用户名: 密码: 验证码:
海水中胃肠道感染病毒的病原性检测及风险评价
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
胃肠道感染病毒是除细菌之外的引起胃肠道疾病的主要病原体之一,通过接触娱乐用水或食用被污染的贝类感染人体。这类病毒主要来源于人畜粪便等排泄物污染的生活污水,在各种水环境中普遍存在,并且存活时间长,感染剂量低,可以通过娱乐用水或食用海产品感染人类。因此,建立其快速、高效的检测技术,对于水传播疾病的预防和控制是迫切需要的。然而目前尚没有一种同时确定其感染性和快速定量的方法,给人体健康风险评估带来了很大的障碍。因此,本论文从这一点出发,开展了以下相关的工作。
     选取具有指示作用的胃肠道感染病毒—肠道病毒(EV)和感染性最强的胃肠道感染病毒—轮状病毒(RV)为指示微生物,实现以下目标:1.建立快速定量水环境中具有感染性病毒浓度的方法,同时探讨不可培养病毒的病原性检测方法;2.将此方法在渤海湾天津海域进行了应用与可行性分析;3.通过探讨病毒在海洋环境中的存活时间和灭活机理,对病毒感染人体的健康风险进行了实际评估。
     主要研究内容和研究成果如下:
     1.分别建立了肠道病毒代表种脊髓灰质炎病毒(PV)和RV的细胞培养结合实时定量PCR(ICC-qPCR)检测方法,克服了细胞培养和实时定量PCR技术单独作用时的缺点,将细胞培养时间从7天缩短到了2天,并且灵敏度在real-timePCR方法的基础上提高了1个数量级,为细胞病变不明显或水环境中低污染浓度病毒的感染性检测提供了良好的技术支持。
     2.在比较超滤和吸附-洗脱这两种水环境中常用病毒浓缩方法的基础上,就不同的浓缩体积、不同孔径滤膜对超滤法浓缩效率的影响进行了探讨。结果表明,超滤浓缩法操作简单、耗时短、对病毒感染性损伤小;在超滤法中,相对于在10L海水中用超滤浓缩装置对病毒进行回收来讲,病毒分别经0.8μm和0.45μm孔径的混合纤维素酯微孔滤膜过滤后,再用超滤管直接对500mL海水中病毒浓缩效果最好。
     3.于2010年12月到2011年9月应用ICC-qPCR方法对渤海湾天津近岸海域表层海水中EV和RV进行了为期一年的监测。结果显示,在28个样品中,PV的阳性检出率为57%(16/28),EV71和Coxsackievirus A16为4%(1/28),RV为32%(9/28)。在该海域中,PV的浓度变化范围为0.2~196PFU/L;RV为2~244PFU/L。通过电镜和测序分析鉴定出PV均为Ⅰ型污染,而RV主要是Human rotavirus A的G1血清型污染,其次为G3型。
     4.建立了PV和RV的ELISA和特异性RT-PCR检测方法,并将这两种方法进行有机结合,应用到渤海湾表层海水的检测中,试图建立不可培养病毒的病原性检测方法。结果证明该方法能够克服两种手段单独作用时造成的假阳性弊端,并且在很大程度上与ICC-qPCR检测结果一致,适合较高浓度污染的病毒检测,但是由于其灵敏度有限,检测微量病毒污染时可能会造成结果的低估。
     5.采取实验室加标PV1疫苗株的方法,选取ICC-qPCR、大片段逐步步移PCR和核酸转染技术,探讨了病毒在自然海水中的存活时间和降解机理。结果显示在实验室不控温、不同盐度条件下,5.0×10~4PFU/mL浓度的PV1在秋冬季最长存活时间为13周,最短为10周。温度和抗病毒微生物是其灭活的主要影响因素,而盐度影响不显著。PV1的3'NCR受到损伤会造成病毒毒力下降,而5'NCR才是决定核酸感染性是否消失的关键。
     6.应用评价模型对主要胃肠道感染病毒造成的人体健康风险进行了评估。结果显示,在该研究海域RV相对于PV是主要致病病原体。当游泳者暴露体积为10mL/d时,在该海域感染PV的年风险范围为1.82×10~(-5)(在最低浓度暴露1d)~1.63×10~(-1)(在最高浓度暴露10d),低于可接受年风险(7.0×10~(-3))的概率为62.5%(暴露1d)~31.25%(暴露10d);暴露于RV的感染年风险范围为1.17×10~(-2)(在最低浓度暴露1d)~9.93×10~(-1)(在最高浓度暴露10d),远远超过了可接受的年风险。
     结论:本论文以PV和RV为试验对象,建立了ICC-qPCR病原性检测方法,为细胞病变不明显或病变时间长的病毒提供了新的检测和分离手段。结合ELISA和特异性RT-PCR方法在很大程度上能够反应不可培养病毒的病原性污染状况,适用于病毒污染比较严重的水体。在本研究设定的条件下,渤海湾表层海水中胃肠道感染病毒浓度,尤其是轮状病毒已经对娱乐者的健康造成了很大的威胁。本研究所建立胃肠道感染病毒的浓缩、检测方法可实现突发性水环境污染事故的快速检测和风险评价。
Enteric viruses are one of the main nonbacterial agents of gastroenteritis, whichtransmit through contaminated recreational water and shellfish to human. Theymainly derive from sewage which are polluted by human and animal feces, and havefrequently been detected in various types of environmental waters. Due to their longduration and low dose-response, they can cause the infection of human principallythrough the polluted recreational water and shellfish. Thus, it is very important toestablish a rapid and efficient method for the quantitation of this kind of virus inenvironmental water to prevent and control their prevalence. However,there is stillno one method which not only can ensure their infectivities but quantify them rapidly,which makes a lot of obstacles to assess their risk to human health. Therefore, wecarried out the following works.
     The index of enteric viruses-enterovirus (EV) and the most infective agent in allthe enteric viruses-rotavirus (RV) were selected as indicators to achieve these objects:First, establish the method to quantify the concentration of infectious enteric viruses,and the technology about the pathogenic detection of non-cultural virus was alsoexplored. Second, the established methods were applied in Bohai Bay, Tianjin tostudy its feasibility. Third, the mechanism of the inactivated rate and survival time ofenterovirus in the natural marine environment was described as well. Based on thisexperimental data, the infected risks of enterovirus and rotavirus were estimated.
     The main contents and results are as follows:
     1. Cell culture integrating real-time quantitative polymerase chain reaction(ICC-qPCR) of representative of poliovirus (PV) and RV were established,respectively. Compared with cell culture and real-time PCR assays independentlyICC-qPCR has overcomed their disadvantages, which can shorten the viral detectiontime from seven days by the traditional cell culture to two days, and improve thesensitivity for1-fold on the basis of real-time PCR technology. The other advantageof ICC-qPCR is being able to provide technical support for quantifying virons that are unambiguously infectious, a particular advantage for infectious viruses that have lowdensities.
     2. Based on the comparison of two common viral recovery methods in watersamples, namely ultrafiltration and adsorption-elution, the effects of two factorsincluding volume and nominal pore size were discussed to optimize ultrafiltrationmethod. Results presented that ultrafiltration operated simply, took short time as wellas little damage to the viral pathogenicity; Compared with recovery from10-Lvolume, virus directly ultra-filtrated from500-mL seawater sample by CentrifugalFilter Device after using the0.8-μm and0.45-μm mixed ester millipore filter was themost efficient concentration method.
     3. In this work, ICC-qPCR method were employed, twenty-eight surfaceseawater samples were collected from12,2010to9,2011in Bohai Bay, Tianjin,China. The results showed that57%,4%,4%,32%samples were positive forinfectious poliovirus, enterovirus71, Coxsackievirus A16and rotavirus, respectively.Concentrations of infectious poliovirus and rotavirus in this coast samples weredetermined to be0.2~196PFU/L and2~244PFU/L. All the poliovirus sampleswere characterized asⅠ serotype usingelectron microscope observation andsequencing analysis, and the pollution of rotavirus mainly were human rotavirus A G1serotype, followed by G3type.
     4. ELISA method and specific RT-PCR were established and combined to detectPV and RV in the surface seawater of Bohai Bay. We aimed at establishing thedetection method of viral infectivity for non-cultural types. The result demonstratedthat this method can overcome the false-positive disadvantage of two separated roles,which can obtain consistent results with ICC-qPCR test to a great extent, and suit fordetecting the viral pollution with relatively high level. But the risk may beunderestimated due to its limited sensitivity when the density of virus was generallyin low range.
     5. PV1Sabin strains were used as a model to study the survival and degradatingmechanism of virus in natural seawater. ICC-qPCR, Long-overlapping PCR andRNA transfection technologies were employed. The results showed that when theconcentration of PV1was5.0×10~4PFU/mL, they can survival for10to13weeks under the laboratory temperature in autumn-winter at different salinity. Compared tosalinity, the temperature is the main factor of virus die-off. When PV13'NCR wasdamaged the viral virulence will decrease, while5' NCR is the key factor to the viralinfectivity.
     6. Quantitative models of risk assessment were employed to estimate the humanhealth risk when exposed to the main enteric viruses. The results demonstrated thatcompared with poliovirus, rotavirus is the major pathogenic pathogen in this coast.The estimated annual risk of probability caused by poliovirus during humanswimming in this coastal area was found to be1.82×10~(-5)(1day exposure to thelowest concentration)~1.63×10~(-1)(10days exposure to the highest concentration).The probability conforming to the water safe associated PV was62.5%(10daysexposure)~31.25%(10days exposure);While exposed to RV, the risk ranged from1.17×10~(-2)(1day exposure to the lowest concentration) to9.93×10~(-1)(10daysexposure to the highest concentration), the hazards have far exceeded the acceptablethreshold.
     Conclusions: ICC-qPCR assays were established to detect the infectious EV andRV, the primary advantage of this method is to quantify virions that areunambiguously infectious, a particular advantage for viruses that do not produce CPE.Combined ELISA and specific RT-PCR methods can reflect the pathogenic pollutionof unculturable viruses to large extents, which is suitable for the water environmentthat the concentration of virus is relatively high. The concentration of enteric virusesin the surface seawater of Bohai Bay may cause great health threaten to the health ofrecreationer, especially rotavirus. The assay of viral recovery and detectionestablished in this work can realize the fast detection and risk assessment when thewater emergent contaminated events occur.
引文
[1] Brassard J, Seyer K, Houde A, et al. Concentration and detection of hepatitis A virus androtavirus in spring water sample by reverse transcription-PCR. J Virol Methods,2005,123(2):163-169.
    [2] Tang Y W, Wang J X, Xu Z Y, et al. A serologically confirmed case-control study of a largeoutbreak of hepatitis A in China associated with consumption of clams. Epidemiol Infect,1991,107:651-658.
    [3] Maunula L and Bonsdorff C H V. Human Norovirus Infection: Surveillance and SourceTracking: Background&Molecular Epidemiology of Noroviruses. Future Virol,2011,6(4):431-438.
    [4]程莉,何晓青,李伟,等.北方某市城区水环境中轮状病毒的初步检测.生态毒理学报,2007,2(2):202-207.
    [5] Kamizoulis G and Salib L. Development of coastal recreational water quality standards in theMediterranean. Environment International,2004,30:841-854.
    [6]李兰娟.肠道病毒71型(EV71)之肠道病毒的分离培养实验方法:EV71, CoxA16, CVB.浙江科学技术出版社.
    [7] Rajtar B, Majek M, Polański, et al. Enteroviruses in water environment-a potential threat topublic health. Ann Agric Environ Med,2008,15:199-203.
    [8] WHO, Technical Report Series639HumanViruses inWater. Water and soil Report of A WHOSeientific Group,1978.
    [9] European Committee for Proprietary Medicinal Products. Guideline on dossier structure andcontent for pandemic influenza vaccine marketing authorization application(CPMP/VEG/4717/03)[S]. London, UK: European Agency for the Evaluation of Medicinal Products,2004:10-17.
    [10] Robinson C R, Doane F W, Rhodes A J. Report of an outbreak of febrile illness withpharyngeal lesions and exanthem:toronto, summer1957-isolation of group A coxsackie virus.Can Med Assoc J,1958,79(8):615-621.
    [11]胡亚美,江载芳.诸福棠实用儿科学[M].第7版.北京:人民卫生出版社,2002:807.
    [12] Tang Y W, Wang J X, Xu Z Y, et al. A serologically confirmed case-control study of a largeoutbreak of hepatitis A in China associated with consumption of clams. Epidemiol Infect,1991,107:651-658.
    [13]张玉侠,朱启铭,曾玫.上海地区婴幼儿院内感染轮状病毒致腹泻病的分子流行病学调查.中华传染病杂志,2009,27(001):15-22.
    [14]王秀茹.轮状病毒[A].预防医学微生物学及检测技术[M],北京:人民卫生出版社,2002.
    [15] Parashar U D, Hummelman E G, Bresee J S, et al. Global Illness and Deaths Caused byRotavirus Disease in Children. Emerg Infect Dis.2003,9(5):565–572.
    [16] Haas C N, Rose J B, Gerba CP, et al. Risk assessment of viruses in drinking water. Risk Anal,1993,13:545-552.
    [17] Muniain-Mujika J, Girones R, Tofino-Quesada G, et al. Depuration dynamics of viruses inshellfish. J Food Microbiol,2002,77:125-133.
    [18] Centers for Disease Control and Prevention. Norovirus Activity-United States,2002,MMWR,2003,52:41-45.
    [19] Koopmans M and Duizer E. Foodborne viruses: an emerging problem. Int J Food Microbiol,2004,90:23-41.
    [20] Musher D M and Musher B L. Contagious acute gastrointestinal infections. N Engl J Med,2004,35(23):2417-2427.
    [21] Payment P. Viruses: prevalence of disease, levels, and sources. In Safety of WaterDisinfection: Balancing Chemical and Microbial Risks (Edited by Craun C. F.). ILSI Press,Washington, D C,1993:99-113.
    [22] Assaad F and Borecka I. Nine-year study of WHO virus reports on fatal viral infections. BullWorld Health Organ,1977,55:445-453.
    [23] Kay D, Fleisher J M, Salmon R L, et al. Predicting likelihood of gastroenteritis from seabathing: results from randomized exposure. Lancet,1994,344:905-909.
    [24] Turbow D J, Kent E E, Jiang S C. Web-based investigation of water associated illness inmarine bathers. Environmental Research,2008,106:101-109.
    [25] Dwight R H, Fernandez L M, Baker D B, et al. Estimating the economic burden fromillnesses associated with recreational coastal water pollution-a case study in Orange County,California. J Environ Manage,2005,76:95-103.
    [26]王蓓,方肇寅,高倩.中国轮状病毒腹泻的经济负担浅析[D].2005.
    [27] Centers for Disease Control and Prevention. Summary of notifiable diseases, United States,1995. MMWR Morb Mortal Wkly Re,1995,44.
    [28]张缦,食源性病毒及其控制.农产品加工学刊,2007,9(112):56-59.
    [29] Henrickson S E, Wong T, Allen P, et al. Marine swimming-related illness: implications formonitoring and environmental policy. Environ Health Perspect,2001,109(7):645-650.
    [30] Koopmans M, Bonsdor C H, Vinje J, et al. Foodborne viruses. FEMS Microbiology Reviews,2002,26:187-205.
    [31] Bosch A, Lucena F, Gironés R, et al. Occurrence of enteroviruses in marine sediment alongthe coast of Barcelona. Can J Microbiol,1988,34:921-924.
    [32] Gerba C P, Rose J B, Haas C N, et al. Waterborne rotavirus: a risk assessment. Wat Res,1996,30(12):2929-2940.
    [33] Rao V C, Seidel K M, Goyal S M, et al. Isolation of enteroviruses from water, suspendedsolids, and sediments from Galveston Bay: Survival of poliovirus and rotavirus, adsorbed tosediments. Appl Environ Microbiol,1984,48:404-409.
    [34]张楚瑜.肠道病毒在水环境中的分布及其行为.1984,4(4):321-327.
    [35] USEPA. In: Quality, W.(Ed.), Water Quality Standards for Coastal and Great LakesRecreation Waters. U.S. Environmental Protection Agency,2004:67217-67243.
    [36] Abdelzaher A M, Wright M E, Ortega C, et al. Daily measures of microbes and humanhealth at a non-point source marine beach. J Water Health,2011,9(3):443-457.
    [37] Sinigalliano C D, Fleisher J M, Gidley M L, et al. Traditional and molecular analyses forfecal indicator bacteria in non-point source subtropical recreational marine waters. WaterRes,2010,44(13):3763-3772.
    [38]王四全,吴俊,曹玉广.水体中病毒富集方法研究进展.中国公共卫生,2009,25(11):1287-1289.
    [39]刘军义,吴清平,盘宝进,等.水体病毒钙离子絮凝浓缩新方法研究.微生物学通报,2007,34(6):1202-1204.
    [40]冀玲,黄海云,杜晓明.阳电滤膜法浓缩水中病毒效果的实验研究.卫生研究,1988,17(6):23-25.
    [41] Ma J F, Gerba C P, Pepper I L. Increased sensitivity of polovirus detection in tap waterconcentration by reverse transcriptase polymerase chain reaction. Virological Methods,1995,55(3):295-302.
    [42]赵淑敏,田勇琴,孟昭英,等.三种浓缩方法在水体病毒分离中的比较研究.环境与健康杂志,1996,13(3):120-122.
    [43] Lukasik J, Scott T M, Andryshak D, et al. Influence of salt on viruses adsorption tomicroporous filters. Appl Environ Microb,2000,66(7):2914-2920.
    [44] Gerba C P. Applied and theoretical aspects of virus adsorption to surfaces. Adv. Appl.Microbiol,1984,30:133-168.
    [45] USEPA. Manual of Methods for Virology. EPA/600/4-84/013. USEPA, Cincinnati,2001.
    [46] Lakhe S B, Paunikar W N, Parhad N M. Use of bituminous coal for concentration ofenteroviruses from sewage and effluent. Water Res,2002,36(13):3298-3306.
    [47]陈军红,周志军,张林,等.空气和水环境中病毒的富集与检测研究进展.中国公共卫生,2005,21(4):502-504.
    [48] MoralesMorales H A,Vidal A G, Olszewski J, et al. Optimization of a reusable hollow-fiberultrafilter for simultaneous concentration of enteric bacteria, protozoa and viruses from water.Appl Environ Microb,2003,69(7):4098-4102.
    [49] Hill V R, Polaczyk A L, Hahn D, et al. Development of a rap id method for simultaneousrecovery of diverse microbes in drinking water by ultrafiltration with sodium polyphosphateand surfactants. Appl Environ Microb,2005,71(1):6878-6884.
    [50] Polaczyk A L, Narayanan J, Cromeans T L, et al. Ultrafiltration2based techniques for rap idand simultaneous concentration ofmultip lemi crobe chasses from100-L tap water samples. JMicrobiol Meth,2008,73:92-99.
    [51] Fong T T and Lipp E K. Enteric viruses of human and animals in aquatic environments:Health risks detection, and potential water quality assessment tools. Microbiol Mol Boil R,2005,69(2):357-371.
    [52]胡秀华,何苗,刘丽,等.水中轮状病毒实时定量PCR外标准品的构建.环境科学,2008,29(2):380-385.
    [53] Ballester N A, Fontaine J H, Margolin A B. Occurrence and correlations between coliphagesand anthropogenic viruses in the Massachusetts Bay using enrichment and ICC-nPCR. JWater Health,2005,3(1):59-68.
    [54] Lee S H and Kim S J. Detection of infectious enteroviruses and adenoviruses in tap water inurban areas in Korea. Water Res,2002,36:248-256.
    [55] Lee H K and Jeong Y S. Comparison of total culturable virus assay and multiplex integratedcell culture-PCR for reliability of waterborne virus detection. Appl Environ Microbiol,2004,70(6):3632-3636.
    [56] Choo Y J and Kim S Y. Detection of Human Adenoviruses and Enteroviruses in KoreanOysters Using Cell Culture, Integrated Cell Culture-PCR, and Direct PCR. J Microbiol SeoulKorea,2006,44(2):162-170.
    [57] Wong M, Kumar L, Jenkins T M, et al. Evaluation of public health risks at recreationalbeaches in Lake Michigan via detection of enteric viruses and a human-specificbacteriological marker. Water Res,2009,43,1137-1149.
    [58] Lee S H, Lee C, Lee K W, et al. The simultaneous detection of both enteroviruses andadenoviruses in environmental water samples including tap water with an integrated cellculture-multiplex-nested PCR procedure. J Appl Microbiol,2005,98:1020-1029.
    [59] Gallagher E M and Margolin AB. Development of an integrated cell culture-real-timeRT-PCR assay for detection of reovirus in biosolids. J Virol Meth,2007,139:195-202.
    [60] Lambertini E, Spencer S K, Bertz P D. New mathematical approaches to quantify humaninfectious viruses from environmental media using integrated cell culture-qPCR. J VirolMethods,2010,163:244-252.
    [61] Jiang Y J, Liao G Y, Zhao W, et al. Detection of infectious Hepatitis A virus by integrated cellculture/strand-specific reverse transcriptase-polymerase chain reaction. J Appl Microbiol,2004,97:1105-1112.
    [62] Li D, Gu A Z, He M, et al. UV inactivation and resistance of rotavirus evaluated byintegrated cell culture and real-time RT-PCR assay. Water Res,2009,43(13):3261-3269.
    [63]尚定昆,申宝玲,郑晓群,等.细胞培养结合实时荧光RT-PCR法快速检测7型腺病毒感染.中华医院感染学杂志,2008,18(4):594-597.
    [64] Li D, Gu A Z, Yang W. An integrated cell culture and reverse transcription quantitative PCRassay for detection of infectious rotaviruses in environmental waters. J Microbiol Methods,2010,82:59-63.
    [65] Hwang Y C, Leong O M, Chen W, et al. Comparison of a reporter assay andimmunomagnetic separation real-time reverse transcription-PCR for the detection ofenteroviruses in seeded environmental water samples. Appl Environ Microbiol,2007,73:2338-2340.
    [66] Yang W, Gu A Z, Zeng S Y, et al. Development of a combined immunomagnetic separationand quantitative reverse transcription-PCR assay for sensitive detection of infectiousrotavirus in water samples. J Microbiol Methods,2011,84:447-453.
    [67] Moynihan M, Ladefoged P, Mathiesen L. Enzyme linked immunosorbent assay for detectionof poliovirus antigen and antibody. Dev Biol Stand,1980,46:203-206.
    [68] Guévremont E, Brassard J, Houde A, et al. Development of an extraction and concentrationprocedure and comparison of RT-PCR primer systems for the detection of hepatitis A virusand norovirus GII in green onions. Journal of Virological Methods,2006,134(1-2):130-135.
    [69] Roberl L, Atmar T, Metcalf G, et al. Detection of enteric viruses in oysters by using thepolymerase chain reaction. Appl Environ Microbiol,1993,59(2):631-635.
    [70] Li J W, Xin Z T, Wang X W, et al. Mechanisms of inactivation of hepatitis a virus bychlorine. Appl Environ Microbiol,2002,68:4951-4955.
    [71] Wolf S, Rivera-Aban M, Greening GE. Long-range reverse transcription as a useful tool toassess the genomic integrity of norovirus. Food Environ Virol,2009,1:129-136.
    [72] Simonet J and Gantzer C. Degradation of the poliovirus1genome by chlorine dioxide. JAppl Microbiol,2006,100:862-870.
    [73] Hamza I A, Jurzik L, überla K, et al. Methods to detect infectious human enteric viruses inenvironmental water samples. Int J Hyg Envir Heal,2011,214:424-436.
    [74] Coleman M E and Marks H M. Qualitative and quantitative risk assessment. Food Control,1999,10:289-297.
    [75] Regli S, Rose J B, Haas C N, et al. Modeling risk for pathogens in drinking water. J Am WarWorks Assoc,1991,83:76-84.
    [76] Mena K D, Gerba C P, Haas C N, et al. Risk assessment of waterborne coxsackievirus. J AmWar Works Assoc,2003,95:122-131.
    [77] Rolf F. Outline on risk assessment programme of existing substances in the European Union.Environ Toxicol Phar,1996,2(2):93-96.
    [78]赵欣,胡洪营,谢兴,等.基于健康风险评价的再生水生物学标准制定方法.给水排水,2010,36(5):43-48.
    [79] Shuval H, Lampert Y, Fattal B. Development of a risk assessment approach for evaluatingwastewater reuse standards for agriculture. Water Sci Technol,1997,35(11-12):15-20.
    [80] Mena K D and Pillai S D. An approach for developing quantitative risk-based microbialstandards for fresh produce. J Water Health,2008,6(3):359-364.
    [81] Borchardt M A,Bertz P D,Spencer S K,et al. incidence of enteric viruses in groundwaterfrom household wells in wiscomsin. Appl Environ Microbiol,2003,69:1172-1180.
    [82] Wong M, Kumar L, Jenkins T M, et al. Evaluation of public health risks at recreationalbeaches in Lake Michigan via detection of enteric viruses and a human-specificbacteriological marker. Water Res,2009,43(4):1137-1149.
    [83]明红霞,海水及贝类中几种人类肠道病毒检测方法的建立及其应用[D].大连:大连水产学院,2009.
    [84]吴利军,海水及贝类中甲肝病毒和诺如病毒的检测[D].大连:大连水产学院,2009.
    [85]张明露,杨健,赵宏,等.渤海湾天津沿岸海水中甲肝病毒的检测和定量.环境科学,2009,30(6):1608-1613.
    [86]杨健,渤海海水中致病细菌和病毒的检测及定量[D].天津:南开大学,2010.
    [87] Zhang M L, Zhao H B, Yang J, et al. Detection and quantification of enteroviruses in coastalseawaters from Bohai Bay, Tianjin, China. J Environ Sci-China,2010,22(1):150-155.
    [88] Kocwa-Haluch R. Waterborne enteroviruses as a hazard for human health. Polish J EnvironStudies,2001,10:485-487.
    [89] USEPA. Microbial Source Tracking: Methods, Applications, and Case Studies.2011,5:61-112.
    [90] Roivainen M, Blomqvist S, A1-Hel lo H, et al. Highly divergent neurovirulent vaccine-derived polioviruses of all three serotypes are recurrently detected in Finnish sewage. JEuro Surveill,2010,15(19):1-4.
    [91] Lee G and Lee C. Molecular detection and characterization of human enteroviruses inKorean surface water. J Microbiol,2008,46:319-324.
    [92] Parashar U D, Hummelman E G, Bresee J S, et al.Global illness and deaths caused byrotavirus disease in children. Emerging Infectious Diseases,2003,9(5):565-572.
    [93] Orenstein E W, Fang Z Y, Xu J, et al. The epidemiology and burden of rotavirus in China: areview of the literature from1983to2005. Vaccine,2007,25:406-413.
    [94] Nakagawa N, Yamakoshi K, Oe H.et al. Microbial risk assessment of the composting toilet.Proceedings of JSCE,2003,748(VII-29):91-98.
    [95]石慧颖,张冲,李懿,等.感染复数对Sabin株脊髓灰质炎病毒在Vero细胞中增殖的影响.中国生物制品学杂志,2008,21(12):1087-1089.
    [96]傅继华,病毒学实用实验技术.北京:人民卫生出版社,2001:64-66.
    [97] Jothikumar N, Khanna P, Paulmumgan R, et al. A sinple device for the concentration anddetection of enterovirus, hepatitis E virus and rotavirus from water samples by reversetranscription-polymerase chain reaction. J Virol Methods,1995,55:401-415.
    [98]叶晓艳,荧光实时定量PCR检测肠道病毒方法的建立[D].武汉:华中科技大学,2009.
    [99] Lambertini E, Spencer S K, Bertz P D, et al. New mathematical approaches to quantifyhuman infectious viruses from environmental media using integrated cell culture-qPCR. JVirol Methods,2010,163:244-252.
    [100] Hansen J J, Warden P S, Margolin A B. Inactivation of adenovirus type5, rotavirus WA andmale specific coliphage (MS2) in biosolids by lime stabilization. Int J Environ Res PublicHealth,2007,1:61-67.
    [101] Schalk J A C, Vrie C G De, Orzechowski T J H, et al. A rapid and sensitive assay for detection of replication-competent adenoviruses by a combination of microcarrier cellculture and quantitative PCR. J Virol Methods,2007,145:89-95.
    [102] Xu Z C, Tuo W B, Clark K I, et al. A major rearrangement of the VP6gene of a strain ofrotavirus provides replication advantage. Vet Microbiol,1996,52:235-247.
    [103] Ming H X, Zhu L, Zhang Y. Rapid quantification of infectious enterovirus from surfacewater in Bohai Bay, China using an integrated cell culture-qPCR assay. Mar Pollut Bull,2011,62:2047-2054.
    [104] Hewitt J, Bell D, Simmons G C, et al. Gastroenteritis outbreak caused by waterbornenorovirus at a New Zealand ski resort. Appl Environ Microbiol,2007,73(24):7853-7857.
    [105] David H, Kingsley G K M, Richards G P. Detection of Hepatitis A and norowalk-Like virusin imported clams associated with food-borne illness. Appl Environ Microbiol,2002,8:3914-3918.
    [106] Simonet J and Gantzer C. Degradation of the Poliovirus1genome by chlorine dioxid. JAppl Microbiol,2006,100:862-870.
    [107]赵祖国,污水中病毒浓集、消毒规律及灭活机理研究[D].天津:中国人民解放军军事医学科学院卫生学环境医学研究所,2008.
    [108] Fischer T K, Eugen-Olsen J, Pedersen A G, et al. Characterization of Rotavirus Strains in aDanish Population: High Frequency of Mixed Infections and Diversity within the VP4Gene of P[8] Strains. J Clin Microbiol,2005,43(3):1099-1104.
    [109] Tahk H, Lee M H, Lee K B, et al. Development of duplex RT-PCR-ELISA for thesimultaneous detection of hepatitis A virus and hepatitis E virus. J Virol Methods,2011,175(1):137-140.
    [110]沈关心,周汝麟.现代免疫学实验技术.湖北:湖北科学技术出版社,2002:23-25.
    [111]杨怀德,脊髓灰质炎病毒Sabin株D抗原定量及其中和抗体检测的研究[D].昆明:昆明医学院基础研究院,2007.
    [112]李丹地,段招军,章青. G5型人A组轮状病毒LL36755株的VP4、VP6和NSP4编码基因的分子特征.病毒学报,2007,23(3):195-201.
    [113] Gratacap-Cavallier B, Genoulaz O, Brange P K, et al. Detection of human and animalsrotavirus sequences in drinking water. Appl Environ Microb,2000,66(6):2690-2692.
    [114]张崇淼,刘永军,王晓昌,等.环境水体中肠道病毒的膜吸附-洗脱浓缩方法研究.环境科学,2007,28(7):1543-1547.
    [115]姬晓琴,环境水体中肠道病毒的浓缩方法[D].西安:西安建筑科技大学,2008.
    [116] Jiang S C and Chu W P. PCR detection of pathogenic viruses in southern California urbanrivers. J Appl Microbio,2004,97(1):17-28.
    [117]张崇淼,水环境中肠道病原体的PCR检测方法与健康风险评价研究[D].西安:西安建筑科技大学,2008.
    [118] Hamza I A, Jurzik L, Stang A, et al. Detection of human viruses in rivers of a densly-populated area in Germany using a virus adsorption elution method optimized for PCRanalyses. Water Res,2009,43:2657-2668.
    [119]杨万,何苗,李丹,等.免疫磁珠分离与实时定量PCR技术联合检测水中轮状病毒的研究.环境科学,2009,30(5):1368-1375.
    [120] Haramoto E, Katayama H, Utagawa E, et al. Recovery of human norovirus from water byvirus concentration methods. J Virol Methods,2009,160(1-2):206-209.
    [121]明红霞,樊景凤,关道明,等.重点海水浴场主要肠道病毒的调查.海洋学报,2010,32(3):138-145.
    [122] Jiang S C, Chu W P, He J W. Seasonal detection of human viruses and coliphage in NewportBay, California. Appl Environ Microbiol,2007,73(20):6468-6474.
    [123] Gassilloud B, Herguet L, Maul A, et al. Development of a viral concentration methods forbottled water storaged in hydrophobic support. J Virol Methods,2007,142(1-2):98-104.
    [124] Hsu B M, Chen C H, Kung C M. Evaluation of enterovirus recovery in surface water bydifferent adsorption and elution procedures. Chemosphere,2007,66:964-969.
    [125] Sobsey M D, Wallis C, Hendersen M, et al. Concentration of enteroviruses from largevolumes of water. Appl Microbiol,1973,26:529-534.
    [126] Haramoto E, Katayama H, Oguma K, et al. Recovery of naked viral genomes in water byvirus concentration methods. J Virol Methods,2007,142:169-173.
    [127] Katayama H, Shimasaki A, Ohgaki S. Development of a virus concentration method and itsapplication to detection of enterovirus and Norwalk virus from coastal seawater. ApplEnviron Microbiol,2002,68:1033-1039.
    [128]周珍辉.动物细胞培育技术.北京:中国环境科学出版社,2006:156-157.
    [129] Hierholzer J C and Killington R A. Quantitation of viruses. In: Mahy, B.W.J., Kangro, O.(Eds.), Virology Methods Manual,1st ed. Academic Press, San Diego,1996:25-46.
    [130] Wyn-Jones A P, Carducci A, Cook N, et al. Surveillance of adenoviruses and noroviruses inEuropean recreational waters. Water Res,2011,45:1025-1038.
    [131] Hijnen W A M, Beerendonk E F, Medema G J. Inactivation credit of UV radiation forviruses, bacteria and protozoan (oo) cysts in water: A review. Water Res,2006,40:3-22.
    [132] Hot D, Legeay O, Jacques J, et al. Detection of somatic phages, infectious enteroviruses andenterovirus genomes as indicators of human enteric viral pollution in surface water. WaterRes,2003,37:4703-4710.
    [133] Loh PC, Fujioka R S, Lau L S. Recovery, survival and dissemination of human entericviruses in ocean water receiving sewage in Hawail. Water Air Soil poll,1979,12(2):197-217.
    [134]李艳,蝙蝠病毒的分离、鉴定和分子流行病学研究[D].武汉:中国科学院武汉病毒研究所,2010.
    [135] Froussard P. rPCR: a powerful tool for random amplification of whole RNA sequences.PCR methods and applications,1993,2(3):185-190.
    [136] Espinosa A C, Mazari-Hiriart M, Espinosa R, et al. Infectivity and genome persistence ofrotavirus and astrovirus in groundwater and surface water. Water Res,2008,42:2618-2628.
    [137] Lytle C D and Sagripanti J L. Predicted inactivation of viruses of relevance to biodefense bysolar radiation. J Virol,2005,79(22):14244-14252.
    [138] LaBelle R and Gerba C P. Investigations into the protective effect of estuarine sedimenton virus survival. Water Res,1982,16(4):469-478.
    [139] Rose J B, Mullinax R L, Singh S N, et al. Occurrence of rotaviruses and enteroviruses inrecreational waters of Oak Creek, Arizona. Water Res,1987,21:1375-1381.
    [140] Farthing M J G. Gut viruses: a role in gastrointestinal disease? In M. J. G. Farthing (ed.),Viruses and the gut. Smith Kline&French, Ltd., Welwyn Garden City, Hertfordshire,United Kingdom,1989:1-4.
    [141]郑渡平,张礼壁,侯晓辉,等.1989-1994年中国脊髓灰质炎病毒的分子流行病学.病毒学报,1995,11(4):289-297.
    [142] Lee C N, Wang Y L, Kao C L, et al. NSP4Gene Analysis of Rotaviruses Recovered fromInfected Children with and without Diarrhea. J clin microbiol,2000,38(12):4471-4477.
    [143]欧阳雅博,天津市儿童病毒性腹泻病原体与污水中肠道内病毒的关系[D].天津:中国人民解放军军事医学科学院卫生学环境医学研究所,2010.
    [144]方肇寅,张丽杰,唐景裕,等.中国河北省卢州县儿童轮状病毒腹泻研究.病毒学报,2005,21(1):21-26.
    [145]张德友,北京地区水环境中轮状病毒的分布规律及其健康风险评价[D].北京:北京林业大学,2009.
    [146] Ranheim T, Mathis P K, Joelsson D B, et al. Development and application of a quantitativeRT-PCR potency assay for a pentavalent rotavirus vaccine (RotaTeq). J Virol Methods,2006,131(2):193-201.
    [147] Moynihan M, Ladefoged P, Mathiesen L. Enzyme linked immunosorbent assay fordetection of poliovirus antigen and antibody. Dev Biol Stand,1980,46:203-206.
    [148] Rezapkin G V, Chumakov K M, Lu Z, et al. Microevolution of Sabin1strain in vitro andgenetic stability of oral poliovirus vaccine. J Virol,1994,202(1):370-378.
    [149] Fujioka R S, Loh P C, Lau L S. Survival of human enteroviruses in the Hawaiian oceanenvironment: evidence for virus-inactivating microorganisms. Appl Environ Microbiol,1980,39(6):1105-1110.
    [150] Lo S, Gilbert J, Hetick F. Stability of human enteroviruses in estuarine and marine water.Appl Environ Microbiol,1976,32(2):245-249.
    [151] Gantzer C, Dubois E, Crance J M, et al. Influence of environmental factors on the survivalof enteric viruses in seawater. Oceanol Acta,1998,21:983-992.
    [152] Wetz J J, Lipp E K, Griffin DW, et al. Presence, infectivity, and stability of enteric virusesin seawater: relationship to marine water quality in the Florida Keys. Mar Pollut Bull,2004,48:698-704.
    [153] Sobsey M, Davis A, Rullman V. Persistence of Hepatitis A Virus and Other Viruses inDepurated Eastern Oysters. Oceans,1987,28:1740-1745.
    [154] Bitton G. Wastewater Microbiology, second ed. John Wiley and Sons, Inc., New York,1999:578.
    [155] Guyader L, Dincer F, Menard M L, et al. Comparative study of the behavior of poliovirus insterile seawater using RT-PCR and cell culture. Mar Pollut Bull,1994,28:723-772.
    [156] Gerba C P and Scaiberger G E. Aggregation as a factor in loss of viral titer in seawater.Water Res,1975,9:567-571.
    [157] Akin E W, Hill W F, Cline Jr G B, et al. The loss of poliovirus1infectivity in marinewaters. Water Res,1976,10:59-63.
    [158] Gordon C and Toze S. Influence of groundwater characteristics on the survival of entericviruses. J Appl Microbiol,2003,95:536-544.
    [159] Herrmann J E, Kostenbander K D Jr, Cliver D O. Persistence of enteroviruses in lake water.Appl Microbiol,1974,28(5):895-896.
    [160] Herrmann J E and Cliver D O. Degradation of coxsackievirus type A9by proteolyticEnzymes. Infect Immun,1973,7:513-517.
    [161] Cliver D O and Herrmann J E. Proteolytic and microbial inactivation of enteroviruses.Water Res,1972,6:797-805.
    [162] Suttle C A and Chen F. Mechanisms and rates of decay of marine viruses in seawater. ApplEnviron Microb,1992,58:3721-3729.
    [163] Herold J and Andino R. Poliovirus RNA replication requires genome circularization througha protein-protein bridge. Mol Cell,2001,7(3):581-591.
    [164] Teterina N L, Egger D, Bienz K, et al. Requirements for Assembly of Poliovirus ReplicationComplexes and Negative-Strand RNA Synthesis. J Virol,2001,75(8):3841-3850.
    [165] Weitz M and Siegl G. Structure and molecular virology. In Viral hepitis ed. Zukerman AJand Howard CT. London: Longman Group UK limited,1993:21-34.
    [166] Haller A A, Nguyen J H, Semler B L. Minimum internal ribosome entry site required forpoliovirus infectivity. J Virol,1993,67(12):7461-7471.
    [167] Silvestri L S, Parilla J M, Morasco B J, et al. Relationship between poliovirusnegative-strand RNA synthesis and the length of the3' poly(A) tail. J Virol,2006,345(2):509-519.
    [168] Brown D M, Cornell C T, Tran G P, et al. An Authentic3′Noncoding Region Is Necessaryfor Efficient Poliovirus Replication. J Virol,2005,79(18):11962-11973.
    [169] Bosch A, Guix S, Sano D, et al. New tools for the study and direct surveillance of viralpathogens in water. Curr opin biotech,2008,19:295-301.
    [170] Hovi T, Roivainen M, Blomqvist S. Enteroviruses with Special Reference to Poliovirus andPoliomyelitis Eradication. In Chaper4: Human Viruses in Water. Perspectives in Medical JVirol,2007,17:69-89.
    [171] Gosting L H and Grinnell B W. Physico-chemical characteristics of avian encephalomyelitisvirus. Vet Microbiol,1980,5:87-100.
    [172]刘丽华,马学恩,顾玉芳,等.应用差速离心法提纯禽脑脊髓炎病毒及电镜观察。内蒙古工业大学学报,2005,24(3):184-187.
    [173]柯昌文,吴承民,李杰,等.广东省1985~1993年脊髓灰质炎流行野毒株的基因分析.中国计划免疫,1997,3(6):268-272.
    [174]张岩,季圣翔,张晓丽,等.2010年山东省环境污水中脊髓灰质炎病毒的监测及其基因特征分析.病毒学报,2011,27(4):327-341.
    [175] WHO. Laboratory surveillance for wild and vaccine-derived polioviruses, January2002-June2003. WER,2003,78(39):341-346.
    [176]张兴录,王克安,张礼壁,等.68例脊髓灰质炎野病毒病例的流行病学分析.中国计划免疫,1996,2(2):70-73.
    [177] Shen H, Bai B, Hou J, et al. OPV-like poliovirus type1detection in patients with severeacute respiratory syndrome. Infection,2012.
    [178] WHO. Performance of acute flaccid paralysis (AFP) surveillance and incidence ofpoliomyelitis,2006. WER,2006,81(46):440-444.
    [179] CDC. Outbreak of poliovirus in adults-Namibia,2006. MMWR,2006,55(44):1198-1201.
    [180] Blomqvist S, Savolainen C, Laine P, et al. Characterization of a highly evolved vaccine-derived poliovirus type3isolated from sew age in Estonia. J Virol,2004,78:4876-4883.
    [181]吴照,温宁,梁晓峰.环境监测在消灭脊髓灰质炎过程的作用.中国疫苗和免疫2011,17(2):173-176.
    [182]张婧,胃肠安丸抗轮状病毒的实验研究[D].天津:天津医科大学,2011.
    [183]胡成波.当前危害较大的人畜共患传染病.兽医临诊,2003,5:48-49.
    [184] Wang D, Wu Q, Yao L, et al. New target tissue for food-borne virus detection in oysters.Lett Appl Microbiol,2008,47:405-409.
    [185] Kirkwood C D, Boniface K, Bogdanovic-Sakran N, et al. Rotavirus strain surveillance-anAustralian perspective of strains causing disease in hospitalised children from1997to2007.Vaccine,2009,27(5):102-107.
    [186] Kirkwood C D, Cannan D, Boniface K, et al. Australian Rotavirus Surveillance Programannual report,2007/08. Commun Dis Intell,2008,32(4):425-429.
    [187] Kirkwood C D, Boniface K, Bishop R F, et al. Australian Rotavirus Surveillance Programannual report,2008/2009. Commun Dis Intell,2009,33(4):382-388.
    [188]张丽杰,方安.中国婴幼儿轮状病毒腹泻的流行病学和疾病负担研究进展.中国计划免疫,2007,13(2):86-191.
    [189]张玉侠,朱启镕,曾玫,等.上海地区婴幼儿院内感染轮状病毒致腹泻病的分子流病学调查.中国传染病杂志,2009,27(1):18-22.
    [190]徐锦,孙家娥,丁韵珍,等.2001至2005年上海市1450份住院患儿A组轮状病毒分子流行病学研究.中国循证儿科杂志,2007,2(2):102-107.
    [191] Haas C N. Estimation of risk due to low doses of microorganisms: a comparison ofalternative methodologies. Am J Epidemiol,1983,118:573-582.
    [192] Moona H, Chena J J, Gaylorb D W, et al. A comparison of microbial dose–response modelsfitted to human data. Regul Toxicol Pharm,2004,40:177-184.
    [193] Haas C N, Rose J B, Gerba C P. Quantitative Microbial Risk Assessment. Wiley, New York,1999.
    [194]仇付国,王昌晓.污水再生利用的健康风险评价方法.环境污染与防治,2003,25(1):49-51.
    [195] WHO (World Health Organization). Hazard identification, exposure assessment and hazardcharacterization of Vibrio spp. in seafood. Joint FAO/WHO Activities on Risk Assessmentof Microbiological Hazards in Foods-Preliminary Document, WHO, Geneva,2001.
    [196] Huang Y, and Haas C N. Time-Dose-Response Models for Microbial Risk Assessment.Risk Analysis,2009,29(5):648-661.
    [197]仇付国,城市污水再生利用健康风险评价理论与方法研究[D].西安:西安建筑科技大学,2004.
    [198] Shuval H I. The case for microbial standards for bathing beaches. In: Discharge of Sewagefrom Sea Outfalls (ed.Gameson A L H), Pergamon Press, Oxford, England,1975:95-101.
    [199] World Health Organization. Guidelines for Safe Recreational-Water environments Volume1: Coastal and Fresh Waters. WHO, Geneva, Switzerland,3rd ed2008.
    [200] Dufour A P, Evans O, Behymer T D, et al. Water ingestion during swimming activities in apool: A pilot study. J Water Health,2006,4(4):425-430.
    [201] Fewtrell L and Bartram J. Water Quality-Guidelines, Standards and Health[M]. London,UK. IWA Publishing, Alliance House,2001:374.
    [202] Cabelli V J, Dufour A P, McCabe L J, et al. A marine recreational water quality criterionconsistent with indicator concepts and risk analysis. J Water Pollut Control Fed,1983,55:1306-1314.
    [203] Hopkins R S, Gaspard G B, Williams F P, et al. A community waterborne gastroenteritisoutbreak: evidence for rotavirus as the agent. Am J Public Health,1984,74:263-265.
    [204] European Union. Directive2006/7/EC of The European Parliament and of the Council of15February2006concerning the management of bathing water quality and repealing Directive76/160/EEC. Off J Eur Union L L,2006,64:37-51.
    [205] Gantzer C, Maul A, Audic J M, et al. Detection of infectious enteroviruses, enterovirusgenomes, somatic coliphages, and bacteroides fragilis phages in treated wastewater. ApplEnviron Microbiol,1998,64(11):4307-4312.
    [206] Donaldson K A, Griffin D W, Paul J H. Detection, quantitation and identification ofenteroviruses from surface waters and sponge tissue from the Florida Keys using real-timeRT-PCR. Water Res,2002,36:2505-2514.
    [207] Shieh Y C, Wong C I, Krantz J A, et al. Detection of naturally occurring enteroviruses inwaters using direct RT-PCR and integrated cell culture-RT-PCR. J Virol Methods,2008,149(1):184-189.
    [208] Regli S, Amirtharajah A,BoruP B, et al. Panel Discussionon on the Implications ofRegulatory Changes for Water Treatment in the United States. Advances in GiardiaResearch,1988:275.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700