用户名: 密码: 验证码:
有机功能薄膜的制备及基于SPM的表征与加工
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着纳米科技的发展,电子器件也朝着“更小、更快、更冷”的方向迈进,而基于传统无机半导体材料的制备工艺已逼近其物理极限,面临严峻地挑战,寻找新的材料和技术已刻不容缓。选择有机功能材料来发展纳米电子器件或分子纳米器件则是一个很好的具有很大潜能的解决方案,因此,目前国际上有机功能材料的研究十分活跃,进展很快,各国纷纷将其列入高技术领域的新型材料发展规划中,在这一领域内投人大批人力、财力展开激烈的竞争。
     材料科学的研究内容主要包括材料的制备、表征、性能测试与分析以及应用等几个方面。对于有机功能薄膜,本论文借助具有广泛应用前景的三种有代表性有机材料,针对上述几项内容进行了系统性的研究,并突出各自的侧重点:首先,着重研究了任何制备大面积高质量的聚苯乙烯胶体晶体,并研究了其在纳米结构制备和SPM纳米计量方面的应用;其次,制备均匀纳米晶粒的金属-有机电双稳态薄膜(M-TCNQ),并着重研究了基于该薄膜的STM纳米加工技术;最后,选择有机铁电聚合物P(VDF-TrFE)薄膜为对象,着重研究了其铁电性能上的电学疲劳现象及其对实际应用的影响。主要成果为:
     ·考虑了实用性,对比了三种简单工艺的自组装方法来制备有序纳米结构的聚苯乙烯胶体晶体,可以根据不同的实际需求来选择相应的方法。
     ·对垂直沉积法制备大面积高质量胶体晶体进行了深入研究,探讨了各实验参数对胶体晶体成膜质量的影响,详细讨论了垂直沉积法的微观成膜机理及胶体晶体量化表征方法,为制备大面积有序无缺陷的胶体晶体提供成膜工艺参考和理论指导。
     ·以胶体晶体为掩模,成功制备出了有序的金属Ag纳米点阵和金属Ag纳米圆环的阵列,这种二维有序阵列可用于构建纳米电子器件。
     ·创新性地将胶体晶体应用于SPM纳米计量方面:成功制备出了栅状胶体晶体,并通过物理模型对成膜机理进行了解释。这种栅状胶体晶体可用作新型的可批量制备的纳米级三维标样,用于校准SPM在X、Y、Z三个方向上的尺度精度和放大倍率。
     ·利用分散胶体球和密排胶体晶体与AFM针尖的耦合关系,创建了数学模型,成功地推算出了AFM针尖的斜率和曲率半径,为进一步准确地校正和还原真实的AFM图像奠定了基础。
     ·利用STM对Ag-TCNQ金属-有机电双稳态薄膜进行纳米加工,成功地加工出了长约450nm的Ag-TCNQ纳米导线和2×3的纳米信息点阵,实现了基于STM的纳米导线构建和超高密度数据存储的功能,论述了各加工条件的影响,为基于STM的纳米加工技术提供了工艺和理论参考。
     ·开拓性地研究了有机铁电聚合物P(VDF-TrFE)薄膜的电学疲劳特性:研究了结晶度对铁电聚合物薄膜的宏观铁电疲劳特性的影响;结合AFM观测了铁电聚合物薄膜的微观铁电疲劳特性;初步探讨了使已疲劳铁电聚合物的铁电特性得以恢复的可行措施;讨论了铁电聚合物产生铁电疲劳失效的微观机理。可为相关器件的设计提供指导。
With the development of nanotechnology,the electronic devices will become "smaller,faster and cooler".However,the traditional micro-electronics technology based on inorganic semiconductor is getting closer to its physics limit,so that it is desiderative to seek new materials and technologies for replace,it is a suitable way to use organic functional materials to fabricate nano/molecular electronic device as next-generation devices.Thus,lots of countries have focused their resources on the research of organic functional materials.
     The study of materials science may include:the preparation,the characterization,the testing and the application of materials.In this paper,three kinds of organic materials,which are representative employing the prospect extensively,are chosen for systematical study in the field of organic functional films.Firstly,the preparation of high-quality polystyrene(PS) colloidal-crystals with large area and their application in the fabrication of nano-structure and the nano-metrology of SPM are studied.Secondly,nano-fabrication technology based on metal-organic bistable films (M-TCNQ films) composed of uniform nanograins is studied.Finally,the polarization fatigue phenomenon of ferroelectric polymer(P(VDF-TrFE) films) is studied.The main achievements of this paper include:
     ●Compared three simple self-assemble methods for preparing PS colloidal crystals.
     ●Thoroughly studied the micro mechanism of vertical deposition-method and the influence of different parameters(including kinds of the substrate,temperature,concentration,pH value and additives) on the formation of colloidal crystals.Quantitative analysis of colloidal crystals is discussed.All of these discussions can be considered as guidance for preparing highly ordered colloidal crystals with less defects.
     ●Fabricated an array of Ag dots and an array of Ag rings by using PS colloidal crystals as the mask.
     ●Innovatively applied colloidal crystals on the nano-metrology of SPM:grating-like colloidal crystals are prepared as 3-D calibration sample for SPMs instruments and the mechanism of forming grating-like colloidal crystals is explained.
     ●A simple,effective and non-destructive method to obtain shape parameters of AFM tip by colloidal micro-spheres is proposed based on the geometry relationship between colloidal micro-spheres and AFM tip.
     ●Fabricated a conductive nano-wire with length of 450nm and a 2×3 array of nano-dots of M-TCNQ by STM.Some parameters are discussed so that to provide a reference both on technology and theory for nanofabrication technology by STM.
     ●Pioneered the study on polarization fatigue of ferroelectfic polymer films(P(VDF-TrFE) films).The influence of crystallinity on polarization fatigue is studied and the micro-observation of polarization fatigue by SPM is conducted.Feasible measures for recovering the ferroelectric property are discussed.A physical hypothesis of charge injection is introduced to explain the experimental results.
引文
[1]朱道本和王佛松.有机固体[M].上海:上海科技出版社,1999:1-4.
    [2]胡文平,刘云圻和朱道本.有机功能材料薄膜与器件[J].世界科技研究与发展,2004,26(3):1-15.
    [3]J.H.Gao,R.J.Li,L.Q.Li,Q.Meng et al.High-performance field-effect transistor based on dibenzo[d,d ']thieno[3,2-b;4,5-b']dithiophene,an easily synthesized semiconductor with high ionization potential[J]. Advanced Materials,2007,19(19):3008-3012.
    [4]J.Ferraris,V.Walatka,Perlstei.Jh and D.O.Cowan.Electron-transfer in a new highly conducting donor-acceptor complex[J].Journal of the American Chemical Society,1973.95(3):948-949.
    [5]D.Jerome,A.Mazaud.M.Ribault and K.Bechgaard.Superconductivity in a synthetic organic conductor (TMTSF)_2PF_6[J].Journal De Physique Lettres,1980.41(4):L95-L98.
    [6]A.F.Hebard,M.J.Rosseinsky,R.C.Haddon,D.W.Murphy et al.Superconductivity at 18k in potassium-doped C60[J].Nature,1991,350(6319):600-601.
    [7]A.Y.Ganin,Y.Takabayashi,Y.Z.Khimyak,S.Margadonna et al.Bulk superconductivity at 38K in a molecular system[J].Nature Materials,2008,7(5):-367-371.
    [8]C.K.Chiang,C.R.Fincher,Y.W.Park,A.J.Heeger et al.Electrical-conductivity in doped polyacetylene[J].Physical Review Letters,1977,39(17):1098-1101.
    [9]McConneI.OI.Koppitzs bender-gestalt scores in relation to organic and emotional problems in chidren[J].Journal of Clinical Psychology,1967,23(3):370-373.
    [10]Y.V.Korshak,A.A.Ovchinnikov,A.M.Shapiro,T.V.Medvedeva et al.Organic polymer ferromagnct[J].Jetp Letters,1986,43(6):399-402.
    [11]H.Kawai.Piezoelectricity of poly(vinylidene fluoride)[J].Japanese Journal of Applied Physics,1969,8(7):975-976.
    [12]K.Kimura and H.Ohigashi.Ferroelectric properties of poly(vinylidenefluoride-trifluoroethylene)co-polymer thin films[J].Applied Physics Letters,1983,43(9):834-836.
    [13]李金华,袁宁一和陈王丽华.16×16纳米陶瓷/聚合物复合敏感膜热释电面阵研制[J].红外技术,2003,25(3):45-48.
    [14]S.K.Kurtz and T.T.Perry.A Powder Technique for the Evaluation of Nonlinear Optical Materials[J].Journal of Applied Physics,1968,39(8):3798-3813.
    [15]李亚军.超分子有机薄膜[J].发光学报,2003,24(1):8-18.
    [16]N.Uyeda,T.Kobayashi,K.Ishizuka and Y.Fujiyoshi.Crystal-structure of Ag-TCNQ[J].Nature,1980,285(5760):95-97.
    [17]H.Yamamoto,H.Tada,T.Kawaguchi and A.Korea.Epitaxial-growth of metal-phthalocyanines on Selenium-Terminated gaas(111) surfaces[J].Applied Physics Letters,1994,64(16):2099-2101.
    [18]W.C.Bigelow,D.L.Pickett and W.A.Zisman.Oleophobic monolayers.I,films adsorbed from solution in non-polar liquids[J].Journal of Colloid Science,1946,1(6):513-538.
    [19]J.Sagiv.Organized Monolayers by Adsorption.I.Formation and Structure of Oleophobic Mixed Monolayers on Solid Surfaces[J].Journal of the American Chemical Society,1980,102(1):92-98.
    [20]R.G Nuzzo and D.L.Allara.Adsorption of bifunctional organic disulfides on gold surfaces[J].Journal of the American Chemical Society,1983,105(13):4481-4483.
    [21]杨生荣,任嗣利,张俊彦和张绪寿.自组装单分子膜的结构及其自组装机理[J].高等学校化学学报,2001,22(3):470-476.
    [22]C.López.Materials aspects of photonic crystals[J].Advanced Materials,2003,15(20):1679-1704.
    [23]Y.Li,W.Cai and G Duan.Ordered micro/nanostructured arrays based on the rnonolayer colloidal crystals[J].Chemistry of Materials,2008,20:615-624.
    [24]R.Mayoral,J.Requena,J.S.Moya,C.Lopez et al.3D long-range ordering in an SiO_2 submicrometer-sphere sintered superstructure[J].Advanced Materials,1997,9(3):257-260.
    [25]S.H.Park,D.Qin and Y.Xia.Crystallization of Mesoscale Particles over Large Areas[J].Advanced Materials,1998,10(13):1028-1032.
    [26]G.R.Yi,J.H.Moon and S.M.Yang.Macrocrystalline Colloidal Assemblies in an Electric Field[J].Advanced Materials,2001,13(15):1185-1188.
    [27]P.Jiang,J.F.Bertone,K.S.Hwang and V.L.Colvin.Single-crystal colloidal multilayers of controlled thickness[J].Chemistry of Materials,1999,11(8):2132-2140.
    [28]Y.A.Vlasov,X.Z.Bo,J.C.Sturm and D.J.Norris.On-chip natural assembly of silicon photonic bandgap crystals[J].Nature,2001,414(6861):289-293.
    [29]C.W.Tang and S.A.VanSiyke.Organic electroluminescent diodes[J].Appl.Phys.Lett.,1987,51(12):913-915.
    [30]J.H.Burroughes,D.D.C.Bradley,A.R.Brown,R.N.Marks et al.Light-emitting diodes based on conjugated polymers[J].Nature,1990,347(6293):539-541.
    [31]闫东航,王海波和杜宝勋.有机半导体异质结导论[M].北京:科学出版社,2008:1-5,137.
    [32]吴卫平,徐伟,胡文平,刘云圻等.有机场效应晶体管和分子电子学研究进展[J].化学通报,2006,6:404-409.
    [33]宋林,徐征,赵谡玲,张祸俊等.有机场效应晶体管的研究[J].现代姓示,2007,78:47-51.
    [34]L.A.Bumm,J.J.Arnold,M.T.Cygan,T.D.Dunbar et al.Are single molecular wires conducting.'?[J].Science,1996,271(5256):1705-1707.
    [35]刘忠勇.分子电子器件简介及研究进展[J].科技信息(学术研究),2007,33:93.
    [36]C.P.Collier,G.Mattersteig,E.W.Wong,Y.Luo et al.A catenane-based solid state electronically reconfigurable switch[J].Science,2000,289(5482):1172-1175.
    [37]A.Aviram and M.A.Rather.Molecular rectifiers[J].Chemical Physics Letters,1974,29(2):277-283.
    [38]A.S.Martin,J.R.Sambles and G.J.Ashwell.Molecular rectifier[J].Physical Review Letters,1993,70(2):218-221.
    [39]董浩,邓宁和陈培毅.分子电子学[J].世界科技研究与发展,2005,27(3):1-6.
    [40]R.F.Service.Assembling nanocircuits from the bottom up[J].Science,2001,293(5531):782-785.
    [41]D.M.Eigler and E.K.Schweizer.Positioning single atoms with a scanning tunneling microscope[J].Nature,1990,344(6266):524-526.
    [42]S.W.Hla,K.F.Braun and K.H.Rieder.Single-atom manipulation mechanisms during a quantum corral construction[J].Physical Review B,2003,67(20):201402.
    [43]J.A.Stroscio and D.M.Eigler.Atomic and molecular manipulation with the scanning tunoeling microscope [J].Science,1991,254(5036):1319-1326.
    [44]J.K.Gimzewski and C.Joachim.Nanoscale science of single molecules using local probes[J].Science,1999,283(5408):1683-1688.
    [45]J.A.Stroscio,E.W.Hudson,S.R.Blankenship,R.Celotta et al.A facility for nanoscience research:An overview[J].Proc.SP1E,2001,4608:112-115.
    [46]J.Q.Song,C.Z.Li,H.X.He,Y.Chen et al.Fabrication of gold nanostructures on graphite using atomic force microscope[J].Mol.Cryst.Liq.Cryst.Liq.Cryst.Sci.Technol.,Sec.A,1997,51:294-295.
    [47]D.Fujita,K.Onishi and T.Kumakura.Silver nanostructures formation on Si(111)-(7×7) surfaces by the tip of a scanning tunneling microscope[J].Japanese Journal of Applied Physics Part 1-Regular Papers Short Notes &Review Papers,2003,42(7B):4773-4776.
    [48]H.J.Mamin,S.Chiang,H.Birk,P.H.Guethner et al.Gold deposition from a scanning tunneling microscope tip[J].Journal of Vacuum Science & Technology B,1991,9:1398-1402.
    [49]P.Avouds,T.Hertel and R.Martel.Atomic force microscope tip-induced local oxidation of silicon:Kinetics,mechanism,and nanofabrication[J].Applied Physics Letters,1997,71(2):285-287.
    [50]M.Ishibashi,S.Heike,H.Kajiyama,Y.Wada et al.Characteristics of scanning-probe lithography with a current-controlled exposure system[J].Applied Physics Letters,1998,72(13):1581-1583.
    [51]M.A.McCord and R.F.W.Pease.Lift-off metailization using poly(methyl methacrylate) exposed with a scanning tunneling microscope[J].Journal of Vacuum Science & Technology B,1988,6(1):293-296.
    [52]S.Hu,A.Hamidi.S.Altmeyer.T.Koster et al.Fabrication of silicon and metal nanowires and dots using mechanical atomic force lithography[J].Journal of Vacuum Science & Technology B,1998,16(5):2822-2824.
    [53]A.Notargiacomo,V.Foglietti.E.Cianci,G Capcllini et al.Atomic force microscopy lithograph) as a nanodevice development technique[J].Nanotechnology,1999,10(4):458-463.
    [54]R.D.Piner,J.Zhu,E Xu,S.H.Hong et al."Dip-pen" nanolithography[J].Science,1999,283(5402):661-663.
    [55]A.A.Tseng,A.Notargiacomo and T.P.Chert.Nanofabrication by scanning probe microscope lithography:A review[J].Journal of Vacuum Science & Technology B,2005,23(3):877-894.
    [56]G,Binnig,M.Despont.U.Drechsler,W.Haberle et al.Ultrahigh-density atomic force microscopy data storage with erase capability[J].Applied Physics Letters,1999,74(9):1329-1331.
    [57]A.Sato,S.Momose and Y.Tsukamoto.Nanometer-scale recording,erasing,and reproducing using scanning tunneling microscopy[J].Journal of Vacuum Science & Technology B,1995,13(6):2832-2836.
    [58]L.P.Ma,Y.L.Song,H.J.Gan,W.B.Zhao et al.Nanometer-scale recording on an organic-complex thin film with a scanning tunneling microscope[J].Applied Physics Letters,1996,69(24):3752-3753.
    [59]D.X.Shi,Y.L.Song,D.B.Zhu,H.X.Zhang et al.Recording at the nanometer scale on p-nitrobenzonitrile thin films by scanning tunneling microscopy[J].Advanced Materials,2001,13(14):1103-1106.
    [60]P.Vettiger,M.Despont,U.Drechsler,U.Durig et al.The "Millipede"-More than one thousand tips for future AFM data storage[J].Ibm Journal of Research and Development,2000,44(3):323-340.
    [61]M.Despont,J.Brugger,U.Drechsler,U.Durig et al.VLSI-NEMS chip for parallel AFM data storage[J].Sensors and Actuators a-Physical,2000,80(2):100-107.
    [62]彭昌盛,宋少先和谷庆宝.扫描探针显微镜技术理论与应用[M].北京:化学工业出版社,2007:211-213.
    [63]刘宏用,崔学桂和姜建壮.分子电子学与分子电子器件[J].山东大学学报(理学版),2002,37(4):339-342.
    [64]T.R.Kelly,H.De Silva and R.A.Silva.Unidirectional rotary motion in a molecular system[J].Nature,1999,401(6749):150-152.
    [65]N.Koumura,R.W.J.Zijlstra,R.A.van Delden,N.Harada et al.Light-driven monodirectional molecular rotor [J].Nature,1999,401(6749):152-155.
    [66]J.Gimzewski.Molecules,nanophysics and nanoelectronics[J].Physics World,1998,11(6):29-33.
    [1]J.B.Jones,E.R.Segnit and J.V.Sanders.Structure of opal[J].Nature,1964,204(496):994-996.
    [2]J.V.Sanders.Colour of precious opal[J].Nature,1964,204(496):1151-1153.
    [3]K.Q.Zhang and X.Y.Liu.In situ observation of colloidal monolayer nucleation driven by an alternating electric field[J].Nature,2004,429(6993):739-743.
    [4]A.M.Alsayed,M.F.Islam,J.Zhang,P.J.Collings et al.Premelting at defects within bulk colloidal crystals[J].Science,2005,309(5738):1207-1210.
    [5]K.N.Pham,A.M.Puertas,J.Bergenholtz,S.U.Egeihaaf et al.Multiple glassy states in a simple model system [J].Science,2002,296(5565):104-106.
    [6]F.X.Redl,K.S.Cho,C.B.Murray and S.O'Brien.Three-dimensional binary superlattices of magnetic nanocrystais and semiconductor quantum dots[J].Nature,2003,423(6943):968-971.
    [7]C.López.Materials aspects of photonic crystals[J].Advanced Materials,2003,15(20):1679-1704.
    [8]R.Mayoral,J.Requena,J.S.Moya,C.Lopez et al.3D long-range ordering in an SiO_2 submicrometer-sphere sintered superstructure[J].Advanced Materials,1997,9(3):257-260.
    [9]S.H.Park,D.Qin and Y.Xia.Crystallization of Mesoscale Particles over Large Areas[J].Advanced Materials,1998,10(13):1028-1032.
    [10]G.R.Yi,J.H.Moon and S.M.Yang.Macrocrystalline Colloidal Assemblies in an Electric Field[J].Advanced Materials,2001,13(15):1185-1188.
    [11]X.L.Xu,G.Friedman,K.D.Humfeld,S.A.Majetich et al.Synthesis and utilization of monodisperse superparamagnetic colloidal particles for magnetically controllable photonic crystals[J].Chemistry of Materials,2002,14(3):1249-1256.
    [12]P.Jiang,J.F.Bertone,K.S.Hwang and V.L.Colvin.Single-crystal colloidal multilayers of controlled thickness[J].Chemistry of Materials,1999,11(8):2132-2140.
    [13]S.Reculusa and S.Ravaine.Synthesis of colloidal crystals of controllable thickness through the Langmuir-Blodgett technique[J].Chemistry of Materials,2003,15(2):598-605.
    [14]W.Khunsin,G.Kocher,S.G.Romanov and C.M.S.Torres.Quantitative analysis of lattice ordering in thin film opal-based photonic crystals [J]. Advanced Functional Materials, 2008,18: 1-9.
    
    [15] P. Jiang and M.J. McFarland. Large-scale fabrication of wafer-size colloidal crystals, macroporous polymers and nanocomposites by spin-coating [J]. Journal of the American Chemical Society, 2004,126 (42): 13778-13786.
    
    [16] E. Adachi, A.S. Dimitrov and K. Nagayama. Stripe Patterns Formed on a Glass Surface during Droplet Evaporation [J]. Langmuir. 1995, 11 (4): 1057-1060.
    
    [17] N.D. Denkov, O.D. Velev, P.A. Kralchevsky, I.B. Ivanov et al. Mechanism of Formation of Two-Dimensional Crystals from Latex Particles on Substrates [J]. Langmuir, 1992, 8 (12): 3183-3190.
    
    [18] H.L. Li and F. Marlow. Controlled arrangement of colloidal crystal strips [J]. Chemistry of Materials, 2005,17 (15): 3809-3811.
    
    [19] H.L. Li, W.T. Dong, H.J. Bongard and F. Marlow. Improved controllability of opal film growth using capillaries for the deposition process [J]. Journal of Physical Chemistry B, 2005,109 (20): 9939-9945.
    [1]E.Yablonovitch.Inhibited spontaneous emission in solid-state physics and electronics[J].Physical Review Letters,1987,58(20):2059-2062.
    [2]S.John.Strong localization of photons in certain disordered dielectrics superlattices[J].Physical Review Letters,1987,58(23):2486-2489.
    [3]J.D.Joannopoulos,P.R.Viileneuve and S.H.Fan.Photonic crystals:Putting a new twist on light[J].Nature,1997,386(6621):143-149.
    [4]J.H.Holtz and S.A.Asher.Polymerized colloidal crystal hydrogei films as intelligent chemical sensing materials[J].Nature,1997,389(6653):829-832.
    [5]H.Fudouzi and Y.N.Xia.Colloidal crystals with tunable colors and their use as photonic papers[J].Langmuir,2003,19(23):9653-9660.
    [6]P.V.Braun and P.Wiltzius.Microporous materials - Electrochemically grown photonic crystals[J].Nature,1999,402(6762):603-604.
    [7]Z.Z.Gu,A.Fujishima and O.Sato.Fabrication of high-quality opal films with controllable thickness[J].Chemistry of Materials,2002,14(2):760-765.
    [8]Z.C.Zhou and X.S.Zhao.Flow-controlled vertical deposition method for the fabrication of photonic crystals [J].Langmuir,2004,20(4):1524-1526.
    [9]Y.A.Vlasov,X.Z.Bo,J.C.Sturm and D.J.Norris.On-chip natural assembly of silicon photonic bandgap crystals[J].Nature,2001,414(6861):289-293.
    [10]S.Wong,V.Kitaev and G.A.Ozin.Colloidal crystal films:Advances in universality and perfection[J].Journal of the American Chemical Society,2003,125(50):15589-15598.
    [11]S.H.Im,M.H.Kim and O.O.Park.Thickness control of colloidal crystals with a substrate dipped at a tilted angle into a colloidal suspension[J].Chemistry of Materials,2003,15(9):1797-1802.
    [12]D.J.Norris,E.G.Arlinghaus,L.L.Meng,R.Heiny et al.Opaline photonic crystals:How does self-assembly work.?[J].Advanced Materials,2004,16(16):1393-1399.
    [13]沈杰,董吴,张永熙,杨锡良等.溶胶-凝胶法制备二氧化钛薄膜的亲水性研究[J].真空科学与技术,2000,20(6):385-389.
    [14]F.Piret and B.L.Su.Effects of pH and ionic strength on the self-assembly of silica colloids to opaline photonic structures[J].Chemical Physics Letters,2008,457(4-6):376-380.
    [15]R.Rengarajan,D.Mittleman,C.Rich and V.Colvin.Effect of disorder on the optical properties of colloidal crystals[J].Physical Review E,2005,71(1):11.
    [16]L.K.Teh,N.K.Tan,C.C.Wong and S.Li.Growth imperfections in three-dimensional colloidal self-assembly [J].Appl.Phys.A,2005,81:1399-1404.
    [17]P.Jiang,J.F.Bertone,K.S.Hwang and V.L.Colvin.Single-crystal colloidal multilayers of controlled thickness[J].Chemistry of Materials,1999,11(8):2132-2140.
    [18]J.F.Bertone,P.Jiang,K.S.Hwang,D.M.Mittleman et al.Thickness dependence of the optical properties of ordered silica-air and air-polymer photonic crystals[J].Physical Review Letters,1999,83(2):300-303.
    [19]R.G.Shimmin,A.J.DiMauro and P.V.Braun.Slow vertical deposition of colloidal crystals:A Langmuir-Blodgett process?[J].Langmuir,2006,22(15):6507-6513.
    [20]S.L.Kuai,X.F.Hu,A.Hache and V.V.Truong.High-quality colloidal photonic crystals obtained by optimizing growth parameters in a vertical deposition technique[J].Journal of Crystal Growth,2004,267(1-2):317-324.
    [21]刘丽,严亚和陈启明.单分散聚苯乙烯胶体颗粒的界面电性质研究[J].化学通报,2007,8:641-644.
    [22]M.A.McLachlan,N.P.Johnson,R.M.De La Rue and D.W.McComb.Thin film photonic crystals:synthesis and characterisation[J].Journal of Materials Chemistry,2004,14(2):144-150.
    [23]雷声,张晶和黄建滨.离子液体[BMim]BF_4对SDS水溶液表面活性和聚集能力的促进[J].物理化学学报,2007,23(11):1657-1661.
    [24]沈钟,赵振国and王果庭.胶体与表面化学(第三版)[M].北京:化学工业出版社,2004:207-209.
    [25]A.S.Dimitrov and K.Nagayama.Continuous convective assembling of fine particles into two-dimensional arrays on solid surfaces[J].Langmuir,1996,12(5):1303-1311.
    [26]赵明华,刘小平和彭文祥.水膜理论在非饱和土中吸力的应用研究[J].岩土力学,2007,28(7):1323-1327.
    [27]M.O.Robbins,K.Kremer and G.S.Grest.Phase diagram and dynamics of Yukawa systems[J].Journal of Chemical Physics,1988,88(5):3286-3312.
    [28]J.W.Goodwin,R.H.Ottewill and A.Parentich.Optical examination of structured colloidal dispersions[J].Journal of Physical Chemistry,1980,84(12):1580-1586.
    [29]H.Cong and W.Cao.Thin Film Interference of Colloidal Thin Films[J].Langmuir,2004,20(19):8049-8053.
    [30]C.D.Dushkin,K.Nagayama,T.Miwa and P.A.Kralchevsky.Colored Multilayers from Transparent Submicrometer Spheres[J].Langmuir,1993,9(12):3695-3701.
    [31]L.V.Woodcock.Entropy difference between the face-centred cubic and hexagonal close-packed crystal structures[J].Nature,1997,385(6612):141-143.
    [32]Y.H.Ye,F.LeBlanc,A.Hache and V.V.Truong.Self-assembling three-dimensional colloidal photonic crystal structure with high crystalline quality[J].Applied Physics Letters,2001,78(1):52-54.
    [33]Y.A.Vlasov,M.A.Kaliteevski and V.V.Nikolaev.Different regimes of light localization in a disordered photonic crystal[J].Physical Review B,1999,60(3):1555-1562.
    [34]W.Khunsin,G.Kocher,S.G.Romanov and C.M.S.Torres.Quantitative analysis of lattice ordering in thin film opal-based photonic crystals[J].Advanced Functional Materials,2008,18:1-9.
    [35]F.Juillerat,H.H.Solak,P.Bowen and H.Hofmann.Fabrication of large-area ordered arrays of nanoparticles on patterned substrates[J].Nanotechnology,2005,16(8):1311-1316.
    [36]H.Y.Ko,H.W.Lee and J.Moon.Fabrication of colloidal self-assembled monolayer(SAM) using monodisperse silica and its use as a lithographic mask[J].Thin Solid Films,2004,447:638-644.
    [37]F.Jin,J.F.Li,X.D.Ye and C.Wu.Effects of pH and ionic strength on the stability of nanobubbles in aqueous solutions of alpha-cyclodextrin[J].Journal of Physical Chemistry B,2007,111(40):11745-11749.
    [38]何进,陈星弼,杨传仁和王新.直接键合硅片的亲水处理及其表征[J].半导体技术,1999,24(5): 23-29.
    [39]Z.C.Zhou,Q.Li and X.S.Zhao.Evolution of interparticle capillary forces during drying of colloidal crystals [J].Langmuir,2006,22(8):3692-3697.
    [1]W.S.Liao,X.Chen,J.Chen and P.S.Cremer.Templating water stains for nanolithography[J].Nano Letters,2007,7(8):2452-2458.
    [2]K.Kempa,B.Kimball,J.Rybczynski,Z.P.Huang et al.Photonic crystals based on periodic arrays of aligned carbon nanotubes[J].Nano Letters,2003,3(1):13-18.
    [3]M.Fu,J.Zhou,Q.F.Xiao,B.Li et al.ZnO nanosheets with ordered pore periodicity via colloidal crystal template assisted electrochemical deposition[J].Advanced Materials,2006,18(8):1001-1002.
    [4]P.M.Braun and P.Wiltzius.Microporous materials-Electrochemically grown photonic crystals[J].Nature,1999,402(6762):603-604.
    [5]J.X.Wang,Y.Q.Wen,H.L.Go,Z.W.Sun et al.Simple fabrication of full color colloidal crystal films with tough mechanical strength[J].Macromolecular Chemistry and Physics,2006,207(6):596-604.
    [6]A.Blanco,E.Chomski,S.Grhbtchak,M.lbisate et al.Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near i.5 micrometres[J].Nature,2000,405(6785):437-440.
    [7]H.Fudouzi and Y.N.Xia.Colloidal crystals with tunable colors and their use as photonic papers[J].Langmuir.2003,19(23):9653-9660.
    [8]J.H.Holtz and S.A.Asber.Polymcrized colloidal crystal hydrogel films as intelligent chemical sensing materials[J].Nature,1997,389(6653):829-832.
    [9]J.P.Mitchell.Particle Standards:Their development and application[J].Kona Power and Particle,2000,18:1-18.
    [10]盛克平,丁听生和陆国辉.SEM及AFM校准放大倍率标样的研究[J].电子显微学报,2003,22(5):438-442.
    [11]A.Bezryadin,C.Dekker and G Schmid.Electrostatic trapping of single conducting nanoparticles between nanoelectrodes[J].Applied Physics Letters,1997,71(9):1273-1275.
    [12] S.Y. Chou, P.R. Krauss, W. Zhang, L.J. Guo et al. Sub-10 nm imprint lithography and applications [J].Journal of Vacuum Science & Technology B, 1997,15 (6): 2897-2904.
    
    [13] K. Kurihara, H. Namatsu, M. Nagase and T. Makino. Room temperature operated single electron transistor fabricated by electron beam nanolithography [J]. Microelectronic Engineering, 1997,35 (1-4): 261-264.
    
    [14] J. Kim, O. Benson, H. Kan and Y. Yamamoto. A single-photon turnstile device [J]. Nature, 1999, 397 (6719):500-503.
    
    [15] J.M. Weissman, H.B. Sunkara, A.S. Tse and S.A. Asher. Thermally switchable periodicities and diffraction from mesoscopically ordered materials [J]. Science, 1996, 274 (5289): 959-960.
    
    [16] M.X. Yang, D.H. Gracias, P.W. Jacobs and G.A. Somorjai. Lithographic fabrication of model systems in heterogeneous catalysis and surface science studies [J]. Langmuir, 1998, 14 (6): 1458-1464.
    
    [17] J.C. Hulteen, D.A. Treichel, M.T. Smith, M.L. Duval et al. Nanosphere lithography: Size-tunable silver nanoparticle and surface cluster arrays [J]. Journal of Physical Chemistry B, 1999, 103 (19): 3854-3863.
    
    [18] D. Alliata, C. Cecconi and C. Nicolini. A simple method for preparing calibration standards for the three working axes of scanning probe microscope piezo scanners [J]. Review of Scientific Instruments, 1996, 67 (3):748-751.
    
    [19] Y. Li and S.M. Lindsay. Polystyrene latex particles as a size calibration for the atomic force microscope [J].Review of Scientific Instruments, 1991,62 (11): 2630-2633.
    
    [20] C.D. Dushkin, K. Nagayama, T. Miwa and P.A. Kralchevsky. Colored Multilayers from Transparent Submicrometer Spheres [J]. Langmuir, 1993,9(12): 3695-3701.
    
    [21] H. Cong and W. Cao. Thin Film Interference of Colloidal Thin Films [J]. Langmuir, 2004, 20 (19):8049-8053.
    
    [22] L.K. Teh, N.K. Tan, C.C. Wong and S. Li. Growth imperfections in three-dimensional colloidal self-assembly [J]. Appl. Phys. A, 2005, 81: 1399-1404.
    
    [23] A.S. Dimitrov and K. Nagayama. Continuous convective assembling of fine particles into two-dimensional arrays on solid surfaces [J]. Langmuir, 1996, 12(5): 1303-1311.
    
    [24] E.B. Dussan. Spreading liquids on solid-surfaces-static and dynamic contact lines [J]. Annual Review of Fluid Mechanics, 1979, 11: 371-400.
    
    [25] A.W. Hartman, T.D. Doiron and J. Fu. Certification of NIST SRM 1992 : 3μm diameter polystyrene spheres [J]. Journal of Research of the National Institute of Standards and Technology, 1992,97 (2): 253-265.
    
    [26] H. Kubitschek. Optical calibration of some monodisperse polystyrene latexes in arrays [J]. Nature, 1961, 192(480): 1148-1150.
    
    [27] GW. Mulholland, A.W. Hartman, GG Hembree, E. Marx et al. Development of a one-micrometer-diameter particle-size standard reference material [J]. Journal of Research of the National Bureau of Standards, 1985,90 (1):3-26.
    
    [28] Y. Martin and H.K. Wickramasinghe. Method for imaging sidewalls by atomic force microscopy [J]. Applied Physics Letters, 1994, 64 (19): 2498-2500.
    
    [29] L.W. Chen, C.L. Cheung, P.D. Ashby and C.M. Lieber. Single-walled carbon nanotube AFM probes: Optimal imaging resolution of nanoclusters and biomolecules in ambient and fluid environments [J]. Nano Letters, 2004, 4(9): 1725-1731.
    
    [30] S. Xu and M.F. Arnsdorf. Scanning (atomic) force microscopy imaging of earthworm haemoglobin calibrated with spherical colloidal gold particles [J]. Journal of Microscopy-Oxford, 1997,187:43-53.
    
    [31] P. Markiewicz and M.C. Goh. Atomic Force Microscopy Probe Tip Visualization and Improvement of Images Using a Simple Deconvolution Procedure [J]. Langmuir, 1994,10(1): 5-7.
    
    [32] K.I. Shiramine, S. Muto, T. Shibayama, N. Sakaguchi et al. Tip artifact in atomic force microscopy observations of InAs quantum dots grown in Stranski-Krastanow mode [J]. Journal of Applied Physics, 2007, 101(3): 033527.
    
    [33] P. Markiewicz, S.R. Cohen, A. Efimov, D.V. Ovchinnikov el at. SPM tip visualization through decovolution using various characterizes: optimization of the protocol for obtaining true surface topography from experimentally acquired images [J]. Probe Microsc, 1999. 1: 355-364.
    
    [34] L. Montelius and J.O. Tegenfeldt. Direct observation of the tip shape in scanning probe microscopy [J].Applied Physics Letters, 1993,62 (21): 2628-2630.
    
    [35] V. Bykov, A. Gologanov and V. Shevyakov. Test structure for SPM tip shape deconvolution [J]. Applied Physics a-Materials Science & Processing, 1998,66 (5): 499-502.
    
    [36] K.A. Ramirez-Aguilar and K.L. Rowlen. Tip characterization from AFM images of nanometric spherical particles [J]. Langmuir, 1998,14 (9): 2562-2566.
    
    [37] H.G Abdelhady, S. Allen, S.J. Ebbens, C. Madden el al. Towards nanoscale metrology for biomolecular imaging by atomic force microscopy [J]. Nanotechnology, 2005,16 (6): 966-973.
    [1]A.A.Tseng,A.Notargiacomo and T.P.Chen.Nanofabrication by scanning probe microscope lithography:A review[J].Journal of Vacuum Science & Technology B,2005,23(3):877-894.
    [2]P.R.Krauss and S.Y.Chou.Nano-compact disks with 400 Gbit/in(2) storage density fabricated using nanoimprint lithography and read with proximal probe[J].Applied Physics Letters,1997,71(21):3174-3176.
    [3]H.J.Gao,K.Sohlberg,Z.Q.Xue,H.Y.Chen et al.Reversible,nanometer-scale conductance transitions in an organic complex[J].Physical Review Letters,2000,84(8):1780-1783.
    [4]D.X.Shi,D.C.Ba,S.J.Pang and H.J.Gao.Nanometer-scale recording with transition time at nanosecond[J]. Applied Surface Science,2001,182(I-2):64-68.
    [5]吴惠萌,宋延林,赵彤,江雷等.超高密度信息存储材料及技术研究进展[J].自然科学进展,2002,12(12):1246-1252.
    [6]D.M.Eigler and E.K.Schweizer.Positioning single atoms with a scanning tunneling microscope[J].Nature,1990,344(6266):524-526.
    [7]H.J.Mamin and D.Rugar.Thermomechanical writing with an atomic force microscope tip[J].Applied Physics Letters,1992,61(8):1003-1005.
    [8]G.Binnig,M.Despont,U.Drechsler,W.Haberle et al.Ultrahigh-density atomic force microscopy data storage with erase capability[J].Applied Physics Letters,1999,74(9):1329-1331.
    [9]Y.Martin,S.Rishton and H.K.Wickramasinghe.Optical data storage read out at 256 Gbits/in~2[J].Applied Physics Letters,1997,71(1):1-3.
    [10]L.P.Ma,Y.L.Song,H.J.Gao,W.B.Zhao et al.Nanometer-scale recording on an organic-complex thin film with a scanning tunneling microscope[J].Applied Physics Letters,1996,69(24):3752-3753.
    [11]时东霞,宋延林,张吴旭,解思深等.有机单体3-phenyl-1-ureidonitrile薄膜的超高密度信息存储[J].物理学报,2001,50(2):361-364.
    [12]L.B.Coleman,M.J.Cohen,D.J.Sandman,Yamagish.Fg et al.Superconducting fluctuations and peierls instability in an organic solid[J].Solid State Communications,1973,12(11):1125-1132.
    [13]J.Ferraris,V.Walatka,Perlstei.Jh and D.O.Cowan.Electron-transfer in a new highly conducting donor-acceptor complex[J].Journal of the American Chemical Society,1973,95(3):948-949.
    [14]M.Matsumoto,Y.Nishio,H.Tachibana,T.Nakamura et al.Switching and memory phenomena of Cu-TCNQ thin-films triggered by a stimulus with an STM tip[J].Chemistry Letters.1991,(6):1021-1024.
    [15]H.J.Gao,D.W.Wang,N.Liu,Z.Q.Xue et al.Ultrahigh density data storage on Ag-TCNQ thin films by scanning tunneling microscopy[J].J.Vac.Sci.Technol.B,1996,14(2):1349-1352.
    [16]陈成钧.扫描隧道显微学引论[M].北京:中国轻工业出版社,1996:3-11.
    [17]李旭.SPM在纳米材料微细加工中的应用研究[D].上海:复旦大学,2004.
    [15]X.G.Wan,J.Li,D.Y.Chert,Y.M.Jiang et al.The power effect in write-in process of Ag-TCNQ electric recording thin film[J].Physica Status Solidi a-Applied Research,2000,181(2):Ri3-R15.
    [19]潘钢,严学俭,吉小松,叶钢锋等.用STM的纳米导线图形加工技术的研究[J].真空科学与技术,2002,22(2):123-126.
    [20]陈殿勇.有机光电薄膜存储器材料的研究[D].上海:复旦大学,2000.
    [21]C.S.Chang,W.B.Su and T.T.Tsong,Field evaporation between a gold tip and a gold surface in the scanning tunneling microscope configuration[J].Physical Review Letters,1994,72(4):574-577.
    [22]邱伟民,严学俭,李旭,沈淼等.STM”接触”式测量中的整流效应[J].真空科学与技术学报,2005,25(3):189-199.
    [23]I.W.Lyo and P.Avouris.Field-Induced Nanometer-Scale to Atomic-Scale Manipulation of Silicon Surface with the STM[J].Science,1991,253(5016):173-176.
    [24]陈成钧.扫描隧道显微学引论[M].北京:中国轻工业出版社,1996:57-63.
    [25]薛增泉和.吴全德.电子发射与电子能潜[M].北京:北京大学出版社,1993:60-61.
    [26]Y.Z.Li,L.Vazquez,R.Piner,R.P.Andres et al.Writing nanometer-scale symbols in gold using the scanning tunneling microscope[J].Applied Physics Letters,1989,54(15):1424-1426.
    [27]T.T.Tsong.Effects of an electric field in atomic manipulations[J].PHYSICAL REVIEW B,1991,44(24):13703-13710.
    [28]严学俭,吉小松,李旭,邱伟民等.利用STM构建金属有机材料的纳米结构和改变电学性质[J].真空电子技术,2003,5:49-53.
    [1]J.G.Bergman,J.H.McFee and G.R.Crane.Pyroelectricity and optical second harmonic generation in polyvinylidene fluoride films[J].Applied Physics Letters,1971,18(5):203-205.
    [2]H.Kawal.Piezoelectricity of poly(vinylidene fluoride)[J].Japanese Journal of Applied Physics,1969,8(7):975-976.
    [3]莫喜平.第三讲 让声纳系统耳目一新:新型水声换能器与换能器新技术[J].物理,2006,35(5):414-419.
    [4]张华和张桂芳.压电和热释电聚合物PVDF及其应[J].天津工业大学学报,2003,22(1):35-39.
    [5]李金华.袁宁一和陈王丽华.16×16纳米陶瓷/聚合物复合敏感膜热释电面阵研制[J].红外技术,2003,25(3):45-48.
    [6]K.H.Chau,Y.W.Wong and F.G.Shin.Enhancement of piezoelectric and pyroelectric properties of composite films using polymer electrolyte matrix[J].Applied Physics Letters,2007,91(25):252910.
    [7]C.J.Dias and D.K.DasGupta.Inorganic ceramic/polymer ferroelectric composite electrets[J].Ieee Transactions on Dielectrics and Electrical Insulation,1996,3(5):706-734.
    [8]A.J.Lovinger.Ferroelectric polymers[J].Science,1983,220(4602):1115-1121.
    [9]P.Guthner and K.Dransfeld,Local poling of ferroelectric polymers by scanning force microscopy[J].Applied Physics Letters,1992,61(9):1137-1139.
    [10]K.Matsushige,H.Yamada,H.Tanaka,T.Horiuchi et al.Nanoscale control and detection of electric dipoles in organic molecules[J].Nanotechnology,1998,9(3):208-211.
    [11]A.V.Bune,V.M.Fridkin,S.Ducharme,L.M.Blinov et al.Two-dimensional ferroelectric films[J].Nature,1998,391(6670):874-877.
    [12]A.Gruverman,O.Auciello and H.Tokumoto.Imaging and control of domain structures in ferroelectric thin films via scanning force microscopy[J].Annual Review of Materials Science,1998,28:101-123.
    [13]T.J.Reece,S.Ducharme,A.V.Sorokin and M.Poulsen.Nonvolatile memory element based on a ferroelectric polymer Langmuir-Blodgett film[J].Applied Physics Letters,2003,82(1):142-144.
    [14]S.H.Lim,A.C.Rastogi and S.B.Desu.Electrical properties of metal-ferroelectric-insulator-semiconductor structures based on ferroelectric polyvinylidene fluoride copolymer film gate for nonvolatile random access memory application[J].Journal of Applied Physics,2004,96(10):5673-5682.
    [15]K.N.N.Unni,R.de Bettignies,S.Dabos-Seignon and J.M.Nunzi.A nonvolatile memory element based on an organic field-effect transistor[J].Applied Physics Letters,2004,85(10):1823-1825.
    [16]A.K.Tagantsev,I.Stolichnov,E.L.Colla and N.Setter.Polarization fatigue in ferroelectric films:Basic experimental findings,phenomenological scenarios,and microscopic features[J].Journal of Applied Physics,2001,90(3):1387-1402.
    [17]I.L.Guy,A.Limbong,Z.Zheng and D.K.Das-Gupta.Polarization fatigue in ferroelectric polymers[J].Ieee Transactions on Dielectrics and Electrical Insulation,2000,7(4):489-492.
    [18]F.Fang,W.Yang and M.Z.Zhang.Electric fatigue in poly(vinylidene fluoride-trifluoroethylene) 68/32copolymer films under cyclic electric field[J].Journal of Applied Physics,2007,101(4):044902.
    [19]K.Koga and H.Ohigashi.Piezoelectricity and related properties of vinylidene fluoride and trifluoroethylene copolymers[J].Journal of Applied Physics,1986,59(6):2142-2150.
    [20]朱国栋.铁电聚合物薄膜铁电压电机理的微观研究[D].上海:同济大学,2004.
    [21]D.Y.Zuo,B.K.Zhu,J.H.Cao and Y.Y.Xu.Influence of alcohol-based nonsolvents on the formation and morphology of PVDF membranes in phase inversion process[J].Chinese Journal of Polymer Science,2006,24(3):281-289.
    [22]Y.Tajitsu,H.Ogura,A.Chiba and T.Furukawa.Investigation of switching characteristics of vinylidene fluoride trifluoroethylene copolymers in relation to their structures[J].Japanese Journal of Applied Physics Part 1-Regular Papers Short Notes & Review Papers,1987,26(4):554-560.
    [23]H.Ohigashi,S.Akama and K.Koga.Lamellar and bulk single-crystals grown in annealed films of vinylidene fluoride and trifluoroethylene copolymers[J].Japanese Journal of Applied Physics Part 1-Regular Papers Short Notes & Review Papers,1988,27(11):2144-2150.
    [24]L.Jie,C.Baur,B.Koslowski and K.Dransfeld.Study of the microscopic ferroelectric properties of copolymer P(VDF-TrFE) films[J].Physica B,1995,204(1-4):318-324.
    [25]朱国栋,徐敬,严学俭,李杰等.P(VDF-TrFE)铁电膜微观铁电压电特性研究[J].功能材料与器件学报,2006,12(4):269-274.
    [26]G.D.Zhu,J.Xu,X.J.Yan,H.Li et al.A force modulation study on crystallization process in ferroelectric vinylidene fluoride and trifluoroethylene copolymer films[J].Thin Solid Films,2006,510(1-2):181-183.
    [27]J.Li,C.Baur,B.Koslowski and K.Dransfeld.Study of the microscopic ferroelectric properties of copolymer P(VDF-TrFE) films[J].Physica B,1995,204(1-4):318-324.
    [28] Q.M. Zhang, V. Bharti and X. Zhao. Giant electrostriction and relaxor ferroelectric behavior in electron-irradiated poly(vinylidene fluoride-trifluoroethylene) copolymer [J]. Science, 1998, 280 (5372):2101-2104.
    
    [29] GD. Zhu. J. Xu, X.J. Yan, J. Li et al. Molecular Simulation Study on the effect of trapped charges on ferroelectric switching in β-phase PVDF Crystals [J]. Comput. Mater. Sci., 2006, 37: 512-516.
    
    [30] C.Z. Pawlaczyk, A.K. Tagantsev, K. Brooks, I.M. Reaney et al. Fatigue, Rejuvenation and Self-restoring in ferroelectric thin-films [J]. Integrated Ferroelectrics, 1995,8 (3-4): 293-316.
    
    [31] M. Womes, E. Bihler and W. Eisenmenger. Dynamics of polarization growth and reversal in PVDF films [J].IEEE Transactions on Electrical Insulation, 1989,24 (3): 461-468.
    
    [32] Q.M. Zhang, V. Bharti and X. Zhao. [J]. Science, 1998,28:2101.
    
    [33] T. Furukawa. Ferroelectric properties of vinylidene fluoride copolymers [J]. Phase Transitions, 1989, 18:143-211.
    
    [34] T. Furukawa, J.X. Wen and K. Suzuki. Piezoelectricity and pyroelectricity in vinylidene fluoride/trifluoroethylene copolymers [J]. J. Appl. Phys., 1984,56: 829-834.
    
    [35] K. El Hami, H. Yamada and K. Matsushige. Nanoscopic measurements of the electrostriction responses in P(VDF/TrFE) ultra-thin-film copolymer using atomic force microscopy [J]. Applied Physics a-Materials Science & Processing, 2001, 72 (3): 347-350.
    
    [36] Y.W. Tang, X.Z. Zhao, H.L.W. Chan and C.L. Choy. Effect of electron irradiation on poly(vinylidene fluoride-trifluoroethylene) copolymers [J]. Applied Physics Letters, 2000,77 (11): 1713-1715.
    
    [37] S.S. Guo, X.Z. Zhao, Q.F. Zhou, H.L.W. Chan et al. High electrostriction and relaxor ferroelectric behavior in proton-irradiated poly(vinylidene fluoride-trifluoroethylene) copolymer [J]. Applied Physics Letters, 2004, 84 (17):3349-3351.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700