用户名: 密码: 验证码:
高功率全固态绿光红光激光器及特异材料光子晶体的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
全固态激光器是一种优良的新型光源,因具有效率高、结构紧凑、输出稳定、寿命长等优点,在工业、科研、军事等领域发挥着越来越大的作用,已成为应用激光器中的主流。高功率的全固态绿光、红光激光器在激光彩色显示、激光医疗、高密度光存储、材料处理和分析、超高清晰度打印和扫描等领域有着非常广泛的应用前景,是近年来全固态激光技术研究的热点。
     近年来,介电常数和磁导率同时或只有一个为负数的新型人工材料——特异材料,己经在微波段乃至近红外通过人工合成实现。人们通过将特异材料引入一维光子晶体中,发现了新型的光子带隙。由于这些光子带隙具有与传统的布拉格带隙截然不同的性质,并具有潜在的应用前景,因此含有特异材料的一维光子晶体已成为了当前的一个研究热点。
     本文的主要创新点可以归纳如下:
     1、采用两个150W半导体侧泵模块,进行了单棒和双棒串接声光调Q内腔倍频绿光激光器的研究。采用一个150W模块进行内腔倍频声光调Q绿光激光器实验研究,用KTP内腔倍频,得到76.9W的绿光输出,光-光转换效率11.6%;用LBO倍频得到79.3W的绿光输出。采用两个150泵浦组件串接,双声光调Q,高抗灰迹KTP晶体倍频得到131W的绿光激光输出,光-光转换效率13.1%,在激光器输出功率为128W时功率不稳定度为0.71%,光束质量因子M2在80W时为6.7。此结果在目前国内外高功率绿光激光器光束质量和稳定性方面处于领先水平。在此基础上我们研制了120W绿光激光器样机,用于前列腺治疗仪的研究和开发。
     2、分别采用50W和150W半导体侧泵模块、采用侧面泵浦方式和优化的三镜折叠谐振腔设计,Ⅱ类相位匹配KTP晶体作为腔内倍频晶体进行了高功率连续绿光激光器的实验研究。用50W型泵浦组件,得到18.7W的连续波绿光激光输出,对应的光-光转换效率为10.4%,功率不稳定度为0.4031%,在以上实验结果的基础上,我们研制出国产化的全固态10W连续绿光激光器实用化样机。采用单个150W模块泵浦,实现了输出功率51.2W的连续绿光激光输出,对应的光-光转换效率为10.3%,在输出功率为47.4W时测得激光功率不稳定度为0.49%,用刀口法测量了激光光束质量,M2小于9。据我们所知,在采用棒状工作物质的全固态连续绿光激光器中,该输出功率达到国际领先水平。
     3、进行了高功率连续红光激光器的实验研究。使用Nd:YVO4和LBO晶体进行了LD单端泵浦Nd:YVO4/LBO连续红光激光器的实验研究,当泵浦功率为24.56 W时,获得了671 nm激光功率1.203 W,光-光转换效率为4.9 %。激光器输出功率为1.08 W时测得激光功率不稳定度为0.52 %。用LD双端泵浦单块Nd:YVO4晶体,腔内LBO倍频,当泵浦功率为36W时,获得671nm CW输出2.33W,光-光转换效率为6.5%,输出功率为2W附近激光功率不稳定度小于0.5%,用M2测试仪测得光束质量为M2=3.6。以上结果在目前国内外高功率连续波全固态红光激光器功率稳定性方面处于领先水平。
     4、采用转移矩阵方法,分别研究了含两类特异材料的一维光子晶体(对称Fibonacci序列和异质结构)的输运特性。研究了由正、负折射率材料交替生长按对称Fibonacci序列排列形成的一维准周期光子晶体的特殊性质:具有平均折射率为零的光子带隙。将该平均折射率为零的光子带隙与布拉格带隙比较后发现,前者受入射角度和偏振的影响较后者小。这意味着零平均折射率全向能隙可被用来设计带宽固定的小型化全角度反射器。研究了由两类单负材料组成的一维异质结构光子晶体透射特性。选择合适的参数,使得一维异质结构光子晶体的平均磁导率和平均介电常数均为零,发现其禁带中出现了一个很窄的共振传播模式,位相延迟为零,这种传播模式不会随着入射角度和偏振的改变而移动,可以用来设计全方向单通道滤波器。研究了在满足零平均磁导率和零平均介电常数的条件下,形成的异质结构光子晶体中引入缺陷时的透射性质。在此结构中,调整缺陷层的数目和厚度得到多通道滤波特性。可以利用这一特性设计出一种全新的基于光子晶体的多通道滤波器。
Diode-pumped solid-state lasers (DPSL) have become main-stream of lasers in application due to their many advantages such as high efficiency, compactness, high stability, and long lifetime. They are widely used in the field of industry, scientific research, military etc. During the past few years high-power LD pumped green and red laser have become the focus of research because of their numerous applications such as laser colour display, laser medicine, high-density optical data storage, material processing, high-resolution printing, etc.
     Recently, metamaterials in which both permittivityεandμare negative or only one of the two parametersεandμis negative have been realized in microwave and near-infrared. When the metamaterials are introduced in one-dimensional photonic crystals, new types of photonic band gaps appear. Since the properties of such photonic band gaps are different from those of the Bragg gap, and they can lead to potential applications, one-dimensional photonic crystals containing metamaterials have become a subject of great interest for optical physics.
     The main contents and key creation points of this dissertation are as follows:
     (1) Using two GKPM-150 side-pumped laser modules, we investigated single-rod and double-rod A-O Q-switched intracavity-doubled lasers. Using a single 150W laser module with KTP crystal, we obtained 76.9W green output power with optical-optical conversion efficiency of 11.6%. Using the same module with LBO crystal, we obtained 79.3W green output power with optical-optical conversion efficiency of 18.2%. With two GKPM-150 modules in tandem with each other, double acousto-optic Q-switched and high gray track resistance KTP frequency-doubled, a laser with output power of 131W is achieved, of which the optical-to-optical conversion efficiency is 13.1%, and the power instability is 0.71% at 128W, and the beam transfer factor M2 is measured to be 6.7 at the output power of 80W. This represents, to the best of our knowledge, the advanced level so far in the respect of power stability and the beam transfer factor M2. Based on this experiment, a 120W green laser model have been accomplished which can be applied in treatment of prostate hyperplasia.
     (2) Using 50W, 150W side-pumped laser modules, we investigated high power continuum wave (CW) green laser with an LD side-pumped configuration and three mirror folded cavity design and KTP ofⅡ-type phase-matching for frequency doubling. Using a 50W module, we obtained 18.7W CW 532nm output power, of which the optical-to-optical conversion efficiency is 10.4%, and the power instability is 0.4031%. A prototype of cw green laser with 10-watt is made out with domestic devices. The main characteristic of it belongs to advanced level in China. Using a 150W module, we obtained 51.2W CW 532nm output power, of which the optical-to-optical conversion efficiency is 10.3%, and the power instability is 0.49%, and the beam transfer factor is measured to be better than 9 measured by knife-edge method. This represents, as far as we know, in traditional laser with rod material, this output power is ahead in the world.
     (3) Researches on high power continuum wave red laser. The 671nm laser reaches 1.203W when the absorbed pump power is 24.56W, with an optical to optical conversion efficiency of 4.9%. The amplitude noise is 0.52% (rms) in an hour when the output power is at about 1.08W. A double-end-pumped Nd:YVO4/LBO continuous wave laser is also achieved. We obtained 2.33W CW 671nm output power when the total pump power is 36W, of which the optical-to-optical conversion efficiency is 6.5%. The power instability is less than 0.5% at output power of about 2W with M2=3.6. The above mentioned results are ahead in the world at the respect of power stability.
     (4) By means of the transfer-matrix method, we investigate the transmission properties of one-dimensional (1D) photonic crystals composed of symmetrical Fibonacci sequences and heterostructures containing two kinds of metamaterials, respectively. The two types of metamaterials include negative-index materials (also called double-negative materials or left-handed materials) whose permittivity and permeability are simultaneously negative and single-negative materials whose permeability (permittivity) is negative but permittivity (permeability) is positive. The band structures of symmetrical Fibonacci sequences (SFS) composed of positive and negative refractive index materials are studied with a transfer matrix method. A new type of omni-directional zero-n gaps is found in the SFS. In contrast to the Bragg gaps, such an omni-directional zero- n gap is insensitive to the incident angles and polarization, and is invariant upon the change of the ratio of the thicknesses of two media. It is found that omni-directional zero-n gap exists in all the SFS, and it is rather stable and independence of the structure sequence. The transmission of 1D photonic heterostructures with single negative material was investigated by the transfer matrix theory. With suit parameters, the average permittivity and the average permeability is zero. A complete transmission peak exists in the forbidden gap. They are independent of incident angles and polarizations and have zero phase delay, which can be utilized to design zero-phase-shift omni-directional filters. Transmission studies for multiple heterostructures consisting of two kinds of single-negative materials inserted with defects are presented when the average permittivity and the average permeability is zero. The results show that multiple-channeled filters can be obtained by adjusting the period number m and thicknesses of defects. These structures provide an excellent way to select useful multiple-channeled optical signals from a stop gap, and it is useful in optical device applications.
引文
[1] A. L. Schawlow, C.H. Townes, Infrared and optical masers, Phys. Rev., 1958, 112(6): 1940~1949
    [2] T. H. Maiman, Stimulated optical radiation in ruby, Nature, 1960, 187(4736): 493~494
    [3] E. Yablonovitch, Inhibited spontaneous emission in solid-state physics and electronics, Phys. Rev. Lett. 1987, 58(20): 2059~2062
    [4] S. John, Strong localization of photons in certain disordered dielectric superlattices, Phys. Rev. Lett. 1987, 58(23): 2486~2489
    [5] D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, A composite medium with simultaneously negative permeability and permittivity, Phys. Rev. Lett. 2000, 84(18): 4184~4187
    [6] R. A. Shelby, D. R. Smith, S. C. Nemat-Nasser, and S. Schultz, Microwave transmission through a two-dimensional, isotropic, left-handed metamaterial, Appl. Phys. Lett. 2001, 78(4): 489~491
    [7] R. A. Shelby, D. R. Smith, and S. Schultz, Experimental Verification of a Negative Index of Refraction, Science 2001, 292: 77~79
    [8] V. G. Veselago, The electrodynamics of substances with simultaneously negative values ofεandμSov. Phys. Usp. 1968, 10(4): 509~514
    [9] T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, Extraordinary optical transmission through sub-wavelength hole arrays, Nature 1998, 391: 667~669
    [10] W. L. Barnes, A. Dereux, and T. W. Ebbesen, Surface plasmon subwavelength optics, Nature 2003, 424: 824~830
    [11] J. B. Pendry, L. Martin-Moreno, and F. J. Garcia-Vidal, Mimicking Surface Plasmons with Structured Surfaces, Science 2004, 305: 847~848
    [12] R. Newman, Excitation of Nd fluorescence in CaWO4 by recombination radiation in GaAs, J. Appl. Phys., 1963, 34: 437
    [13] R. J. Keyes, T. M. Quist, Injection luminescent pumping of CaF2:U3+ with GaAs diode lasers, Appl. Phys. Lett., 1964, 1(4): 50~52
    [14] M. Ross, YAG laser operation by semiconductor laser pumping, Proc. IEEE, 1968, 56: 196~197
    [15] K. Washio, K. Iwamoto, K. Inoue, I. Hino, S. Matsumoto, and F. Saito, et al., Room-temperature cw operation of an efficient miniaturized Nd:YAG laser end-pumped by a superluminescent diode, Appl. Phys. Let., 1976, 29(11): 720~722
    [16] Yung S. Liu, Generation of high-power nanosecond pulses from a Q-switched Nd:YAG oscillator using intracavity-injecting technique, Opt.Let., 1979, 4(11): 372
    [17] R.L. Herbst and R.L. Byer, Singly resonant CdSe infrared parametric oscillator Appl.Phys.Let., 1972, 21(5): 189~191
    [18] C. B. Hitz and L. M. Osterink, Simultaneous intracavity frequency doubling and mode locking in a Nd:YAG laser, Appl.Phys.Let.,197, 18(9): 378~380
    [19] W.C. Scott and M. de Wit, Birefringence compensation and TEM00 mode enhancement in a Nd:YAG laser, Appl. Phys. Let., 1971, 18(1): 3~4
    [20] N.P.Bames, Diode-pumped solid-state lasers,J.Appl. Phys., 1973, 44(1): 230~237
    [21] L .C.Conant, Letters to the Editor, Appl.Opt.,1974,13(11):2457~2480
    [22] L.J.Rosenkrantz, GaAs diode-pumped Nd:YAG laser, J. Appl. Phys., 1973, 43(11): 4603~4305
    [23]R.B.Chesler, Miniature diode-pumped Nd:YAIG lasers, Appl. Phys. Let., 1973, 23(5): 235~236
    [24] D.A.Dragert. Single-diode end-pumped Nd:YAG laser, IEEE Journal Quan. Elec., 1973, 9(12): 1146~1149
    [25] R. B. Chesler, Optimized TEMm output from a uniformly pumped four-level laser, IEEE J. Quantum Electron., 1972, 8: 493-496
    [26] K. Washio, K. Iwamoto, K. Inoue, I. Hino, S. Matsumoto, and F. Saito, Room-temperature cw operation of an efficient miniaturized Nd:YAG laser end-pumped by a superluminescent diode, Appl. Phys. Let., 1976, 29(11): 720
    [27] R. B. Chesler and S. Singh, Performance model for end-pumped miniature Nd:YAlG lasers, J.Appl. Phys., 1973, 44(12): 5441~5443
    [28] F. W. Ostermeyer, Room- temperature cw operation of a GaAs1-xPx Diode-pumped YAG:Nd laser. Appl. Phys. Lett., 1971, 19(8): 289~292
    [29] H. G. Dnielmeyer, H. P. Weber, Fluorescence in Ndedymium ultraphosphate, IEEE J. Quantum Electron., 1972, 8(10): 805~808
    [30] R. R. Rice, J. R. Teaque, J. E. Jackson, Dynamic coupling charaerrization of TEM00 Nd:YAG lasers, J. Appl. Phys., 1975, 46(6): 2716~2720
    [31] J. Stone, C. A. Burrus, Nd:Y2O3 single-crystal fiber laser: room-temperature CW operation at 1.07- and 1.35-μm wavelength, J. Appl. Phys., 1978, 49(4): 2281~2287
    [32] D.L.Sipes, Highly efficient neodymium:yttrium aluminum garnet laser end pumped by a semiconductor laser array, Appl.Phys.Lett., 1985, 47(2): 74~76
    [33] Bingkun Zhou, Thomas J. Kane, George J. Dixon, and Robert L. Byer, Efficient, frequency-stable laser-diode-pumped Nd:YAG laser, Opt. Lett., 1985, 10(2): 62-64
    [34] Mansone tal .,Conf. Lasers Electro-Opt., Opt.Soc, Amer.,Washington,DC.,1987
    [35] M. K. Reed, W. J. Kozlovsky, R. L. Byer, G. L. Harnagel, and P. S. Cross, Diode-laser-array-pumped neodymium slab oscillators, Opt. Lett., 1988, 13(3): 204-206
    [36] T. H. Alikm, W. W. Hovis, D. P. Caffey, et al., Efficient diode-array-pumped Nd:YAG and Nd:Lu:YAG lasers, Opt. Lett., 1989, 14(2): 116~118
    [37] L. R. Marshall, A. Kaz, R. L. Burnharm, Highly efficient TEM00 operation of transversely diode pumped Nd:YAG lasers, Opt. Lett., 1992, 17(3): 186~188
    [38] S. C. Tidwell, J. F. Seamans, M. S. Bowers, A. K. Cousins, Scaling CW diode- end-pumped Nd:YAG lasers to high average powers, IEEE J. Quantum Electron., 1992, 28(4): 997~1009
    [39] S. C. Tidwell, J. F. Seamans, M. S. Bowers, Highly efficieny, 60-W TEM00 CW diode-end-pumped Nd:YAG laser, Opt. Lett., 1993, 18(2): 116~118
    [40] D. Golla, S. Knoke, W. schone, et al., 300W cw diode laser side pumped Nd:YAG rod laser, Opt. Lett., 1995, 20(10): 1148~1150
    [41] R. J. Koshel, I. A. Walmsley, Modeling of the gain distribution for diode pumping of a solid state laser rod with nonimaging optics, Appl. Opt., 1995, 32(9): 1517~1527
    [42] D. Golla, S. Knoke, A. Tunnermann, H. Welling, Design and laser performance of diode laser side pumped Nd:YAG lasers operating at high output powers, In Conference on Laser and Electro-Optics, 1995, Vol. 15 OSA Technical Digest Series (Optical Society of America, Washington, D. C. 1995), p.62, Paper CTuC3
    [43] N. Uehara, K. Nakahara, K. Ueda, Continuous-wave TEM00 mode 26.5 W outputvirtual point source diode array pumped Nd:YAG laser, Opt. Lett., 1995, 20(16): 1707~1709
    [44] T. Brand, Compact 170-W cw diode pumped Nd:YAG rod laser with a cusp-shaped reflector, Opt. Lett., 1995, 20(17): 1776~1778
    [45] K. Yasui, Efficient and stable operation of a high-brightness CW 500-W Nd:YAG laser, Appl. Opt., 1996, 35(15): 2566~2569
    [46] T. Kojima, K. Yasui, Efficient diode side-pumping configuration of a Nd:YAG rod laser with a diffusive cavity, Appl. Opt., 1997, 26(21): 4981~4984
    [47] S. Fujikawa, T. Kojima, K. Yasui, High-power and high-efficiency operation of a CW diode-side-pumped Nd:YAG rod laser, IEEE J. Selected Top. in Quantum Electron., 1997, 3(1): 40~44
    [48] Y. Hirano, Y. Koyata, S. Yamamoto, K. Kasahara, T. Tajime, 208-W TEM00 operation of a diode-pumped Nd:YAG rod lasers, Opt. Lett., 1999, 24(10): 679~681
    [49] S. Lee, M. J. Yun, B. H. Cha, et al., Stability analysis of a diode-pumped, thermal birefringence-compensated two-rod Nd:YAG laser with 770-W output power, Appl. Opt., 2002, 41(27): 5625~5631
    [50] Project yields a pair of 3.3-kW solid-state lasers, Laser Focus World, 1999, 35(7): 38~40
    [51] E. C. Honea, R. J. Beach, S. G. Mitchell, et al., High-power dual-rod Yb:YAG laser, Opt. Lett., 2000, 25(11): 805~807
    [52] Y. Akiyama, M .Sasaki, H. Yuasa, N. Nishida, Efficient high-power diode-pumped Nd:YAG rod laser, in Conference on Laser and Electro-Optics/Pacific Rim, Vol. 1 of 2001 OSA Technical Digest Series (Optical Society of America, Washington, D. C., 2001), pp. 558~559
    [53] J. R. Lu, J. Lua, T. Muraia, et al., Development of Nd:YAG ceramic lasers, SPIE 2002 in USA
    [54] Http://210.162.201.243/photon2/eng/ripe_new_t/randd_e.htm
    [55] C Bibeau, R J Beach, S C Mitchell,et al.High-average-power l-μm porformance and frequency conversion of a diode end pumped Yb:YAG laser[J].IEEE J. Quantum Electron., 1998, 34(10): 2010~2019
    [56] D. Kracht, R. Wilhelm, M. Frede, 407 W end-pumped multi-segmented Nd:YAG laser, Opt. Express., 2005, 13(25): 10140~10144
    [57]国家科技部基础研究高技术司,我国激光产业发展对策研究报告,2002年7月
    [58]孙华,激光璀璨前景辉煌——全球激光产业发展及市场前景展望,科技创业月刊,2002 (9):17-18
    [59]科信中国,光电子产业一一21世纪的第一主导产业,光电子专辑,2002年12月第四期
    [60] B. J. Le Garrec, G. J. Raze, P. Y. Thro et al.,“High-average-power diode-array-pumped frequency-doubled YAG laser”, Opt. Lett., 1996, 21(24): 1990~1992
    [61] S. Konno, S. Fujikawa, K. Yasui,“Highly efficient 68-W green beam generation by use of an intracavity frequency-doubled diode side-pumped Q-switched Nd:YAG rod laser,”Appl. Opt., 1998, 37(27):6401~6404
    [62] Eric C. Honea, Christopher A, Raymond J. Beach, Joel A. Speth, Jay A. Skidmore,“Analysis of an intracavity-doubled diode-pumped Q-switched Nd:YAG laser producing more than 100 W of power at 0.532μm”, Opt. Lett., 1998, 23(15) 1203~1205
    [63] Chang J J Ebbers, 315 W pulsed-green generation with a diode-pumped Nd:YAG laser《Washington DC》, C A Ebbers C A, 1998 / / P CD-2
    [64] S. Konno, T. Kojima, S.i Fujikawa et al.,“Highly-brightness 138-W green laser based on an intracavity frequency-doubled diode-side-pumped Q-switched Nd:YAG laser”, Opt. Lett.,, 2000, 25(2):105~107
    [65] Jonghoon Yi, Hee- Jong Moon, and Jongmin Lee,“Diode pumped 100W green Nd:YAG rod laser.”Appl. Opt. 2004, 43(18): 3732-3737
    [66]姜东升,赵鸿,王建军,苑利刚,杨涛,周寿桓,120 W的二极管泵浦Nd :YAG绿光激光器,强激光与粒子束17(S0),2005年4月
    [67] Geng Ai-Cong, Bo Yong, Bi Yong et al.“High beam quality green generation with output 140W based on thermally near unstable flat-flat resonator.”Chin. Phys. Lett. 22(1):125-127(2005)
    [68]姚震宇,蒋建锋,涂波,周唐建,崔玲玲,162 W激光二极管抽运Nd∶YAG腔内倍频激光器,中国激光,32(11),2005
    [69]中国光学年会,广州,2006
    [70] De-Gang Xu, Jian-Quan Yao, Bai-Gang Zhang et al., 110 W high stability green laser using type II phase matching KTiOPO4 (KTP) crystal with boundary temperature control, Opt. Commun., 2005, 245: 341~347
    [71] Y. Kitaoka, S. Ohmori, K. Yamamoto et al., Stable and efficient green lightgeneration by intracavity frequency doubling of Nd:YVO4 lasers, Appl. Phys. Lett., 1993, 63 (3): 299~301
    [72] L. Y. Liu, M. Oka, W. Wiechmann et al., Longitudinally diode-pumped continuous-wave 3.5-W green laser, Opt. Lett., 1994, 19(3): 189~191
    [73] J. P. Meyn, G. Huber, Intracavity frequency doubling of a continuous-wave, diode-laser-pumped neodymium lanthanum scandium borate laser, Opt. Lett., 1994, 19(18): 1436~1437
    [74] G. Feugnet, C. Busac, C. Larat et al., High efficiency intracavity doubled diode-end-pumped Nd:YVO4 laser, in Solid State Lasers V, R. Scheps, ed., Proc. SPIE, 1996, 2698: 105~114
    [75] W. L. Nighan, Jr., J. Cole, >6W of stable, 532 nm, TEM00 output at 30% efficiency from an intracavity-doubled, diode-pumped multiaxial mode Nd:YVO4 laser, in Advanced Solid State Lasers, S. A. Payne and C. R. Pollock, eds., Vol. 1 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 1996), paper PD4.
    [76] V. G. Ostroumov, F. Heine, S. Kuck et al., Shcherbakov, Intracavity frequency-doubled diode-pumped Nd: LaSc3(BO3)4 lasers, Appl. Phys. B, 1997, 64: 301~305
    [77] Yung-Fu Chen, Ting-Ming Huang, Chi-Luen Wang, Compact and efficient 3.2-W diode-pumped Nd:YVO4/KTP green laser, Appl. Opt., 1998, 37(24): 5727~5730
    [78] Deyuan Shen, Anping Liu, Jie Song et al., Efficient operation of an intracavity-doubled Nd:YVO4/KTP laser end pumped by a high-brightness laser diode, Appl. Opt., 1998, 37(33): 7785~7788
    [79] T. Kojima, S. Fujikawa, K. Yasui, Stabilization of a high-power diode-side-pumped intracavity-frequency-doubled CW Nd:YAG laser by compensating for thermal lensing of a KTP crystal and Nd:YAG rods, IEEE J. Quantum Electron., 1999, 35(3): 377~380
    [80] D. Y. Shen, H. R. Yang, J. G. Liu et al., Efficient and compact intracavity-frequency-doubled Nd:GdVO4/KTP laser end-pumped by a fiber-coupled laser diode, Appl. Phys. B, 2001, 72: 263~266
    [81] P. Dekker, J. M. Dawes, J. A. Piper et al., 1.1W CW self-frequency-doubled diode-pumped Yb:YAl3(BO3)4 laser, Opt. Commun., 2001, 195: 431~436
    [82] Xiaoyuan Peng, Lei Xu, Anand Asundi, High-power efficient continuous-waveTEM00 intracavity frequency-doubled diode-pumped Nd:YLF laser, Appl. Opt., 2005, 44(5): 803~807
    [83] Louis McDonagh, Richard Wallenstein, Low-noise 62W CW intracavity-doubled TEM00 Nd:YVO4 green laser pumped at 888nm, Optics Letters, 2007, 32(7): 802~805
    [84]何京良,侯玮,张恒利等,LD抽运Nd:YVO4腔内倍频连续波8.8W绿光激光器,中国激光,2000,27(6):481~484
    [85] Junhai Liu, Zongshu Shao, Huaijin Zhang et al., Diode-laser-array end-pumped intracavity frequency-doubled 3.6 W CW Nd:GdVO4/KTP green laser, Opt. Commun., 2000, 173: 311~314
    [86] Jintao Bai, Guofu Chen, Continuous-wave diode-laser end-pumped Nd:YVO4/KTP high-power solid-state green laser, 2002, Optics and Laser Technology, 34: 333~336
    [87] Bai Yang, Li Long, Chen Hao-Wei et al., Continuous-wave green laser of 9.9W by intracavity frequency doubling in laser-diode single-end-pumped Nd:YVO4/LBO, Chin. Phys. Lett., 2004, 21(8): 1532~1534
    [88] http://www2.zzu.edu.cn/jiguang/new11.htm
    [89] ZHANG Yu-ping, ZHANG Hui-yun, ZHONG Kai, LI Xi-Fu,WANG Peng, YAO Jian-quan. High-Power Diode-Side-Pumped Intracavity-Frequency-Doubled Continuous Wave 532nm Laser. Chinese Physics Letters, 2007, 24(8): 2242~2244
    [90]张会云,张玉萍,钟凯,王鹏,李喜福,姚建铨,高效高功率侧面泵浦腔内倍频连续绿光激光器的实验研究,中国激光,2007,34(12)
    [91]许德胜,郭振华,张和平等,医用激光的回顾和展望,激光技术,vol21,No.1,1997,P44
    [92] Yoko Inoue,Susumu Konno and Tetsuo Kojima et al, High-Power Red Beam Generation by Frequency-Doubling of a Nd:YAG Laser, IEEE.J.Quantum Electron., 1999, Vol.35, P1737~1740
    [93] A. Agnesi, A. Guandalini, G. Reali, Efficient 671-nm pump source by intracavity doubling of a diode-pumped Nd :YVO4 laser , J. Opt. Soc. Am. B., 2002, 19: 1078~1082
    [94] H. Ogilvy, M. J. Withford, P. Dekker, J. A. Piper, High repetition rate, Q-switched and intracavity frequency doubled Nd:YVO4 laser at 671 nm, Opt. Express, 2004, 12(15): 3543~3547
    [95] A. Agnesi, A. Guandalini, G. Reali, S.D. Acqua, G. Piccinno, High-brightness 2.4-W continuous-wave Nd:GdVO4 laser at 670 nm, Opt. Lett., 204, 29: 56~58
    [96] C. Q. Wang, D. Y. Shen, Z. S. Shao, J. R, Lu, M. H. Jiang, Nd:YVO4 laser operating at 1340 nm and 670 nm with laser diode pumping, Proc. SPIE, 1996, 2889: 86~88
    [97]王长青,沈德元,卢建仁等,激光二极管泵浦的1.34μm及其腔内倍频红光Nd:YVO4激光器,中国激光,Vol.A24,1997,P577
    [98]张恒利竺乃宜杨乾锁等,LD泵浦Nd:YVO4晶体KTP腔内倍倍频红光激光器,光子学报,2000,29(5):470~473
    [99]张恒利,竺乃宜,杨乾锁等,激光二极管抽运NdYVO4/LBO红光激光器研究,光学学报,2001,21(3):274~277
    [100] http://www2.zzu.edu.cn/jiguang/new12.htm
    [101] Q. Zheng, J. Y. Wang, L. Zhao, 2.23 W diode-pumped Nd:YVO4/LBO laser at 670 nm, Opt. Laser Technol., 2004, 36(6): 485~487
    [102] Z. P. Sun, et al, Generation of 11.5 W coherent red-light by intra-cavity frequency-doubling of a side-pumped Nd:YAG laser in a 4-cm LBO, Opt Commun., 2004, 241: 167~172
    [103] C. Du, S. Ruan, Y. Yu, and F. Zeng, 6-W diode-end-pumped Nd:GdVO4/LBO quasi-continuous-wave red laser at 671 nm, Opt. Express, 2005, 13: 2013~2018
    [104]郑权,王军营,薛庆华,LBO倍频118 W连续671 nm红光激光器,中国激光2005,32(1):9~12
    [105] A. Y. Yao, W. Hou, Y. Bi, A. C. Geng, X. C. Lin, Y. P. Kong, D. F. Cui, L. A. Wu, Z. Y. Xu, High-power cw 671 nm output by intracavity frequency doubling of a double-end-pumped Nd :YVO4 laser, Appl. Opt., 2005, 44(33): 7156~7160
    [106] W. Q. Wen, J. Q. Yao, T. Wang, et al., LD pumped Nd:YAG/KTP Q-CW red laser with 12W power, J.Optoelectron. Laser, 2005, 16: 271~273
    [107] W. Q. Wen, H. Liu, Z. Q. Zhi, et al., LD side-pumped Nd:YAG/KTP CW laser with 1.8W output at 659.5 nm, J. Optoelectron. Laser, 2005, 16(10): 1167~1170
    [108] R. Zhou, X. Ding, W. Q. Wen, Z. Q. Cai, P. Wang, J. Q. Yao, High-power continuous-wave diode-end-pumped intracavity frequency doubled Nd:YVO4 laser at 671 nm with a compact three-element cavity, Chin. Phys. Lett., 2006, 23(4): 849~851
    [109]江海涛,含特异材料的光子晶体及相关问题的理论研究,同济大学博士论文,2005年5月
    [110]唐康淞,包含左手物质的一维光子晶体传输特性研究,湖南大学硕士论文,2006年3月
    [111] Pendry J B , Holden A J, Robbins D J, et al. Magnetism from conductors and enhanced nonlinear phenomena. IEEE Trans Micro Theory Tech., 1999, 47(11): 2075~2084
    [112] Pendry J B, Holden A J, Robbins D J. Low frequency plasmons in thin-wire structures. J Phys: Condens Matter,1998, 10 (22): 4785~4809
    [113] Valanju P M, Walser R M, Valanju A P. Wave refraction in negative-index media: always positive and very inhomogeneous. Phys Rev Lett., 2002, 88(18): 187401
    [114] Parazzoli C G ,G reegor R B ,Li K, et al. Experimental verification and simulation of negative index of refraction using Snell's law. Phys Rev Lett., 2003, 90(10): 107401
    [115] Foteinopoulou S, Economou E N, and Soukoulis C M. Refraction in media with a negative refractive index. Phys Rev Lett., 2003, 90(10): 107402
    [116] J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, Extremely Low Frequency Plasmons in Metallic Mesostructures, Phys. Rev. Lett., 1996,76(25): 4773~4776
    [117] J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, Magnetism from conductors and enhanced nonlinear phenomena, IEEE Trans. Microwave Theory Tech., 1999, 47(11): 2075~2084
    [118] T. Koschny, M. Kafesaki, E. N. Economou, and C.M. Soukoulis, Effective Medium Theory of Left-Handed Materials, Phys. Rev. Lett., 2004, 93:107402
    [119] D. R. Smith and N. Kroll, Negative Refractive Index in Left-Handed Materials Phys. Rev. Lett., 2000, 85(14): 2933~2936
    [120] P. M. Valanju, R. M. Walser, and A. P. Valanju, Wave Refraction in Negative-Index Media: Always Positive and Very Inhomogeneous, Phys. Rev. Lett. 2002, 88(18):187401
    [121] C. G. Parazzoli, R. B. Greegor, K. Li, B. E. C. Koltenbah, and M. Tanielian, Experimental Verification and Simulation of Negative Index of Refraction Using Snell’s Law, Phys. Rev. Lett. 2003, 90(10): 107401
    [122] A. A. Houck, J. B. Brock, and I. L. Chuang, Experimental Observations of a Left-Handed Material That Obeys Snell’s Law, Phys. Rev. Lett. 2003, 90(13): 137401
    [123] G. V. Eleftheriades, A. K. Iyer, and P. C. Kremer, IEEE Trans. Planar negative refractive index media using periodically L-C loaded transmission lines, Microwave Theory Tech. 2002, 50(12): 2702~2712
    [124] A. Grbic and G. V. Eleftheriades, Experimental verification of backward-wave radiation from a negative refractive index metamaterial, J. Appl. Phys. 2002, 92(10): 5930~5935
    [125] L. Liu, C. Caloz, C. C. Chang, and T. Itoh, Forward coupling phenomena between artificial left-handed transmission lines, J. Appl. Phys. 2002, 92(9): 5560~5565
    [126] T. J. Yen, W. J. Padilla, N. Fang, D. C. Vier, D. R. Smith, J. B. Pendry, D. N. Basov, and X. Zhang, Terahertz Magnetic Response from Artificial Materials, Science, 2004, 303: 1494~1496
    [127] S. Linden, C. Enkrich, M. Wegener, J. F. Zhou, T. Koschny, C. M. Soukoulis, Magnetic Response of Metamaterials at 100 Terahertz, Science, 2004, 306: 1351~1353
    [128] H. O. Moser, B. D. F. Casse, O. Wilhelmi, and B. T. Saw, Terahertz Response of a Microfabricated Rod–Split-Ring-Resonator Electromagnetic Metamaterial, Phys. Rev. Lett., 2005, 94: 063901
    [129] S. Zhang, W. Fan, B. K. Minhas, A. Frauenglass, K. J. Malloy, and S. R. J. Brueck, Midinfrared Resonant Magnetic Nanostructures Exhibiting a Negative Permeability, Phys. Rev.Lett., 2005, 94: 037402
    [130] Pendry J B. Negative refraction makes a perfect lens. Phys Rev Lett., 2000, 85 (18 ): 3966-3969
    [131] GarciaN, Nieto-Vesperinas M. Left-handed materials do not make a perfect lens.Phys Rev Lett., 2002, 88(20): 207403
    [132] Houck A, Brock J B, Chuang I L. Experimental observations of a left-handed material that obeys snell's law. Phys Rev Lett., 2003, 90(13): 137401
    [133] Ramakrishna S A, Pendry J B. Removal of absorption and increase in resolution in a near-field lens via optical gain. Phys Rev B., 2003, 67(20): 201101
    [134] Fang N, Zhang X. Imaging properties of a metamaterial superlens. Appl Phys Lett, 2003, 82(2): 161~163
    [135] Cui T J, Hao Z C, Yin X X, et al. Study of lossy effects on the propagation of propagating and evanescent waves in left-handed materials. Phys Lett A2004, 323(5-6 ): 484~494
    [136] Brock J B ,Houck A ,Chuang I L. Focusing inside negative index materials. Appl Phy Lett, 2004, 85(13): 2472~2474
    [137] Loschialpo P F, Forester D W, Smith D L, et al. Optical properties of an ideal homogeneous causal left-handed material slab. Phys Rev E., 2004, 70(3): 036605
    [138] Ziolkowski R W. Pulsed and CW Gaussian beam interactions with double negative metamaterial slabs. Opt. Express, 2003,11(7): 662~681
    [139] Zharov A ,Ilya V S ,Yuri S K. Nonlinear properties of left-handed metamaterials. Phys Rev Lett., 2003, 91(3): 037401
    [140] Ilya V S, Andrey A S, Yuri S K, et al. Nonlinear surface waves in left-handed materials. Phys Rev E., 2004, 69(1): 016617
    [141] Agranovich V M, Shen Y R, Baughman R H, et al. Linear and nonlinear wave propagation in negative refraction metamaterials. Phys Rev B., 2004, 69(16): 165112
    [142] Schurig D, Smith D R. Spatial filtering using media with indefinite permittivity and permeability tensors. Appl Phys Lett., 2003, 82(14): 2215~2217
    [143] Jaline G. Akhlesh L. Negative index of refraction and distributed Bragg reflectors. Micro Opt Tech Lett., 2002, 34(6): 409~411
    [144] Engheta N. An idea for thin subwavelength cavity resonators using metamaterials with negative permittivity and permeability. IEEE Ante Wireless Prop Lett., 2002, 1(1): 10~13
    [145] Ilya V S, Andrey A S, Yuri S K. Guided modes in negative-refractive-index wave guides. Phys Rev E., 2003, 67(5): 057602
    [146] Liu L, He S L. Near-field optical storage system using a solid immersion lens with a left-handed material slab. Opt Express, 2004, 12(20): 4835~4840
    [147] I. S. Nefedov and S. A. Tretyakov, Photonic band gap structure containing metamaterial with negative permittivity and permeability, Phys. Rev. E., 2002, 66(3): 036611
    [148] L. Wu, S. He, and L. Chen, On unusual narrow transmission bands for a multi-layered periodic structure containing left-handed materials, Opt. Express, 2003, 11(11): 1283~1290
    [149] L. Wu, S. He, and L. Shen, Band structure for a one-dimensional photonic crystal containing left-handed materials, Phys. Rev. B., 2003, 67(23): 235103
    [150] K. Y. Xu, X. G. Zheng, and W. L. She, Properties of defect modes inone-dimensional photonic crystals containing a defect layer with a negative refractive index, Appl. Phys. Lett., 2004, 85(25): 6089~6091
    [151] D. Bria, B. D. Rouhani, A. Akjouj, L. Dobrzynski, J. P. Vigneron, E. H. El Boudouti, and A.Nougaoui, Band structure and omnidirectional photonic band gap in lamellar structures with left-handed materials, Phys. Rev. E., 2004, 69: 066613
    [152] K. Y. Kim, Photon tunneling in composite layers of negative- and positive-index media, Phys. Rev. E., 2004, 70: 047603
    [153] J. Li, L. Zhou, C. T. Chan, and P. Sheng, Photonic Band Gap from a Stack of Positive and Negative Index Materials, Phys. Rev. Lett., 2003, 90(8): 083901
    [154] I. V. Shadrivov, A. A. Sukhorukov, and Y. S. Kivshar, Beam shaping by a periodic structure with negative refraction, Appl. Phys. Lett., 2003, 82(22): 3820~3822
    [155] H. T. Jiang, H. Chen, H. Q. Li, Y. W. Zhang, and S. Y. Zhu, Omnidirectional gap and defect mode of one-dimensional photonic crystals containing negative-index materials, Appl. Phys. Lett., 2003, 83(26):5386~5388
    [156] M. W. Feise, I. V. Shadrivov, and Y. S. Kivshar, Tunable transmission and bistability in left-handed band-gap structures, Appl. Phys. Lett. 2004, 85(9): 1451~1453
    [157] I. V. Shadrivov, N. A. Zharova, A. A. Zharov, and Y. S. Kivshar, Defect modes and transmission properties of left-handed bandgap structures, Phys. Rev. E., 2004, 70: 046615
    [158] V. S C M. Rao and S. D. Gupta, Subluminal and superluminal pulse propagation in a left-handed/right-handed periodic structure, J. Opt. A: Pure Appl. Opt., 2004, 6: 756~761
    [159] J. Li, D. G. Zhao, and Z. Y. Liu, Zero-n photonic band gap in a quasiperiodic stacking of positive and negative refractive index materials, Phys. Lett. A., 2004, 332: 461~468
    [160] D. R. Fredkin and A. Ron, Effectively left-handed (negative index) composite material, Appl. Phys. Lett., 2002, 81(10): 1753~1755
    [161] A. Al and N. Engheta, Pairing an epsilon-negative slab with a mu-negative slab: resonance, tunneling and transparency, IEEE Trans. Antennas Propagat. 2003, 51(10): 2558~2571
    [162] A. Lakhtakia and C. M. Krowne Restricted equivalence of pairedepsilon-negative and mu-negative layers to a negative phase-velocity material (alias left-handed material), Optik 2003, 114: 305~307
    [163] A. Al and N. Engheta, Guided modes in a waveguide filled with a pair of single-negative (SNG), double-negative (DNG), and/or double-positive (DPS) layers, IEEE Trans. Microwave Theory Tech 2004, 52(1):199~210
    [164] H. T. Jiang, H. Chen, H. Q. Li, Y. W. Zhang, J. Zi, and S. Y. Zhu, Properties of one-dimensional photonic crystals containing single-negative materials, Phys. Rev. E., 2004, 69: 066607
    [165] A. Sanada, C. Caloz, and T. Itoh, Characteristics of the composite right/left-handed transmission lines, IEEE Microw. Wirel. Compon. Lett. 2004, 14(2): 68~70
    [166] L.G. Wang, H. Chen, and S. Y. Zhu, Omnidirectional gap and defect mode of one-dimensional photonic crystals with single-negative materials, Phys. Rev. B., 2004, 70: 245102
    [167] J.Yoon, S. H. Song, C. H. Oh, and P. S. Kim, Backpropagating modes of surface polaritons on a cross-negative interface, Opt. Express., 2005, 13(2), 417~427 .
    [168] K. Y. Kim, Properties of photon tunneling through single-negative materials, Opt. Lett., 2005, 30(4): 430~432
    [169] K. Y. Kim, Polarization-dependent waveguide coupling utilizing single-negative materials, IEEE Photonics Tech Lett., 2005, 17(2): 369~371
    [170] H. T. Jiang, H. Chen, H. Q. Li, Y. W. Zhang, Omnidirectional Gaps of One-Dimensional Photonic Crystals Containing Single-Negative Materials, Chin. Phys. Lett., 2005, 22(4): 884~886
    [171] H. T. Jiang, H. Chen, H. Q. Li, Y. W. Zhang, and S. Y. Zhu, Compact high-Q filters based on one-dimensional photonic crystals containing single-negative materials, J. Appl. Phys., 2005, 98: 013101
    [172] Zhang, H Y; Zhang, Y P; Shang, T Y; Zheng, Y; Ren, G J; Wang, P; Yao, J Q, Omnidirectional zero-(n)over-tilde gap in symmetrical Fibonacci sequences composed of positive and negative refractive index materials, European Physical Journal B, 2006, 52 (1): 37-40
    [173] Hui-yun Zhang, Yu-ping Zhang, Peng Wang, Jian-quan Yao, Frequency response in photonic heterostructures consisting of single-negative materials. J. Appl. Phys., 2007,101: 013111
    [1] E.C.Honea, C.A.Ebbers, R.J.Beach, J.A.Speth, J.A.Skidmore, M.A.Emanuel, and S.A.Payne, Analysis of an intracavity-doubled diode-pumped Q-switched Nd:YAG laser producing more than 100 W of power at 0.532μm, Opt. Lett., 1998, 23(15): 1203~1205
    [2] E.C.Honea, R.J.Beach, S.C.Michell, and P.V.Avizonis, 183-W, M2=2.4 Yb:YAG Q-switched laser , Opt. Lett., 1999, 24(3): 154~156
    [3] Y.Hirano, Y.Koyata, S.Yamamoto, K.Kasahara, and T.Tajime, 208-W TEM00 operation of a diode-pumped Nd:YAG rod laser, Opt. Lett., 1999, 24(10): 679~681
    [4]吕百达,强激光的传输与控制,北京:国防工业出版社,1999,371~416
    [5]吕百达,张彬,蔡邦维等,高功率二极管泵浦固体激光器研究的进展,强激光与粒子束,1994,6(2):303~309
    [6]吕百达,高功率二极管泵浦固体激光器研究的进展,激光技术,1996,20(5):290~293
    [7]吕百达,张彬,二极管泵浦固体激光器的输出功率极限,强激光与粒子束,1994,6(3):366~372
    [8]周大正,金玉奇,赵彤等,千瓦级COIL UR90实验研究,强激光与粒子束, 1997, 9(2):215~220
    [9]吕百达,邵怀宗,林菊平等,高功率二极管泵浦固体激光谐振腔的进展和分析,激光技术,1997,21(6):360~364
    [10]吕百达,高功率固体激光谐振腔研究的进展,激光与红外,1997,27(1):7~10
    [11]钱列加,高光学质量、高平均功率非稳腔Nd:YAG激光器,光学学报,1995,15(3):257~262
    [12]常兵,蔡希洁,李庆国,变反射率镜非稳腔优化研究—超高斯途径,光学学报,1995,15(8):997~982
    [13]张放,张平雷,周寿桓,由变反射率镜耦合输出的卡塞格林非稳腔激光技术研究,光学学报,1996,16(10):1400~1405
    [14]冯国英,吕百达,1D VRM非轴对称虚共焦腔(Nd,Ce):YAG板条激光器的实验研究,中国激光,1997,24(1):13~16
    [15]冯国英,吕百达,蔡邦维等, YAG板条激光振荡—放大器(MOPA)的实验研究,激光技术,1997,21(5):281~283
    [16] Hans J. Eichler, Andreas Haase, Ralf Menzel, 100-Watt Average Output Power1.2 Diffraction Limited Beam from Pulsed Neodymium Single-Rod Amplifier with SBS Phase Conjugation. IEEE Journal of quantum electronics, 1995, 31(8): 1265~1269
    [17]魏在福,王润文,王之江等,90°束旋转环形非稳腔几何特性分析,光学学报,1995,15(5):513~519
    [18]金玉奇,赵彤,徐文刚等,氧碘化学激光器束转动90度环形非稳腔空心光束输出研究,强激光与粒子束,1999,11(5):513~516
    [19] Lonnie E. Holder, Chandler Kennedy, Larry Long, One Joule Q-Switched Pulse Diode-Pumped Laser, IEEE Journal of quantum electronics, 1992, 28(4): 986~991
    [20] Jeffrey J. Kasinski, Will Hughes, Don DiBiase et al., One Joule Output From a Diode-Array-Pumped Nd:YAG Laser with Side-Pumped Rod Geometry, IEEE Journal of quantum electronics, 1992, 28(4): 977~985
    [21] C. B. Dane, L. E. Zapata, W. A. Neuman et al., Design and Operation of a 150 W Near Diffraction-Limited Laser Amplifier with SBS Wavefront Correction, IEEE Journal of quantum electronics, 1995, 31(1): 148~163
    [22] Q. Lü, N. KUGLER, H. WEBER et al., A novel approach for compensation of birefringence in cylindrical Nd:YAG rods, Optical and Electronics, 1996, 28: 57~59
    [23] V. Magni, Resonator for the solid state lasers with large-volume fundamental mode and high-alignment stability, Appl.Opt., 1986, 25(1): 107~117
    [24] K.P.Driedger, R.M.Ifflander, and H.Weber, Multirod resonator for High-power solid-state lasers with improved beam quality, IEEE J. Quantum Electron., 1988, 24(4): 997~1009
    [1] Y. Hirano, Y. Koyata, S. Yamamoto, K. Kasahara, and T. Tajime, 208-W TEM00 operation of a diode-pumped Nd:YAG rod laser, Opt. Lett., 1999, 24(10): 679~681
    [2] S. Konno, T. Kjima, S. Fujikawa, and K. Yasui, High-brightness 138-W green laser based on an intracavity-frequency-doubled diode-side-pumped Q-switched Nd:YAG laser, Opt. Lett., 2000, 25(2): 105~107
    [3] K. P. driedger, R. M. Inffl?nder, and H. Weber, Multirod resonator for high-power solid-state lasers with improved beam quality, IEEE J. Quantum Electron, 1988,24(4): 665~674
    [4] S. Seidel, A. Schirrmacher, G. Mann, Nursianni, T. Riesbeck, Proc. SPIE 1998, 214: 3267
    [5] Hyun Su Kim, Jin-Tae Kim, and Jong Rak Park, Stable Range Enhancement in a Symmetric Confocal Two-rod Resonator With 90°Optical Rotator, IEEE J. Quantum Electron, 2003, 39(12): 1594~1599
    [6] V. R. Kushnir, A. N. Nemkov, and N. V. Shkunov, Influence of the resonator geometry on the output power of a laser with several active elements, Sov. J. Quantum Electron, 1975, 5(99): 713~715
    [7] K. P. Driedger, R. M. Ifflander, and H. Weber, "Multirod resonators for high-power solid state lasers with improved beam quality." IEEE J. Quantum Electron. 1988, 24(4): 665~675
    [8] M. Kumkar, B. Wedel, K. Richter, Beam quality and efficiency of high-average-power multirod lasers, Optics and laser technology, 1992, 24(22): 67~72
    [9] Y. Akiyama, M. Sasaki, H. Yuasa, and N. Nishida,“Efficient High-Power diode-pumped Nd:YAG rod laser,”in Conference on Lasers and Electro-Optics/Pacific Rim, Vol.1 of 2001 OSA Technical Digest Series (Optical, Society of Americal, Washington, D. C., 2001: 558~559
    [10] H. S. Kim, S. Lee, D.-K. Ko, and B. H. Cha, Dependence of the stability and the beam quality on the distance between two rods in a double laser-head resonator, Opt. Commun., 2002, 201: 381~389
    [11]吕百达,固体激光器件,2002年1月第1版,p127~132
    [12] Geng Ai-Cong, Bo Yong, Bi Yong, Sunzhi-Pei, Yang Xiao-Dong, Peng Qin-Jun, Li Hui-Qing, Zhou Yi, Li Rui-Ning, Cui Da-Fu, Xu Zu-Yan, High Beam Quality Green Greneration With Output 140 W Based on Thermally-near-Unstable Flat-Flat Resonator, Chin. Phys. Lett., 2005, 22(1): 125~127
    [13] Yong Bo, Aicong Geng, Yong Bi, Zhipei Sun, Xiaodong Yang, Qinjun Peng, Huiqing Li, Ruining Li, Dafu Cui, and Zuyan Xu, High-power and high-quality, green-beam generation by employing a thermally near-unstable resonator design, Applied Optics, 2006, 45(11): 2499~2503
    [14] Tetsuo kojima, Shuichi Fuijikawa, and Koji Yasui, IEEE J. Quantum Electron., 1999, 35(3): 377~380
    [15]Yoko Inoue and Shuichi Fujikawa, Diode-pumped Nd:YAG laser producing122-W CW power at 1.319μm, IEEE J. Quantum Electron., 2000, 36(6): 751~756
    [16] A. E.Siegman, Laser, University Science Books, Mill Valley, 1986, p. 425
    [17] R.J.Pierre, G. W. Holleman, M. Valley, H. Injeyan, J.G. Berg, G. M. Harpole, R. C. Hilyard, M. Mitchell, M.E. Weber, J.Zamel, T. Engler, D. Hall, R. Tinti, J. Machan, Active Tracked Laser (ATLAS), IEEE. J. of Sel. Topics in Quantum Electron., 1997, (3): 64~70
    [18] Nicolas Kugler, Shalei Dong, Qitao Lu , and Horst Weber, Investigation of the misalignment sensitivity of a birefringence-compensated two-rod Nd:YAG laser system, Applied Optics, 1997, 36(36): 9359~9366
    [19] L. M. Osterink and J. D. Foster, Thermal effects and transverse mode control in a Nd:YAG laser, Appl. Phys. Lett., 1968, 12(4): 128~131
    [20] F. A. Levine, TEM00 enhancement in CW Nd-YAG by thermal lensing compensation, IEEE J. Quantum Electron. 1971, QE(7): 170~172
    [21] A. Stein, Thermooptically perturbed resonators, IEEE J. Quantum Electron. 1974, QE(10): 427~434
    [22] H. Weber, R. Iffla¨nder, and P. Seiler, High power Nd-lasers for industrial applications, in High Power Lasers and Their Industrial Applications, D. Schuo¨cker, ed., Proc. 1986, SPIE (650): 92~100
    [23] B. Haba, B. W. Hussey, and A. Gupta, Temperature distribution during heating using a high repetition rate pulsed laser, J. Appl. Phys. 1991, 69: 2871~2876
    [24] N. Hodgson and H. Weber, Influence of spherical aberration of the active medium on the performance of Nd:YAG lasers, IEEE J. Quantum Electron. 1993, 29: 2497~2507
    [25] W. Koechner and D. Rice, Effect of birefringence on the performance of linearly polarized YAG:Nd lasers, IEEE J. Quantum Electron. 1970, QE(6): 557~566
    [26] W. C. Scott and M. de Witt, Birefringence compensation and TEM00 mode enhancement in a Nd:YAG laser, Appl. Phys. Lett. 1971, 18(1): 3~4
    [27] V. G. Evdokimova, A. A. Mak, L. N. Soms, and A. I. Shafarostov, Compensation of birefringence induced in laser systems by passive anisotropic elements, Sov. J. Quantum Electron., 1975, 5: 1040~1044
    [28] J. Richards, Birefringence compensation in polarization coupled lasers, Appl. Opt. 1987 26, 2514~2517
    [29] Q. Lu , N. Kugler, H. Weber, S. Dong, N. Mu¨ller, and U. Wittrock, A novelapproach for compensation of birefringence in cylindrical Nd:YAG rods, Opt. Quantum Electron., 1996, 28, 57~69
    [30] W. Koechner, Solid-state laser engineering, 3rd ed., Berlin: Springer, 1992, 381~400.
    [31] Hyun Su Kima, Sungman Lee, Dependence of the beam characteristics of the thermal-birefringence compensated symmetric resonator with two Nd:YAG laser rods on the curvature of laser-rod end surfaces, Optics and laser technology, 2007, 39: 116~122
    [32] Murdough MP, Denman CA. Mode-volume and pump-power limitations in injection-locked TEM00 Nd:YAG rod lasers. Appl. Opt. 1996., 35(30): 5925~5936
    [33] R. Ifflander, H. P. Kortz, H. Weber, Beam divergence and refractive power of directly coated solid state lasers, Opt. Commun.1979, 29(2): 223~226
    [34] H. Kogelnik and T. Li, Laser beam and resonator, Proc. IEEE, Oct. 1966, 54, 1312~1329
    [35] Lee S, Yun M, Cha BH, Kim CJ, Suk S, Kim HS. Stability analysis of a diode-pumped, thermal birefringence-compensated two-rod Nd:YAG laser with 770-W output power, Appl. Opt. 2002, 41(27): 5625~5631
    [36] Hodgson N, Weber H. Optical resonators. London, Berlin: Springer, 1997
    [1] http://www.ceolaser.com/benefits-of-DPSS.html
    [2] W. Koechner, Solid-State Laser Engineering, 4th ed.(Springer, Berlin, 1996), Chap.7: 398~402
    [3] J. R. Park, J.Y.Lee, H. S. Kim, K. Y. Um, and H. J. Kong, Characteristics of a birefringence compensation scheme in Nd3+:YAG rods using a polarization rotator and imaging optics. Opt. Rev., 1997, 4: 170~175
    [4] Sungman Lee, Mijeong Yun, Byung Heon Cha, and Sungsoo Suk and Hyun Su Kim, Stability analysis of a diode-pumped, thermal birefringence-compensated two-rod Nd:YAG laser with 770 W output power, Appl. Opt., 2002, 41(27): 5625~5631
    [5] R. F. Teehan, J. C. Bienfang, and C. A. Denman, Power scaling and frequency stabilization of an injection-locked Nd:YAG rod laser. Appl. Opt., 1981, 20(23): 4124~4134
    [6] L. N. Somes, A. A. Tarasov, and V. V. Shashkin, On the problem of depolarization of linearly polarized light by a YAG:Nd+3 laser rod under conditions of thermally induced birefringence, Sov. J. Quantum Electron., 1980, 10: 350~351
    [7] Eric C. Honea, Christopher A. Ebbers, RaymondJ. Beach, Jeol A. Skidmore, Mark A.Emanuel, and Stepen A.Payne, Analysis of an intracavity-doubled diode-pumped Q-switched Nd:YAG laser producing more than 100W of power at 0.532 um, Opt. Lett. 1998, 23, 15: 1203~1205
    [8] Susumu Konno, Tetsuo Kojima, Shuichi Fujikawa and Koji Yasui, High-brightness 138W green laser base on an in-tracavity-frequency-doubled diode-side-pumped Q-switched Nd:YAG laser, Opt.Lett. 2000, 25, 2: 105~107
    [9] Tetsuo Kojima, Susumu Konno, Shuichi Fujikawa, Koji Yasui, and Kenji Yoshizawa, 20-W ultraviolet-beam generation by fourth-harmonic generation of an all-solid-state laser, Opt.Lett., 2000, 25, l: 58~60
    [10] Jim J. Chang, Ernie P. Dragon and Isaac L.Bass, 315W Pulsed-Green Generation with a Diode-Pumped Nd:YAG Laser, Post Deadline Papers of CLEO'98 Conference, CPD 2~2, 1996
    [11] R.J.Pierre, G.W.Holleman, M.Valley,H.Injeyan, J.G.Berg, G.M.Harpole, R.C.Hilyard, M.Mitchell, M.E.Weber, J.Zamel, T.Engler, D.Hall, R.Tinti, J.Machan, Active Tracked Laser(ATLAS), IEEE.J.of Sel.Topics in Quantum Electron., 1997, 3: 64~70
    [12] C. Droz, Hikaru Kouta and Y.Kuwano, Walk-off Compensated 266-nm Generation with Twoβ-BaB2O4 Crystals, Opt. Rev. 1999, 6: 97
    [13] D. J. Armstrong, W. J. Alford, T. D.Raymond, A. V. Smith and M. S. Bowers, Parametric amplification and oscillation with walkoff-compensating crystals, J. Opt.Soc. Am.B 1997, 14: 460
    [14] J. J. Zondy, M. Abed, and S. Khodja, "Twin-crystal walk-off-compensated type-II second-harmonic generation: single-pass and cavity-enhanced experiments in KT iOPO4, J. Opt. Soc. Am. B 1994, 11: 2368
    [15] J. J. Zondy, M. Abed, A. Khodja, C. Bonin, H. Albrecht and D. Lupinsky, Walk- off-compensated type-I and type- II SHG using twin-crystal AgGaSe2 and KTiOPO4 devices, Proc.SPIE, 2700, 66, 1996
    [16] Krishnan R. Parameswaran, Jonathan R. Kurz, Rostislav V. Roussev, and Martin M. Fejer, Observation of 99% pump depletion in single-pass second-harmonic generation in a periodically poled lithium niobate waveguide, Opt. Lett. 2002, 27:43~45
    [17] Jim J. Chang, Ernie P. Dragon, and Isaac L. Bass, 315W Pulsed-Green Generation with a diode-pumped N d:YAG, CLEO 2000, CPD2~2
    [18] B. J. Le Garrec, G. J. Razé, P. Y. and M. Gilbert, High-average-power diode-array-pumped frequency-doubled YAG laser, Opt. Let. 1996, 21, 24: 1990~1992
    [19] S. Konno, and K. Yasui, Efficient high-power green beam generation by use of an intracavity frequency-doubled laser-diode-pumped Q-switched Nd:YAG laser, Appl. Opt. 1998, 37: 3551~3554
    [20] S. Konno, S. Fujikawa, and K. Yasui, Highly efficient 68-W grren-beam generation by use of an intracavity frequency-doubled diode side-pumped Q-switched Nd:YAG rod laser. Appl. Opt. 1998, 37, 27: 6401~6404
    [21] T. Kojima, S. Fujikawa, and K. Yasui, Stabilization of a high-power diode-side-pumped intracavity-frequency-doubled CW Nd:YAG laser by compensating for thermal lensing of a KTP Crystal and Nd:YAG rods, IEEE J. Quantum Electron.1999, 35, 3: 377~380
    [22] Hee-Jong Moon, Jonghoon Yi, Yongjoo Rhee, Byungheon Cha, Jongmin Lee, Efficient intracavity requency doubling from a diffusive reflector-Type diode side-pumped Nd:YAG laser using a KTP crystal, Lasers and Electro-Optics, 1999. CLEO/Pacific Rim '99. The Pacific Rim Conference on , Seoul of South Korea, 1999, 2: 461~462
    [23] K. Tei, M. Kato, F.i Matsuoka, Y. Niwa, Y. Maruyama, Tohru Matoba, and Takashi Arisawa, High repetition rate 1-J green laser system, Appl. Opt. 1999, 38, 21: 4548~4551
    [24] E. C. Honea, A. Christopher, R. J. Beach, Joel A. Speth, J. A. Skidmore, Analysis of an intracavity-doubled diode-pumped Q-switched Nd:YAG laser producing more than 100 W of power at 0.532μm, Opt. Let. 1998, 23, 15: 1203~1205
    [25] S. Konno, S.; Fujikawa, S.; Kojima, T.; Yasui, K., High brightness 127 W green beam generation by intracavity-frequency-doubling of diode-pumped Nd:YAG laser Lasers and Electro-Optics, 1999. CLEO '99. Summaries of Papers Presented at the Conference on , 23-28 May 1999, 301~301
    [26] D. G. Xu, J. Q. Yao et.al. 110W high stability green laser using type II phase matching KTiOPO4 (KTP) crystal with boundary temperature control. Opt. Commun. 2005,245(1-6):341~347
    [27]张玉萍,高功率全固态绿光激光器的研究,天津大学博士论文,2006年12月:97~98
    [28]蓝信钜等,激光技术,北京:科学出版社,2005:49~50
    [29]张泽红,陈文友,柏富芬等,二维声光Q开关,压电与声光,1998,20(1):7~13
    [30]宗德蓉,罗斌,姜军等,新型多功能声光器,光电工程,1999,26(6):37~40
    [31]李强,郑义军,王智勇等,双声光二维Q开关提高Nd:YAG激光器关断损耗,中国激光,2003,30(9):785~788
    [1]姚震宇,蒋建锋,涂波等,162W激光二极管抽运Nd:YAG腔内倍频激光器,中国激光,2005,32(11):1459~1462
    [2] Xu Degang, Yao Jianquan, Zhang Baigang, et al. Influence of the KTP crystal boundary temperature on conversion efficiency in high power green laser, Chinese optics letters, 2005, 3(2): 85~88
    [3]徐德刚,姚建铨,郭丽等,104 W内腔倍频全固态Nd:YAG绿光激光器,光学学报,2004,24(7):925~928
    [4] Xiaoyuan Peng, Lei Xu, Anand Asundi, High-power efficient continuous-wave TEM00 intracavity frequency-doubled diode-pumped Nd:YLF laser, Appl. Opt., 2005, 44(5): 803~807
    [5]何京良,侯玮,张恒利等,LD抽运Nd:YVO4腔内倍频连续波8.8W绿光激光器,中国激光,2000,27(6):481~484
    [6] Bai Yang, Li Long, Chen Hao-Wei et al., Continuous-wave green laser of 9.9W by intracavity frequency doubling in laser-diode single-end-pumped Nd:YVO4/LBO, Chin. Phys. Lett., 2004, 21(8): 1532~1534
    [7] Jintao Bai, Guofu Chen, Continuous-wave diode-laser end-pumped Nd:YVO4/KTP high-power solid-state green laser, Optics and Laser Technology, 2002, 34(4): 333~336
    [8] Louis McDonagh and Richard Wallenstein, Low-noise 62 W CW intracavity-doubled TEM00 Nd:YVO4 green laser pumped at 888nm, Optic Letters, 32(7): 802~804
    [9] P. K. Mukhopadhyay, S. K. Sharma, K. Ranganathan, P. K. Gupta, T. P. S. Nathan, Efficient and high-power intracavity frequency doubled diode-side-pumpedNd:YAG/KTP continuous wave (CW) green laser, Optics Communications, 2006, 259: 805~811
    [10] T. Kojima, S. Fujikawa, K. Yasui, Stabilization of a high-power diode-side-pumped intracavity-frequency-doubled CW Nd:YAG laser by compensating for thermal lensing of a KTP crystal and Nd:YAG rods, IEEE J. Quantum Electron., 1999, 35(3): 377~380
    [1] Boucher M , Musset O , Boquillon J P , et al . Multiwatt CW diode end-pumped Nd : YAP laser at 1.08 and 1.34μm: influence of Nd doping level. Opt Commun., 2002, 212: 139~148
    [2] Weber M J , Varitimos T E. Optical spectra and intensities of Nd3 + in YAlO3. J Appl Phys, 1971, 42 (12): 4996~5005
    [3] Massey G A , Yarborough J M. High average power operation and nonlinear optical generation with the Nd:YALO3 laser. Appl Phys Lett., 1971, 18(12): 576~579
    [4] Shen H Y, Zeng R R , Zhou Y P. et al . Comparison of simultaneous multiple wavelength lasing in various neodymium host crystals at t ransitions from 4F3/2-4I11/2 and 4F3/2 -4I13/2. Appl Phys Lett., 1990, 56 (20): 1937~1938
    [5] Tucker A W, Birnbaum M , Fincher O L , et al . Stimulated-emission cross-section at 1064 and 1342 nm in YVO4. J Appl Phys, 1977, 48: 4907~4911
    [6] C. Q. Wang, D. Y. Shen, Z. S. Shao, J. R, Lu, M. H. Jiang, Nd:YVO4 laser operating at 1340 nm and 670 nm with laser diode pumping, Proc. SPIE, 1996, 2889: 86~88
    [7]王长青,沈德元,卢建仁等,激光二极管泵浦的1.34μm及其腔内倍频红光Nd:YVO4激光器,中国激光,1997,l(24):577~580
    [8]张恒利竺乃宜杨乾锁等,LD泵浦Nd:YVO4晶体KTP腔内倍倍频红光激光器,光子学报,2000,29(5):470~473
    [9]张恒利,竺乃宜,杨乾锁等,激光二极管抽运NdYVO4/LBO红光激光器研究,光学学报,2001,21(3):274~277
    [10] http://www2.zzu.edu.cn/jiguang/new11.htm
    [11] Q. Zheng, J. Y. Wang, L. Zhao, 2.23 W diode-pumped Nd:YVO4/LBO laser at 670 nm, Opt. Laser Technol., 2004, 36(6): 485~487
    [12]郑权,王军营,薛庆华,LBO倍频118 W连续671 nm红光激光器,中国激光2005,32(1):9~12
    [13] A. Y. Yao, W. Hou, Y. Bi, A. C. Geng, X. C. Lin, Y. P. Kong, D. F. Cui, L. A. Wu, Z. Y. Xu, High-power cw 671 nm output by intracavity frequency doubling of a double-end-pumped Nd :YVO4 laser, Appl. Opt., 2005, 44(33): 7156~7160
    [14] W. Q. Wen, H. Liu, Z. Q. Zhi, et al., LD side-pumped Nd:YAG/KTP CW laser with 1.8W output at 659.5 nm, J. Optoelectron. Laser, 2005, 16(10): 1167~1170
    [15] R. Zhou, X. Ding, W. Q. Wen, Z. Q. Cai, P. Wang, J. Q. Yao, High-power continuous-wave diode-end-pumped intracavity frequency doubled Nd:YVO4 laser at 671 nm with a compact three-element cavity, Chin. Phys. Lett., 2006, 23(4): 849~851
    [1] Veselago V G. The electrodynamics of substances with simultaneously negative values ofεandμ. Sov. Phys. Uspekhi., 1966, 10 (4): 509~514
    [2] Klimov V V. Spontaneous emission of an excited atom placed near“left-handed”media. Opt. Commun., 2002, 211 (4): 183~187
    [3] D. R. Smith, W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, Composite Medium with Simultaneously Negative Permeability and Permittivity Phys. Rev. Lett. 2000, 84(18): 4184~4187
    [4] R. A. Shelby, D. R. Smith, S. C. Nemat-Nasser, and S. Schultz, Microwave transmission through a two-dimensional, isotropic, left-handed metamaterial. Appl. Phys. Lett. 2001, 78(4), 489~491
    [5] R. A. Shelby, D. R. Smith, and S. Schultz, Science 292, 77 (2001)
    [6] Zhang, H Y; Zhang, Y P; Shang, T Y; Zheng, Y; Ren, G J; Wang, P; Yao, J Q, Omnidirectional zero-(n)over-tilde gap in symmetrical Fibonacci sequences composed of positive and negative refractive index materials, European Physical Journal B, 2006, 52 (1): 37~40
    [7] G. S. Guan, H. T. Jiang, H. Q. Li, Y. W. Zhang, H. Chen, and S. Y. Zhu, Tunneling modes of photonic heterostructures consisting of single-negative materials. Appl. Phys. Lett. 2006, 88(21): 211112
    [8] H.Y. Zhang, Y.P. Zhang, P. Wang, J.Q. Yao,Frequency response in photonic heterostructures consisting of single-negative materials. J. Appl. Phys., 2007, 101(1): 013111
    [9] Liu Nian-hua, Zhu Shi-yao, Chen Hong, et al. Superluminal pulse propagationthrough one-dimensional photonic crystals with a dispersive defect. Phys Rev E, 2002, 65(4): 046607
    [10] Photonic Crystals: Molding the Flow of Light, J. D. Joannopoulos, R. D. Meade, and J. N.Winn (Princeton Univ. Press, NJ, 1995)
    [11] Yablonovitch E. Inhibited spontaneous emission in solid-state physics and electronics. Phys. Rev. Lett., 1987, 58(20): 2059~2062
    [12] Yablonovitch E, Bhat R, Harbison J P. Survey of defect-mediated recombination lifetimes in GaAs epilayersgrown by different methods. Appl. Phys. Lett.,1987, 50 (17): 1197~1199
    [13] John S. Strong localization of photons in certain disordered dielectric superlattices. Phys. Rev. Lett., 1987, 58(23): 2486~2489
    [14] Lee H Y, Makino H, Yao T, et al. Si-based omnidirectional reflector and transmission filter optimized at a wavelength of 1.55μm . Appl. Phys. Lett., 2002, 81(24): 4502~4504
    [15] Qiao F, Zhang C,Wan J, et al. Photonic quantum-well structures: Multiple channeled filtering phenomena. App l. Phys. Lett., 2000, 77(23): 3698~3700
    [16] Wang Z S, Wang L, Wu Y G, et al. Multiple channeled phenomena in heterostructures with defects mode. Appl. Phys. Lett., 2004, 84(10): 1629~1631
    [17] Fredkina D R, Ron A. Effectively left-handed negative composite materials. Appl. Phys. Lett., 2002, 81(10): 1753~1755

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700