltage X-ray image segmentation and ambient noise removal[C]. Proc. of the 2nd Joint EMBSlBMES Conference, 2002, 1111-1113.
    [67] M. I. M. Chacon, S. A. Zimmerman. License plate location based on a dynamic PCNN scheme[C]. Proc. of the International Joint Conference on Neural Networks, 2003, 1195-1200.
    [68] D. Yamaoka, Y. Ogawa, K. Ishimura, et al. Motion segmentation using pulse-coupled neuralnetwork[C].SICE kmual Conference in Fukui, 2003, 2778-2783. [ 69 ] Xiaofu Zhang, Ali A. Minai. Temporally sequenced intelligent block-matching and motion-segmentation using locally coupled networks[J]. IEEE Transactions on Neural Networks, 2004, 15 (5): 1202-1214.
    [70] B. Yu, L. Zhang. Pulse-coupled neural networks for contour and motion matchings [J]. IEEE Transactions on Neural Networks, 2004,15 (5): 1186–1201.
    [71] Y. D. Ma, C. L. Qi, Region labeling method based on double PCNN and morphology[C]. Proc. of ISCIT2005, 321-324.
    [72] Haiyan Li, Zhengyao Bai. A new PCNN-based method for segmentation of SAR images[C]. 10th Intl. Conf. on Control, Automation, Robotics and Vision Hanoi, Vietnam, 2008, 1635-1639.
    [73] Minqin Wang, Guoqiang Han, Yongqiu Tu. Edge-based image completing guided by region segmentation[C]. 2008 ISECS International Colloquium on Computing, Communication, Control, and Management, 2008, 152-156.
    [74] Y. D. Ma, R. L. Dai, L. Li. Image segmentation of embryonic plant cell using pulse coupled neural networks[J]. Chinese Science Bulletin, 2002, 47 (2): 167-172.
    [75]马义德,戴若兰,李廉.一种基于脉冲耦合神经网络和图像熵的自动图像分割方法[J].通信学报, 2002, 23(1):46-51.
    [76]刘勍,马义德,钱志柏.一种基于交叉熵的改进型PCNN图像自动分割新方法[J].中国图象图形学报. 2005, 10(5):579-584.
    [77] Yingwei Bi, Tianshuang Qiu, Xiaobing Li, et al. Automatic image segmentation based on a simplified pulse coupled neural network[J]. 2004, LNCS 3174, 405-410.
    [78]夏辉,穆希辉,马振书,等.基于最大交叉熵的PCNN简化模型在图像分割中的应用[J].军械工程学院学报, 2007, 19(1):58-61
    [79] Meihong Shi, Shoushan Jiang, Huiran Wang, et al. A Simplified pulse-coupled neural network for adaptive segmentation of fabric defects[J]. Machine Vision and Applications, 2007, 138-144.
    [80] Henrik Berg, Roland Olsson, Thomas Lindbladb, et al. Automatic design of pulse coupled neurons for image segmentation[J]. Neurocomputing, 2008, 1-14.
    [81]聂仁灿,周冬明,赵东风.基于Unit-Linking PCNN和图像熵的图像分割新方法[J].系统仿真学报, 2008, 20(1): 222-227.
    [82] Zhiheng Xiao, Jun Shi, Qiang Chang. Automatic image segmentation algorithm based on PCNN and fuzzy mutual information[C]. IEEE Ninth International Conference on Computer and Information Technology, 2009, 241-245.
    [83]张煜东,吴乐南.基于二维Tsallis熵的改进PCNN图像分割[J].东南大学学报, 2008, 38(4):579-583.
    [84]刘勍,许录平,马义德,等.基于互信息改进型脉冲耦合神经网络多值图像分割[J].光子学报, 2010, 39(5): 923-927.
    [85]刘勍,许录平,马义德,等.一种超模糊熵ULPCNN图像自动分割新方法[J].西安电子科技大学学报, 2010, 37(5):817-824.
    [86] J. C. Fu, C. C. Chen, J. W. Chai, et al. Image segmentation by EM-based adaptive pulse coupled neural networks in brain magnetic resonance imaging[J]. Computerized Medical Imaging and Graphics, 2010, 34: 308-320.
    [87] Y. D. Ma, F. Shi, L. Li. A new kind of impulse noise filter based on PCNN[C]. Proc.of International Conference on Neural Networks and Signal Processing, 2003, 152-155.
    [88] M. M. I. Chacon, A. S. Zimmerman. Image processing using the PCNN time matrix as a selective filter[C]. Proc. of International Conference on Image Processing, 2003, 877-880.
    [89]张军英,卢志军,石林,等.基于脉冲耦合神经网络的椒盐噪声图像滤波[J].中国科学E辑, 2004, 34(8): 882-894.
    [90] X. D. Gu, L. M. Zhang. Morphology open operation in Unit-linking pulse coupled neural network for image processing[C]. Proc. of International Conference on Signal Processing, 2005, 1597-1600.
    [91] J. Y. Zhang, J. Dong, M. H. Shi. An adaptive method for image filtering with pulse coupled neural networks[C]. Proc. of International Conference on Image Processing, 2005, 133-136.
    [92] Yun Liu, Xiangguang Zhang, Chuanxu Wang. A new kind of hybrid filter based on the peak-and-valley filter and PCNN[C]. Eighth ACIS International Conference on Software Engineering, Artificial Intelligence, Networking, and Parallel Distributed Computing, 2007, 36-39.
    [93] Haiyan Li, Dan Xu, Pengfei Yu, et al. A noisy image filtering method using unidirectional decaying pulse couple neural network[C]. International Conference on Information Engineering and Computer Science, 2009. 1-4.
    [94]卢桂馥,王勇,窦易文.一种新的基于PCNN的图像脉冲噪声滤波算法[J].计算机技术与发展, 2007, 17(12): 83-85.
    [95]刘勍,马义德.一种基于PCNN赋时矩阵的图像去噪新算法[J].电子与信息学报, 2008, 30(8): 1869-1973.
    [96]刘远民,秦世引.一种新的基于PCNN的自适应强去噪方法[J].北京航空航天大学学报, 2009, 35(1): 108-112.
    [97]刘勍,许录平,马义德,等.基于PCNN噪声检测的两级脉冲噪声滤波算法[J].光电子.激光, 2009, 20(11):1466-1470.
    [98] Guanghui Cai, Haiyan Li, Dan Xu, et al. Impulse noise filtering by using an adaptivesingle-linking pulse coupled neural network[C]. IEEE International Conference on Software Engineering and Service Sciences (ICSESS), 2010, 107-110.
    [99]顾晓东,郭仕德,余道衡.一种基于PCNN图像去噪新方法[J].电子与信息学报, 2002, 24(10): 1304-1309.
    [100]石美红,张军英,朱欣娟,等.基于PCNN图像高斯噪声滤波的方法[J].计算机应用, 2002, 22(6): 1-4.
    [101] Y. D. Ma, F. Shi, L. Li. Gaussian noise filter based on PCNN [C]. Proc. of International Conference on Neural Networks and Signal Processing, 2003, 149-151.
    [102] Yide Ma, Dongmei Lin, Beidou Zhang, et al. A novel algorithm of image Gaussian noise filtering based on PCNN time matrix[C].2007 IEEE International Conference on Signal Processing and Communications, 2007, 1499-1502.
    [103]李永刚,石美红,魏远旺.基于PCNN的高斯噪声滤波[J].计算机工程与应用, 2007, 43(1):65-67.
    [104]石美红,毛江辉,梁颖,等.一种强高斯噪声的图像滤波方法[J].计算机应用, 2007, 27(7):1637-1640.
    [105] Jinping He, Kun Gao, Guoqiang Ni. A novel method of image gaussian noise filtering based on series connected PCNN model[C]. 2008 International Conference on Optical Instruments and Technology: Optical Systems and Optoelectronic Instruments, 2008, 16-19.
    [106] Luping Ji, Zhang Yi. A mixed noise image filtering method using weighted- linking PCNNs[J]. Neurocomputing, 2008, 71(13-15): 2986-3000.
    [107] Chenchen Liu, Zhimeng Zhang. Sonar images de-noising based on pulse coupled neural networks[C].1st International Congress on Image and Signal Processing, 2008, 403-406.
    [108] Z. Q Wei, , Xiang Xue, Bo Yin, et al. AUV sonar image processing based on improved pulse coupled neural network model and morphology[C]. 8th IEEE International Conference on Control and Automation (ICCA 2010), 2010, 365-373.
    [109] Yongqiu Tu, Shaofa Li, Minqin Wang. Mixed-noise removal for color images using modified PCNN model[C]. Second International Symposium on Intelligent Information Technology Application, 2008, 347-351.
    [110] Kai He, ShaoFa Li, Cheng Wang. Modified PCNN model and its application to mixed-noise removal[C]. 2010 International Conference on Innovative Computing and Communication and 2010 Asia-Pacific Conference on Information Technology and Ocean Engineering, 2010, 213-216.
    [111] J. L. Johnson. Time signatures of images[C]. Proc. of IEEE International Conference on Neural Networks, 1994, 1279-1284.
    [112] Berthe Kya, Yang Yang. Automatic edge and target extraction based on pulse-couple neuronnetworks wavelet theory (PCNNW)[C]. Proceedings of the SPIE-The International Society for Optical Engineering, 2002, 69-77.
    [113] Yide Ma, Zhaobin Wang, Chenghu Wu. Feature extraction from noisy image using PCNN[C]. IEEE International Conference on Information Acquisition, 2006, 808-813.
    [114]刘勍,马义德,张晓曦.基于改进型PCNN赋时矩阵的图像特征识别方法[J].电视技术, 2009, 33(9):15-18.
    [115] Xiaodong Gu. Feature extraction using unit-linking pulse coupled neural network and its applications[J].Neural Processing Letters, 2008, 27(1): 25-41.
    [116] Zaifeng Zhang, Guangzhu Xu, Yide Ma. An efficient method for iris feature extraction based on pulse coupled neural network[J]. Chinese Journal of Electronics, 2008, 17(2):293-298.
    [117] Zhengrong Li, R. Hayward, Jinglan Zhang. Towards automatic tree crown detection and delineation in spectral feature space using PCNN and morphological reconstruction[C]. Proceedings of the 2009 16th IEEE International Conference on Image Processing, 2009, 1705-1712.
    [118] Del Frate Fabio, Licciardi Giorgio, Pacifici Fabio. Pulse coupled neural network for automatic features extraction from COSMO-Skymed and TerraSAR-X imagery[C]. IEEE International Geoscience and Remote Sensing Symposium, 2009, 384-387.
    [119]刘晨晨,李晨,张之猛.基于PCNN的声纳图像纹理特征提取[J].自动化仪表, 2009, 30(2):18-20.
    [120] R. C. Muresan. Pattern recognition using pulse-coupled neural networks and discrete Fourier transforms[J]. Neurocomputing, 2003, 51:487-93.
    [121]刘勍,马义德.基于直方图矢量重心的PCNN图像目标识别新方法[J].电子技术应用, 2006, 10:27-30.
    [122] Qing Liu, Yide Ma, Shaogang Zhang, et al. Image target recognition using pulse coupled neural networks time matrix[C]. Proceedings of the 26th Chinese Control Conference, 2007, 96-99.
    [123] Feng Xue, Kun Zhan, Yide Ma, et al. The model of numerals recognition based on PCNN and FPF[C]. Proceedings of the 2008 International Conference on Wavelet Analysis and Pattern Recognition, 2008, 412-415.
    [124] Haiyan Li, Dan Xu, Rong Zong. Face recognition based on unit-linking PCNN time signature[C]. International Conference on Advanced Computer Control, 2009, 360-364.
    [125] Shuiming He, Dianhong Wang, Yanbin Nin. Application of pulse coupled neural network in image recognition[C]. Proceedings 2010 International Conference on Computing, Control and Industrial Engineering, 2010, 415-19.
    [126]张军英,李博云.基于PCNN的图像纹理平滑度的特征提取[J].计算机仿真, 2003,20(9):103-105.
    [127] Jiuwen Zhang, Kun Zhan, Yide Ma. Rotation and scale invariant antinoise PCNN features for content-based image retrieval[J]. Neural Network World, 2007, 17 (2):121-132.
    [128] Kun Zhan, Hongjuan Zhang, Yide Ma. New spiking cortical model for invariant texture retrieval and image processing[J]. IEEE Tran. on Neural Networks, 2009, 20(12):1980-1986
    [129] Yide Ma, Li Liu, Kun Zhan, et al. Pulse-coupled neural networks and one-class support vector machines for geometry invariant texture retrieval[J]. Image and Vision Computing, 2010, 28(11):1524-1532.
    [130]刘勍,许录平,马义德,等.基于脉冲耦合神经网络的图像NMI特征提取及检索方法[J].自动化学报, 2010, 36(7):931-938.
    [131] P. Chandrasekaran, M. Bodruzzaman, G. Yuen, et al. Speech recognition using pulse coupled neural network[C]. Proceedings of Thirtieth Southeastern Symposium on System Theory, 1998, 515-19.
    [132] T. Sugiyama, N. Homma, K. Abe, et al. Speech recognition using pulse-coupled neural networks with a radial basis function[J]. Artificial Life and Robotics, 2004, 7(4):156-159.
    [133] A. P Timoszczuk, E. F. Cabral. Speaker recognition using pulse coupled neural networks[C]. Proceedings of International Joint Conference on Neural Networks, 2007, 1964-1968.
    [134]马义德,袁敏,齐春亮,等.基于脉冲耦合神经网络的语谱图特征提取在说话人识别中的应用[J].计算机工程与应用, 2005, 41(20):81-84.
    [135]刘琨,金文标.基于PCNN和RBF的孤立词语音识别研究[J].计算机工程与设计, 2008, 29(24):6298-6301.
    [136] H. S. Ranganath, G. Kuntimad. Object detection using pulse coupled neural networks [J]. IEEE Transactions on Neural Networks, 1999, 10 (3): 615-620.
    [137] Jiesheng Wang, Fengwu Cong. Grayscale image edge detection based on pulse-coupled neural network and particle swarm optimization[C]. 2008 Chinese Control and Decision Conference, 2008, 2576-2579.
    [138] Xiaodong Gu, Yuanyuan Wang, Liming Zhang. Object detection using unit-linking PCNN image icons [J]. Lecture Notes in Computer Science, 2006, 3972: 616-622.
    [139] B. Yu, L. Zhang. Pulse coupled neural network for motion detection[C]. Proc. of the Joint International Conferences on Neural Networks, 2003, 1179-1184.
    [140] U. E. kblad, J. M. Kinser. Theoretical foundation of the intersecting cortical model and its use for change detection of aircraft, cars and nuclear explosion tests[J]. Signal Processing 2004, 84:1131-1146.
    [141] Fabio Pacifici, Fabio Del Frate. Automatic change detection in very high resolutionImages with pulse-coupled neural networks[J]. IEEE Geoscience and Remote Sensing Letters, 2010,7(1):58-62.
    [142] Hongzhao Yuan, Guifa Hou, Yong Li. Pulse coupled neural network algorithm for object detection in infrared image[C]. International Symposium on Computer Network and Multimedia Technology, 2009, 1-4.
    [143]宋寅卯,袁端磊,卢易枫,等.基于最优PCNN模型的织物疵点自动检测[J].仪器仪表学报, 2008, 29(4):888-891.
    [144]刘勍,许录平,马义德,等.结合灰度熵变换的PCNN小目标图像检测新方法[J].北京理工大学学报, 2009, 29(12):1085-1090.
    [145]苗启广,王宝树.一种自适应PCNN多聚焦图像融合新方法[J].电子与信息学报, 2006, 28 (3):466-470.
    [146]张军英,梁军利.基于脉冲耦合神经网络的图像融合[J].计算机仿真, 2004, 21 (4):102-104.
    [147] M. Li, W. Cai, Z. Tan. A region-based multi-sensor image fusion scheme using pulse coupled neural network[J]. Pattern Recognition Letters, 2006, 27: 1948-1956.
    [148] Qing Liu, Luping Xu, Yong Wang, et al. A novel algorithm of image fusion based on adaptive ULPCNN time matrix[C]. 2010 WASE International Conference on Information Engineering, 2010, 198-202.
    [149] Zhaobin Wang, Yide Ma. Medical image fusion using m-PCNN[J].Information Fusion, 2008, 9(2):176-85.
    [150]常威威,郭雷,付朝阳.利用脉冲耦合神经网络的高光谱多波段图像融合方法[J].红外与毫米波学报, 2010, 29(3):205-209.
    [151] Na Liu, Kun Gao, Yajun Song, et al. A novel super-resolution image fusion algorithm based on improved PCNN and wavelet transform[C]. Proceedings of the SPIE-The International Society for Optical Engineering, 2009, 621-628.
    [152] Meili Li, Hongmei Wang, Yanjun Li, et al. Image fusion algorithm based on energy of laplacian and PCNN[C]. Proceedings of the SPIE-The International Society for Optical Engineering, 2010, 510-514.
    [153]余瑞星,朱冰,张科.基于PCNN和BWT的图像融合算法[J].光电子.激光, 2008, 19(7):956-959.
    [154] Y. Chai, H. F. Li, J. F. Qu. Image fusion scheme using a novel dual-channel PCNN in lifting stationary wavelet domain[J]. Optics Communications, 2010, 283:3591-3602.
    [155]马义德,林冬梅,王兆滨,等. PCNN与粗集理论用于多聚焦图像融合[J].电子科技大学学报, 2009, 38(4):485-488.
    [156] Haibo Deng, Yide Ma. Image fusion based on steerable pyramid and PCNN[C]. Second International Conference on the Applications of Digital Information and Web Technologies,2009, 569-573. [ 157 ] Xiaobo Qu, Jingwen Yan, Hongzhi Xiao. Image fusion algorithm based on spatial frequency-motivated pulse coupled neural networks in nonsubsampled contourlet transform domain[J]. Acta Automatica Sinica, 2008, 34(12): 1508-1514.
    [158]张军英,卢涛.通过脉冲耦合神经网络来增强图像[J].计算机工程与应用, 2003, 19:93-95.
    [159]石美红,张军英,李永刚,等.一种新的低对比度图像增强的方法[J].计算应用研究, 2005, 1:235-238.
    [160]李国友,李惠光,吴惕华.基于脉冲耦合神经网络和遗传算法的图像增强[J].测试技术学报, 2005, 19(3):304-309.
    [161]李国友,李惠光,吴惕华,等. PCNN和Otsu理论在图像增强中的应用[J].光电子激光, 2005, 16(3):358-362.
    [162] Yide Ma, Dongmei Lin, Beidou Zhang, et al. A novel algorithm of image enhancement based on pulse coupled neural network time matrix and rough set[C]. Fourth International Conference on Fuzzy Systems and Knowledge Discovery, 2007, 86-90.
    [163]朱昊,金文标.基于PCNN与LR的低对比度图像增强方法[J].计算机工程与应用, 2008, 44(17):162-165.
    [164]武尔维,周冬明,赵东风,等.基于双层PCNN的多级灰度图像增强[J].云南大学学报, 2007, 29 (5): 459-464.
    [165]张煜东,吴乐南,李铜川,等.基于PCNN的图像直方图均衡化增强[J].东南大学学报, 2010, 40(1):64-68.
    [166]石美红,李永刚,张军英,等.一种新的彩色图像增强方法[J].计算机应用, 2004, 24 (10):69-71.
    [167] Dengchao Feng, Zhaoxuan Yang, Zengmin Wang. Adaptive enhancement algorithm of color image based on improved PCNN[C]. The Eighth International Conference on Electronic Measurement and Instruments, 2007, 844-848.
    [168]马义德,齐春亮,钱志柏,等.基于脉冲耦合神经网络和施密特正交基的一种新型图像压缩编码算法[J].电子学报, 2006, 34(7):1255-1259.
    [169]阮柏尧,陈伟峰,张歆奕. PCNN与行程编码结合的图像压缩方法[J].计算机工程与应用, 2008, 44(20):192-193.
    [170] Xiaodong Gu, Daoheng Yu, Liming Zhang. Image thinning using pulse coupled neural network[J]. Pattern Recognition Letters, 2004 , 25:1075-1084. [ 171 ] Lifeng Shang, Zhang Yi. A class of binary images thinning using two PCNNs[J]. Neurocomputing, 2007, 70:1096-1101. [ 172 ] Luping Ji, Zhang Yi, Lifeng Shang,et al. Binary fingerprint image thinning usingtemplate-based PCNNs[J]. IEEE Tran. on Systems, Man, and Cybernetics-Part B: Cybernetics, 2007, 37(5):1407-1413.
    [173] Jason M. Kinser. Foveation by a pulse-coupled neural network[J]. IEEE Tran. on Neural Networks, 1999, 10(3):621-625.
    [174] T. Watanabe, M. Tanaka, T. Kurita, et al. Autonomous foveating system based on the pulse-coupled neural network with sigmoidal pulse generator[J]. Transactions-Society of Instrument and Control Engineers 2002, 38:726-732.
    [175] T. Lindblad, J. M. Kinser.Image processing using pulse-coupled neural networks [M]. Springer, 2005(Second Edition).
    [176] H. J. Caulfield, J. M. Kinser. Finding shortest path in the shortes time using PCNN’s [J]. IEEE Trans Neural Networks, 1999, 10(3):604-606.
    [177]顾晓东,余道衡,张立明.时延PCNN及其用于求解最短路径[J].电子学报, 2004, 32(9):1141-1143.
    [178]赵荣昌,马义德,绽琨.三态层叠PCNN原理及在最短路径求解中的应用[J].系统工程与电子技术, 2008, 30(9):1785-1789.
    [179] Hiroyuki Torikai, Toshimichi Saito. Various synchronization patterns from a pulse-coupled neural network of chaotic spiking oscillators[C]. Proceedings of the International Joint Conference on Neural Networks, 2001, 670-674.
    [180] Hidehiro Nakano, Akihide Utani, Arata Miyauchi, et al. Synchronization-based data gathering scheme using chaotic pulse-coupled neural networks in wireless sensor networks[C]. IEEE International Joint Conference on Neural Networks, 2008, 1115-1121.
    [181]马义德,王新.基于混沌脉冲耦合神经网络系统的信号跟踪[J].兰州大学学报, 2010, 46(1):133-137.
    [182] Franics Crick.惊人的假说—灵魂的科学探索[M].汪云九,齐翔林,等译.长沙:湖南科学技术出版社, 2001.
    [183] R. Fitzhugh. Impulse and physiological states in theoretical models of nerve membrane[J]. biophysics J, 1961, 1:445-466.
    [184] J. Nagumo, S. Arimoto, S. Yoshizawa. An active pulse transmission line stimulating nerve axon[J]. Proc.IRE, 1962, 50:2061-2070.
    [185] I. A. Rybak, N. A. Shevtsova, V. A. Sandler. The model of a neural network visual processor[J]. Neurocomputing, 1992, 4:93-102.
    [186] O. Parodi, P. Combe, J. C. Ducom. Temporal encoding in vision: coding by spike arrival times leads to oscillations in the case of moving targets [J]. Biol. Cybern, 1996, 74:497-509.
    [187]马义德,李廉,绽琨,等.脉冲耦合神经网络与数字图像处理[M].北京:科学出版社, 2008.
    [188] H. S. Ranganath, G. Kuntimad. Iterative segmentation using pulse coupled neural networks[C]. Proc.of SPIE, 1996, 2760:543-554.
    [189] Thomas Lindblad,Jason M. Kinser. Inherent features of wavelets and pulse coupled neural networks[J]. IEEE Trans.on Neural Networks, 1999, 10(3):607-614.
    [190]张兆礼,赵春晖,梅晓丹.现代图像处理技术及Matlab实现[M].北京:人民邮电出版社, 2001.
    [191] Rafael C.Gonzalez著,阮秋琦译.数字图像处理(第二版)[M].北京:电子工业出版杜, 2003.
    [192] N. Wiener. Extrapolation, interpolation, and smoothing of stationary time series[M]. the MIT Press, Cambridge, Mass, 1942.
    [193] A. Pitas, N. Venetsanopoulos. Nonlinear digital filters: principles and applications[M]. Kluwer Academic Publisher, 1990.
    [194] J. W. Tukey. Exploratory data analysis[M]. Addison-Wesley, New York,1971 [ 195 ] D. Brownrigg. The weighted median filter[J]. Communications of the ACM, 1984, 27(8):807-818.
    [196] K. Manglem Singh, P. K. Bora. Multistage detection based filtering for removal of impulse noise from images[J]. IETE Journal of Research, 2004, 50(2), 125-131.
    [197]张丽,陈志强,高文焕,等.均值加速的快速中值滤波算法[J].清华大学学报(自然科学版), 2004, 44(9):1157-1159.
    [198] Lianghai Jin, Dehua Li. A switching vector median filter based on the CIELAB color space for color image restoration[J]. Signal Processing, 2007, 87(6): 1345-1354.
    [199] Tzuchao Lin. Adaptive median type filter based on dempster-shafer evidence theory for fuzzy image restoration[C]. IEEE International Conference of Fuzzy Systems, 2007, 1-6.
    [200] Youlian Zhu, Cheng Huang, Zhihuo Xu. Image denoising algorithm based on the median morphological filter[C]. Proceedings of the World Congress on Intelligent Control and Automation (WCICA), 2008, 3979-3984.
    [201]金良海,李德华,姚行中.一种改进型的自适应基本矢量方向滤波器[J].计算机工程与应用, 2006, 13:8-12.
    [202] Xiuping Liu, Bo Li, Zhixun Su,et al. Impulsive noise removal by nonlocal fuzzy diffusion[C]. Fourth International Conference on Image and Graphics, 2007, 155-159.
    [203]徐志平,钟亦平,张世永.新型红外图像脉冲噪声滤波算法[J].小型微型计算机系统, 2008, 29(3):520-523.
    [204] Xiaowei Han, Junsheng Li, Yanping Li, et al. A selective and adaptive image filtering approach based on impulse noise detection[C]. Proceedings of the 5thWorld Congress on IntelligentControl and Automation, 2004, 4156-4159.
    [205] Peieng Ng, Kaikuang Ma. A switching median filter with boundary discriminative noise detection for extremely corrupted images[J]. IEEE Trans. On Image Processing, 2006, 15(6):1506-1516.
    [206] Huang Zan. A median filter based on judging impulse noise by statistic and adaptive threshold[C]. 2008 Congress on Image and Signal Processing, 2008, 207-210.
    [207] S. Deivalakshmi, P. Palanisamy. Improved tolerance based selective arithmetic mean filter for detection and removal of impulse noise[C].2010 5th International Conference on Industrial and Information Systems (ICIIS 2010), 2010, 309-313.
    [208]潘梅森,肖政宏.一种基于四阶累积量的自适应均值滤波算法[J].电子技术应用, 2006, 6:46-49.
    [209]常瑞娜,穆晓敏,杨守义,等.基于局部空间像素特征的自适应加权滤波算法[J].计算机工程与应用, 2008, 44(6):45-47.
    [210] M. E. Yuksel. A hybrid neuro-fuzzy filter for edge preserving restoration of images corrupted by impulse noise[J]. IEEE Transactions on Image Processing, 2006, 15(4): 928-936.
    [211] Morillas Samuel, Gregori Valentín, Peris-Fajarnés Guillermo, et al. Local self-adaptive fuzzy filter for impulsive noise removal in color images[J]. Signal Processing, 2008, 88(2): 390-398.
    [212]郭旭静,王祖林.基于尺度间相关的非下采样Contourlet图像降噪算法[J].光电子.激光, 2007, 18(9):1116-1119.
    [213] Chungchi Hsieh, Paoli Kuo. An impulsive noise reduction agent for rigid body motion data using B-spline wavelets[J].Expert Systems with Applications, 2008, 34(3): 1733-1741.
    [214] Zefeng Deng, Zhouping Yin, Youlun Xiong. High probability impulse noise- removing algorithm based on mathematical morphology[J]. IEEE Signal Processing Letters, 2007, 14(1):31-34.
    [215] P. Pankajakshan, V. Kumar. Detail-preserving image information restoration guided by SVM based noise mapping[J]. Digital Signal Processing: A Review Journal, 2007, 17(3): 561-577.
    [216] G. Phani Deepti, V. Maruti Borker, Jayanthi Sivaswamy. Impulse noise removal from color images with hopfield neural network and improved vector median filter[C]. Sixth Indian Conference on Computer Vision,Graphics& Image Processing, 2008, 17-24.
    [217] Chao Deng, Jiyu An. An impulse noise removal based on a wavelet neural network[C]. 2009 Second International Conference on Information and Computing Science, 2009, 71-74.
    [218] Seung Min Song, Chong Ho Lee, Sung Soo Dong, et al. Impulse noise detection using self-organizing neural network and its application to selective median filtering[J]. Transactions of the Korean Institute of Electrical Engineers, 2005, 54, (3):166-73.
    [219]何钰,徐青,邢帅.基于偏微分方程的去噪方法[J].测绘科学技术学报, 2007, 24(4): 284-286.
    [220] Nualart David, Quer-Sardanyons, Lluís. Gaussian density estimates for solutions to quasi-linear stochastic partial differential equations[J]. Stochastic Processes and their Applications, 2009, 119(11): 3914-3938.
    [221] M. Zahle, M. Hinz. Gradient type noises II: systems of stochastic partial differential equations [J]. Journal of Functional Analysis, 2009, 256(10): 3192-3235.
    [222]丛维,郭定辉.用于图像去噪的改进型非线性扩散方程[J].计算机应用, 2008, 28(7):2064-2066.
    [223] Zhifeng Wang, Yandong Tang, Yingkui Du. Noise removal based on fourth order partial differential equation[C]. 2008 3rd International Conference on Innovative Computing Information and Control, 2008, 3161-3168.
    [224] C. L. Nikias, A. P. Petropulu. Higher-order spectra analysis[M]. USA:PTR Prentice Hall, 1993.
    [225] S. A. Dianat, M. R. Raghuveer. Fast algorithmsfor phase and magnitude reconstruction from bispectrum[J]. Opt . Eng, 1990, 29: 504-512.
    [226] G. Sundaramoorthy, M. R. Raghuveer, S.A. Dianat. Bispectral reconstruction of signals in noise: amplitude reconstruction issues[J]. IEEE Trans Acoustics, Sppech, Signal Processing, 1990,38:1297-1306.
    [227]杨守义,罗伟雄.一种基于高阶统计量的图象平滑去噪法[J].中国图象图形学报, 2002, 7(7):654-657.
    [228]王艳玲,王宏志,李玲.一种基于双谱的图像噪声去除方法[J].长春工业大学学报(自然科学版), 2005, 26(2):114-116.
    [229] M. El Hassouni, H. Cherifi. HOS-based filtering scheme for stereo image compression[C]. 4th EURASIP Conference focused on Video Image Processing and Multimedia Communications, 2003, 2-5.
    [230] Mounir Sayadi, Mohamed Najim. Comparison of second and third order statistics based adaptive filters for texture characterization[C]. IEEE International Conference of the Acoustics, Speech, and Signal Processing, 1999, 3281-3284.
    [231] C. Tomasi, R. Manduchi. Bilateral filtering for gray and color images[C]. Proceedings of the Sixth International Conference on Computer Vision, 1998: 839-846.
    [232] Buyue Zhang, P. Jan. Allebach. Adaptive bilateral filter for sharpness enhancement and noise removal[J]. IEEE Trans. on Image Processing, 2008, 17(5): 664-678.
    [233] Harold Phelippeau, Hugues Talbot, Mohamed Akil,et al. Shot noise adaptive bilateral filter [C]. 9th International Conference on Signal Processing, 2008, 864-867.
    [234] Ming Zhang, K. Bahadir. Gunturk. Multiresolution bilateral filtering for image denoising[J]. IEEE Trans. on Image Processing, 2008, 17(12):2324-2333.
    [235]张志强,王万玉.一种改进的双边滤波算法[J].中国图象图形学报, 2009, 14(3):443-447.
    [236] Y. H. Lee, S. A. Kassam. Generalized Median Filtering and Related Nonlinear Filtering Techniques[J]. IEEE Trans. On Acoust,Speech,Signal Processing, 1985, 33(3):672-683.
    [237] HsinCheng Huang, T. C. M. Lee. Data adaptive median filters for signal and image denoising using a generalized SURE criterion[J]. IEEE Signal Processing Letters, 2006, 13(9): 561-564.
    [238] M. Cislariu, M. Gordan, A. Vlaicu. A novel fuzzy color median filter based on an adaptive cascade of fuzzy inference systems[C]. Proceedings 10th International Conference of Artificial Intelligence and Soft Computing, 2010, 27-34.
    [239] Yu Ding, Qidan Zhu, Zhuoyi Xing. An adaptive-fuzzy filter algorithm for vision preprocessing[C]. IEEE International Confer ence on Robotics and Biomimetics, 2006, 578-582.
    [240]马义德,张祥光,杨淼.基于多结构元广义形态滤波的改进算法[J].电子科技大学学报, 2004, 33(4):391-394.
    [241]毕国堂,王晓辉,周艳,等.基于粗集的图像混合噪声滤波算法[J].计算机工程与设计, 2009, 30(21):4898-4900.
    [242]许彬,郑链,王克勇,等.基于局域灰度概率分布的小目标检测方法[J].激光与红外, 2005, 35(3):187-189.
    [243]卓宁,孙华燕,张海江.红外图像中弱小目标检测算法概述[J].光学仪器, 2005, 27(4):83-86.
    [244] L. Yang, J. Yang, K. Yang. Adaptive detection for infrared small target under sea-sky complex background[J]. Electronics Letters, 2004, 40 (17):1083-108.
    [245] Jin Liu, Hongbing Ji. An improved robust estimation algorithm for small IR target detection [C]. 2009 IEEE Symposium on Industrial Electronics and Applications, 2009, 394-398.
    [246]王勇,赵保军.复杂背景下低信噪比点目标的实时检测算法及实现[J].系统工程与电子技术, 2002, 24(12):17-21.
    [247] Ruiming Liu, Erqi Liu, Jie Yang, et al. Automatically detect and track infrared small targets with kernel Fukunaga-Koontz transform and Kalman prediction [J]. Applied Optics, 2007, 46(31):7780-7791.
    [248] U. Gustafsson, L. Haglund, I. Andersson. Target detection and background suppression using quadrature pyramid filters[C]. Proceedings of 12th Scandinavian Conference on Image Analysis, 2001, 553-560.
    [249]李吉成,沈振康,李秋华.强背景杂波条件下运动的弱小目标检测方法[J].红外与激光工程, 2005, 34(2):208-211.
    [250] S. Kim, Y. Yang, J. Lee. Robust detection of horizontal small targets using synergistic spatial filtering[J]. Electronics Letters, 2009, 45(12): 620-621.
    [251] Z. F. Zhu, Z. L. Li, H. C. Liang, et al. Gryscale morphological filter for small targetdetection[C].SPIE, 2000:4130, 28-34.
    [252] Ning Zhou, Xiaofeng Li, Zaiming Li. Dim Target detection based on spatio-morphological and wavelet transform clutter suppression[J]. Opto-Electronic Engineering, 2009, 36(11):25-28.
    [253] Yang Yong, Bingxue Wang, Wenhua Zhang,et al. Low-contrast small target image enhancement based on rough set theory[J]. The International Society for Optical Engineering, 2007, 6833(21):1-6.
    [254] Yuqiu Sun, Jinwen Tian, Jian Liu. Novel method on dual-band infrared image fusion for dim small target detection[J]. Optical Engineering, 2007, 46(11):1-8.
    [255] Honggang Wu, Xiaofeng Li, Zaiming Li, et al. Morphological neural networks of background clutter adaptive prediction for detection of small targets in image data[C]. Third International Symposium on Neural Networks, 2006, 442-447.
    [256] Yun Zhang, Gang Hong. A wavelet integrated image fusion approach for target detection in very high resolution satellite imagery [C]. Proceedings of the SPIE -The International Society for Optical Engineering, 2005, 5809:330-340.
    [257] Yuqiu Sun, Shalan Li, Jinwen Tian,et al. LS-SVM based dim and small infrared target dualband fusion detection[C]. Proceedings of the SPIE-The International Society for Optical Engineering, 2007, 6795: 67953J-1-7.
    [258]王勋,毕笃彦.一种新的基于局部特征统计的小目标检测方法[J].计算机工程, 2007, 33(12):19-3.
    [259]张玉叶,王春歆.基于改进DPA的空间小目标检测算法[J].电子学报, 2010, 38(3):556-560.
    [260]刘云龙,林宝军,艾勇.基于改进粒子群优化算法的快速小目标检测[J].光电工程, 2009, 36(10):6-10.
    [261]孙翠娟,杨卫平,沈振康.一种基于匹配滤波的红外小目标检测系统[J].激光与红外, 2006, 36(2):147-150.
    [262] Zhang Wei, Mingyu Cong, Liping Wang. Algorithms foroptical weak small targets detection and tracking: review[C]. IEEE Int.Conf.Neural Networks & Signal Processing.Nanjing, 2003:643-647.
    [263]吴巍,彭嘉雄,刘泉.对红外序列图像中小目标分割的研究[J].电子学报, 2004, 32(7):1116-1119.
    [264] Qingbo Ji, Chi Feng, Meng Wang . A detection algorithm for the small moving target in infrared image sequences with the dynamic background[C]. Proceedings of the 2007 International Conference on Wavelet Analysis and Pattern Recognition, 2007, 1717-1722.
    [265] A. D Stocker, P. Jensen. Algorithms and architec-tures for implementing large velocity filterbanks[C]. SPIE, 1991, 1481:140-155.
    [266] Daqing Piao, Quing Zhu. Direct bidirectional angle-insensitive imaging of the flow signal intensity in Doppler optical coherence tomography[J]. Applied Optics, 2005, 44(3): 348-57.
    [267] N. U. Braga, J. Goutsias. Automatic target detection and tracking in forward looking infrared image sequences using morphological connected operators[C]. 23rd Conference on Information Sciences and System, 1999, 173-178.
    [268]陈尚锋,肖山竹,卢焕章.一种低信噪比图像序列小目标实时检测算法[J].信号处理, 2009, 25(4):601-606.
    [269] Wei Wu, Jiaxiong Peng. Detection of moving small targets in infrared image sequences containing cloud clutter[J]. International Journal of Pattern Recognition and Artificial Intelligence, 2004, 18(2): 247-260.
    [270] Haihui Wang, Jian Zhang, Jun Wang. Approach of detecting the infrared dim small targets[C]. Proceedings of SPIE-The International Society for Optical Engineering, 2005, 6043 I.
    [271] Hilliard Courtney. Selection of a clutter rejection algorithm for real-time target detection from an airborne plotform[C]. Proceedings of SPIE-The International Society for Optical Engineering, 2000, 4048:78-84.
    [272]曹琦,毕笃彦,张齐.一种新的空时域滤波小目标检测方法[J].光电工程, 2009, 36(7):41-44.
    [273]罗寰,王芳,陈中起,等.基于对称差分和光流估计的红外弱小目标检测[J].光学学报, 2010, 30(6):1715-1720.
    [274] C. E. Shannon. Communication theory of secrecy systems[J]. Bell System Technical Journal, 1949, 28-4: 656-715.
    [275] A. Shiozaki. Edge extraction using entropy operator[J]. ComputerVision, Graphics, and Image Processing, 1986, 36(1):1-9.
    [276]张永亮,汪洋卢,焕章.基于图像灰度熵的团块目标检测方法[J].系统工程与电子技术, 2008, 30(2):201-204.
    [277] S. Kullback. Information Theory and Statistics[M]. New York:John Wiley, 1959.
    [278]周如旗,陈文伟.基于对称交叉熵的属性约简算法[J].计算机辅助工程, 2006, 3:51-53.
    [279]薛景浩,章毓晋,林行刚.基于最大类间后验交叉熵的阈值化分割算法[J].中国图象图形学报, 1999, 4(2):110-114.
    [280]章毓晋,图象工程(上册)[M].北京:清华大学出版社, 1999.
    [281]刘勍,应隽,周珑,等.数字图像分割技术及其进展[J].天水师范学院学报, 2007, 27(5):35-39.
    [282] YuJin Zhang. A review of recent evaluation methods for image segmentation[C]. Proceedings of the Sixth International Symposium on Signal Processing and its Applications(Cat.No.01EX467), 2001, 148-151.
    [283] Jianping Fan, K. Y. David. Automatic image segmentation by integrating clor-edge extraction and seeded region growing[J]. IEEE Tran.on Image Processing,2001,10(10):1454-1466.
    [284] Thomas Schoenemann, Daniel Cremers. A combinatorial solution for model-based image segmentation and real-time tracking [J]. IEEE Trans.on Pattern Analysis and Machine Intelligence, 2010, 32(7):1153-1164.
    [285] M. Robert, Haralick.Digital step edges from zero crossing of second directional derivatives[J]. IEEE Trans.on Pattern Analysis and Machine Intelligence, 1984, 6(1):58-68.
    [286] Alina N Moga,Bogdan Cramariue,Moncef Gabbouj.Parallel watershed transformation algorithms for image segmentation[J]. Parallel Computing,1998, 24(14):1981-2001.
    [287] Zhiding Yu, C Au Oscar, Ruobing Zou, et al. An adaptive unsupervised approach toward pixel clustering and color image segmentation[J]. Pattern Recognition, 2010, 43(5):1889-1906.
    [288] Chihchin Lai, Chuanyu Chang. A hierarchical evolutionary algorithm for automatic medical image segmentation [J]. Expert Systems with Applications, 2009, 36(1): 248-259.
    [289] John M. Gauch. Image segmentation and analysis via multiscale gradient watershed hierarchies [J]. IEEE Trans. on Image Processing, 1999, 8(1): 69-79.
    [290] Jianping Fan,K. Y. David. Automatic image segmentation by integrating edge extraction and seeded region growing[J]. IEEE Trans.On Image Processing, 2001, 10(10):1454-1466.
    [291]刘勍,张久文,温志贤,等.基于数学形态学的图像处理[J].天水师范学院学报, 2004, 24(2):29-33.
    [292] Yanzhi Dong, Xiaodong Zhou, Changjing Wang, et al. Application of soft mathematical morphology in image segmentation of IR ship image[C]. 2004 7th International Conference on Signal Processing Proceedings, 2004, 732-735.
    [293] S. K. Pal, R. A. King, A. A. Hashim. Automatic graylevel thresholding trough index of fuzziness and entropy[J]. Pattern Recognition Letter, 1983, 1:141-146.
    [294] T. Chaira, A. K. Ray. Segmentation using fuzzy divergence [J]. Pattern Recognition Letters, 2003, 24(12): 1837-1844.
    [295] C. C. Leung, W. F. Chen, F. H. Chan, et al. Tumor boundary detection in MR image with generalized fuzzy operator[C]. IEEE International Conference on Image Processing, 2003:1057-1060.
    [296]徐晓军,李建华,王孙安,等.基于最优家族遗传算法的改进二维熵图像分割[J].西安交通大学学报, 2004, 38(11):1182-1185.
    [297]王月兰,曾迎生.信息融合技术在彩色图像分割方法中的应用[J].计算机学报, 2003, 23(7):763-767.
    [298] T. Celik, T. Tjahjadi. Unsupervised colour image segmentation using dual-tree complexwavelet transform[J]. Computer Vision and Image Understanding, 2010, 114(7): 813-826.
    [299] Ming Li, Yan Wu, Qiang Zhang. SAR image segmentation based on mixture context and wavelet hidden-class-label Markov random field[J]. Computers & Mathematics with Applications, 2009, 57(6):961-969.
    [300] Qiwei Lin, Feng Gui. Fractal dimension and neural network based image segmentation technique[C]. Proc. of SPIE Europe Photonics Europe, 2008, 70010L-70010L-8.
    [301]何伟,蒋加伏,齐琦.基于粗糙集理论和神经网络的图像分割方法[J].计算机工程与应用, 2009,45(1):188-190.
    [302] Guizhou Wang, Guojin He. Human visual system based processing for high resolution remote sensing image segmentation[C]. Proceedings of the 2010 2nd International Conference on Signal Processing Systems, 2010, 474-478.
    [303] Jie Shi, Zhenkuan Pan, Weibo Wei. An innovative variational level set model for multiphase image segmentation[C]. Proceedings of the 2009 Third International Conference on Multimedia and Ubiquitous Engineering, 2009, 41-44.
    [304] A. Sofou, P. Maragos. Generalized flooding and multicue PDE-based image segmentation [J]. IEEE Trans. On Image Processing, 2008, 17(3):364-376.
    [305] N. R. Pal, S. K. Pal. Entropic thresholding [J]. Signal Processing, 1989,16(2): 97-108.
    [306] A. L. Osaimi, Ghada. E.L. Zaart, Ali. Minimum cross entropy thresholding for SAR images[C]. 2008 3rd International Conference on Information and Communication Technologis: From Theory to Applications, 2008: 4530-4535.
    [307] Linyi Li, Deren Li. Fuzzy entropy image segmentation based on particle swarm optimization[J]. Progress in Natural Science, 2008, 18(9):1167-1172.
    [308] J. M. Mendel, R. I. Bob John. Type-2 fuzzy sets made simple[J]. IEEE Trans.Fuzzy Systems(S1063-6706), 2002, 10(2):117-127.
    [309] Nilesh N Karnik, Jerry M Mendel. Operations on type-2 fuzzy sets[J]. Fuzzy Sets and Systems(S0165-0114), 2001, 122(2):327-348.
    [310] R. Hamid, Tizhoosh. Type II fuzzy image segmentation[J]. Fuzzy Sets and Their Extensions: Representation, Aggregation and Models. Springer. 2008, 607-619.
    [311]片兆宇,高立群,吴建华,等.基于超模糊集的多属性图像阈值分割算法[J].系统仿真学报, 2007, 19(19):4434-4439.
    [312] T. Chaira, A. K. Ray. Segmentation using fuzzy divergence[J]. Pattern Recognition Letters, 2003, 12 (24):1837-1844.
    [313] J. S. Cardoso, C. R. Luls. Toward a generic evaluation of image segmentation[J]. IEEE Transactions on Image Processing, 2005, 14(11): 1773-1782.
    [314]裴继红,谢维信.势函数聚类自适应多阈值图像分割[J].计算机学报, 1999,22(7):758-762.
    [315] Songcan Chen, Min Wang. Seeking multi-thresholds directly from support vectors for image segmentation[J]. Neurocomputing, 2005, 67:335-344.
    [316]张伟,蒋宏,任章.自适应多阈值图像分割算法[J].自动化技术与用, 2007, 26(8): 71-74.
    [317] M. Nimbarte Nita, M. Mushrif Milind. Multi-level thresholding algorithm for color image segmentation[C]. 2010 2nd International Conference on Computer Engineering and Applications, 2010, 231-233.
    [318] P. Viola, W. M. Wells. Alignment by maximization of mutual information[C]. Proceedings of the 5th International Conference on Computer Vision, 1995, 16-23.
    [319] A. Rangarajan, H. Chui, J. S. Duncan. Rigid point feature registration using mutual information[J]. Medical Image Analysis, 1999, 3(4):425-440.
    [320] Jinbao Yang, Changchun Liu, Shunbo Hu, et al. Mean divergence measures for medical image registration[J]. ACTA Photonica Sinic, 2008, 37(5): 1046-1051.
    [321] J. Rigau, M. Feixas, M. Sbert, et al. Medical image segmentation based on mutual information maximization[C]. Proceedings of MICCAI’04, 2004: 135-142.
    [322]吕庆文,陈武凡.基于互信息量的图像分割[J].计算机学报, 2006,29(2):296- 301.
    [323] C. Studholme, D. L. G. Hill, D. J. Hawkes. An overlap invariant entropy measure of 3-D medical image alignment[J]. Pattern Recognition, 1999, 32(1): 71-86.
    [324] A. W. Smeulders, S. Santini, M. Worring, et al. Content based image retrieval at the end of the early years[J]. IEEE Trans.on Pattern Analysis and Machine Intelligence, 2000, 22(12):1349-1380.
    [325]陈天华.图像检索技术研究与发展[J].北京工商大学学报(自然科学版),2008,26(6):52-58.
    [326] Du Lin, Fang Sun. A new indexing method based on word proximity for chinese text retrieval [J]. J.ComPut.Sei. & Technol, 2000, 15(3):280-286.
    [327]邰晓英,王李冬,巴特尔.基于小波纹理、语义特征和相关反馈的医学图像检索[J].电路与系统学报, 2007, 4:25-31.
    [328]程娟,平西建.基于GNPIM-k和SVM的文本图像检索[C].第二届全国信息检索与内容安全学术会议, 2005.
    [329] Shijian Lu, Linlin Li, Chew Lim Tan. Document image retrieval through word shape coding[J]. IEEE Trans.on Pattern Analysis and Machine Intelligence, 2008, 30 (11):1913-1918.
    [330] J. Huang, S. R. Kumar, M. Mitra, et al. Image indexing using color correlograms[C]. IEEE Conference Computer Vision Pattern Recognition, 1997, 762-768.
    [331]徐曼,刘翊,韦志辉.基于内容的图像检索技术[J].计算机应用,2001,21(9): 42-44.
    [332] N. Krishnan Dr, Banu M Sheerin, Christiyana C Callins. Content based image retrieval using dominant color identification based on foreground objects[C]. 2007 International Conferenceon Computational Intelligence and Multimedia Applications, 2007, 190-194.
    [333] Oili Kohonen, H. K. Markku. Distance measures in the training phase of self-organizing map for color histogram generation in spectral image retrieval[J]. Journal of Imaging Science and Technology, 2008, 52(2):201-211.
    [334] Mojsilovic Aleksandra, J. Y. Hu, Soljanin Emina. Extraction of perceptually important colors and similarity measurement for image matching, retrieval, and analysis[J]. IEEE Transactions on Image Processing, 2002, 11(11): 1238-1248.
    [335] Tamura Hideyuki, Mori Shunji,et al. Texture features corresponding to visual perception[J]. IEEE Trans. On SMC, 1978, 8(6):460-473.
    [336] P. W. Huang, S. K. Dai. Image retrieval by texture similarity [J]. Pattern Recognition, 2003, 36(3):665-679.
    [337] Young Deok Chun, Nam Chul Kim, Ick Hoon Jang. Content-based image retrieval using multiresolution color and texture features [J]. IEEE Tran. on Multimedia, 2008, 10(6):1073-1084.
    [338] M. C. Amirani, Z. S. Gol, A. A. B. Shirazi. Efficient feature extraction for shape-based image retrieval[J]. Journal of Applied Sciences, 2008, 8(13): 2378-2386.
    [339] Alajlan Naif, S. Mohamed Kamel, H. George Freeman. Geometry-based image retrieval in binary image databases [J]. IEEE Trans.on Pattern Analysis and Machine Intelligence, 2008, 30(6):1003-1013.
    [340] Waitak Wong, Y Shih Frank, Su T E-Feng. Shape-based image retrieval using two-level similarity measures[J]. International Journal of Pattern Recognition and Artificial Intelligence, 2007,21(6):995-1015.
    [341] John Eakins, Margaret Graham. Content-based image retrieval[R]. Newcastle: University of Northumbria at Newcastle, 1999.
    [342]张问银,唐建国,曾振柄.基于NMI不变特征的图像检索方法[J].计算机应用. 2003, 23(9):55-57.
    [343] Arijit Bishnu, Bhargab B. Bhattacharya, Sr. Stacked euler vector (SERVE): a gray-tone image feature based on bit-plane augmentation[J]. IEEE Trans, Pattern Analysis and Machine Intelligence, 2007, 29(2):350-355.
    [344] S Zhao, H T Wang. Image retrieval based on bit-plane distribution entropy[C]. Proceedings of the International Conference on Computer Science and Software Engineering, 2008, 532-535
    [345] Muyun Weng, Mingyi He. Image feature detection and matching based on SUSAN method[C]. Proceedings of the First International Conference on Innovative Computing, Information and Control, 2006, 322-325.
    [346] B. Kulis, P. Jain, K. Grauman. Fast similarity search for learned metrics[J]. IEEE Transactionson Pattern Analysis andMachine Intelligence, 2009, 31(12): 2143-2157.
    [347] M Saadatmand-Tarzjan, H. A. Moghaddam. A novel evolutionary approach for optimizing content-based image indexing algorithms[J]. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 2007, 37(1):139-153.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700