用户名: 密码: 验证码:
SOI SiGe HBT性能与结构设计研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
绝缘体上硅(SO1)结构能够降低寄生电容、减小漏电流、提高抗衬底噪声和串扰能力,硅锗异质结晶体管(SiGe HBT)与Si兼容,速度快,成本低。因此将SiGe HBT与SOl技术,特别是薄膜SOI,结合起来,对于高速低功耗应用如无线通信等特别有吸引力。最新一代0.13μm毫米波SOI SiGe BiCMOS工艺中的纵向SOI SiGe HBT表现出了优越的电学性能,如更高的Early电压,集电结雪崩击穿电压与特征频率之间更好的折衷,抗辐射和噪声等等。由于SOI SiGe HBT的这些优势通过实验和仿真得到广泛的报道,对应的模型需要深入研究。这篇论文的目的在于表明SOI SiGe HBT的特性怎么与基本物理参数联系起来,怎么影响电学性能,以及这些对应的电学参数如何建模。
     本文重点研究SOI SiGe HBT关键理论和技术,主要包括SiGe材料基本物理属性,SOI SiGe HBT物理和电学模型。首先对器件电场、电势、耗尽宽度等基本参数,建立理论模型,分析对后续核心参数如寄生电阻、电容、特征频率等的影响,然后基于前面工作,建立一系列晶体管效应对应的电学参数模型,包括集电结耗尽层电容、Early效应及相关参数、集电结弱雪崩倍增效应及相关参数、不同衬底偏置下集电区电阻、基区渡越时间、大电流下有效基区扩展效应及相关参数。由于SOI SiGe HBT与常规器件结构的差别主要表现在集电结结构上,发射结部分的分析可以采用传统模型,本文研究重点在于与集电结和集电区有关的电学参数上。主要研究工作和成果如下:
     1.将SOI SiGe HBT集电结耗尽电容等效为纵向部分与横向部分的串联,针对部分耗尽与全部耗尽HBT分别建模,并根据器件实际工作情况,引入平滑函数,进行了适当优化。仿真结果表明,与常规HBT相比,SOI器件耗尽层电容明显减小。
     2. Early效应决定HBT电流稳定性。本文根据常规SiGe HBT在基区Ge组分均匀或线性变化的特性,从Early电压最原始定义出发,经过详细推导和适当近似,建立常规SiGe HBT的Early电压模型,然后基于SOI SiGe HBT集电结耗尽层电容模型,将其扩展到SOI SiGe HBT中。结果表明,正常工作时,SOI SiGe HBT的Early电压比常规SiGe HBT高,输出电流更加稳定。
     3.雪崩倍增效应决定HBT反向击穿电压BVCEO。由于雪崩效应由碰撞电离决定,本文基于碰撞电离因子半经验公式,根据部分耗尽和全部耗尽HBT各自特性,分别建立了弱雪崩倍增因子模型。结果表明,SOI部分耗尽HBT和全部耗尽HBT的雪崩电流都比常规SiGe HBT小,因此SOI器件击穿电压高。
     4.提出了采用不同衬底偏压改变集电区电阻的方法,使SOI SiGe HBT成为四端器件,显著改善了器件频率特性。结果表明,衬底正偏时,频率特性可提高50%。
     5.建立了SOI SiGe HBT基区渡越时间和有效基区扩展模型,获得了其与几何结构参数和材料物理参数的变化规律。
The flexibility of the silicon-on-insulator (SOI) device architecture allows the obtaining of optimal electrical property for reduced parasitic capacitance, low leakage current, and improved immunity to substrate noise and crosstalk. Therefore, combining SiGe HBT with SOI technology, especially thin film SOI, is attractive for low power and high speed applications. A novel vertical SiGe HBT fabricated on thin film SOI substrate is proposed and integrated into the latest0.13μm millimeter-wave SiGe SOI BiCMOS technology. The device fabricated with the new technology shows decent performances, such as higher Early voltage, better trade-off between the base-collector avalanche breakdown voltage and the characteristic frequency, and better proton radiation effect. As the advantages of the device are thoroghly reported by experiments and simulations, the corresponding model should be analyzed theoretically. The purpose of the dissertation is to show how the unique features of the device can be linked to its physical origin, how they influence the electrical behaviours, and how the corresponding electrical parameters can be modelled.
     The work concentrates on the critical theory and technology of SOI SiGe HBT, including the properity of SiGe alloy, the physical and electrical models of SOI SiGe HBT. First, the fundamental electrical parameters such as the electric field, the potential and the depletion width are theoretically modeled, the influence of which to parasitic resistance, capacitance, characterstic frequency, and so on, are discussed. Based on the previous work, a series of electrical parameter models of the transistor effects are proposed and verified by simulation results in details, including the base-collector depletion capacitance, the Early effect and related parameters, the collector weak avalanche multiplication effect and related parameters, the collector resistance under different substrate biases, the base transit time, the base widening effect with large current and related parameters. As the structure differences between the SOI and the bulk SiGe HBT are the design of base-collector junction, the base-emitter junction can be analyzed by the conventional model, the dissertation concentrates on the base-collector junction and collector related electrical parameters. The main research work and the results are listed as follows.
     1. The base-collector depletion capacitance of SOI SiGe HBT is developed by considering the vertical and horizontal collector region as the series of the corresponding capacitance. The capacitances of partially and fully depleted devices are modeled respectively, with the result of dramastic reduction compared to the bulk conterparts. A smooth function is then introduced into the model for optimization based on the practical operation.
     2. The Early voltage model of the SOI SiGe HBT is proposed analytically. First the Early effect features of the bulk SiGe HBT with uniform or linear Ge profile in the base are analyzed, and the corresponding model of the bulk device is developed according to the original Early voltage definition with a step-by-step derivation and appropriate assumptions, then the model is generalized to the SOI SiGe HBT based on the above base-collector depletion capacitance model. It is shown that the Early voltage of the SOI device is higher than that of the bulk counterpart, and hence the current is more stable.
     3. The weak avalanche multiplication model of the SOI SiGe HBT is developed. The breakdown voltage BVCEO, which is depedent on the weak avalanche multiplication factor, is one of the key parameters of an HBT. As the avalanche multiplication is dominated by the impact ionization, the model is presented from the semi-emprical equation of the impact ionization factor, and applies for both the partially and fully depleted HBTs.
     4. The substrate bias effect on the collector resistance is modeled. As the electrical characteristics of the SOI SiGe HBT are affected by the substrate bias, the SOI SiGe HBT is equalivent to a four terminal device and it is inevitable to research the substrate bias effect. The influence of the substrate bias on the collector resistance is analyzed in detail, resulting in a lower resistance and hence a larger characteristic frequency under positive bias compared to that of zero substrate bias.
     5. The base transit time and the base width widening effect models are proposed analytically. The change trends of the corresponding parameters are obtained.
引文
[1]Smulders P:Exploiting the 60 GHz band for local wireless multimedia access: prospects and future directions. Communications Magazine, IEEE 2002, 40(1):140-147.
    [2]Gaucher B, Beukema T, Reynolds S et al: MM-wave transceivers using SiGe HBT technology. In:Silicon Monolithic Integrated Circuits in RF Systems,2004 Digest of Papers 2004 Topical Meeting on; 2004:81-84.
    [3]Yamada A, Suematsu E, Sato K et al: 60GHz ultra compact transmitter/receiver with a low phase noise PLL-oscillator. In:Microwave Symposium Digest,2003 IEEEMTT-S International; 2003:2035-2038 vol.2033.
    [4]Ohata K, Maruhashi K, Ito M et al: 1.25 Gbps wireless Gigabit ethernet link at 60 GHz-band. In:Radio Frequency Integrated Circuits (RFIC) Symposium, 2003 IEEE; 2003:509-512.
    [5]Kuo W-M:High-speed silicon germanium HBT BiCMOS circuits for communication and radar transceivers. Ph.D. United States-Georgia:Georgia Institute of Technology; 2006.
    [6]Kopp BA, Borkowski M, Jerinic G:Transmit/receive modules. Microwave Theory and Techniques, IEEE Transactions on 2002,50(3):827-834.
    [7]Gloanec M, Camiade M, Serru V et al: Advanced MMICs for Remote Sensing and Radar Applications. In:Microwave Conference,2003 33rd European; 2003: 871-874.
    [8]Konig U, Gruhle A:High frequency SiGe heterostructure devices. In:High Speed Semiconductor Devices and Circuits,1997 Proceedings,1997 IEEE/Cornell Conference on Advanced Concepts in; 1997:14-23.
    [9]Cressler J, Niu G:Silicon-Germanium Heterojunction Bipolar Transistors. In. Norwood, MA:Artech House; 2003.
    [10]Cressler JD:SiGe HBT technology:a new contender for Si-based RF and microwave circuit applications. Microwave Theory and Techniques, IEEE Transactions on 1998,46(5):572-589.
    [11]Heinemann B, Barth R, Bolze D et al: SiGe HBT technology with fT/fmax of 300GHz/500GHz and 2.0 ps CML gate delay. In:Electron Devices Meeting (IEDM),2010 IEEE International; 2010:30.35.31-30.35.34.
    [12]Celler GK, Cristoloveanu S:Frontiers of silicon-on-insulator. Journal of Applied Physics 2003,93(Copyright 2003, IEE):4955-4978.
    [13]P. CJ:Silicon-on-insulator technology:materials to VLSI. In. Boston:Kluwer; 1997.
    [14]Wilcox EP, Phillips SD, Peng C et al: Single Event Transient Hardness of a New Complementary (npn pnp) SiGe HBT Technology on Thick-Film SOI. Nuclear Science, IEEE Transactions on 2010,57(6):3293-3297.
    [15]Plouchart JO:SOI nano-technology for high-performance system on-chip applications. In:SOI Conference,2003 IEEE International; 2003:1-4.
    [16]Schwank JR:Advantages and limitations of silicon-on-insulator technology in radiation environments. In:10th Biennial Conference on Insulating Films on Semiconductors Infos'97,11-14 June 1997; Netherlands:Elsevier; 1997: 335-342.
    [17]林成鲁,刘卫丽:纳米技术时代的高端硅基材料-SOI,sSOI和GOI.功能材料与器件学报2007,13(4):6.
    [18]Shockly W, Circuit element utilizing semiconductive material, U. S. Patent 2569347,1951.
    [19]Kroemer H:Quasi-electric and quasi-magnetic fields in nonuniform semiconductors. RCA Review 1957,18(3):332-342.
    [20]Kroemer H:Theory of a Wide-Gap Emitter for Transistors. Proceedings of the IRE 1951,45(11):1535-1537.
    [21]Kasper E, Herzog HJ:Elastic strain and misfit dislocation density in Si0.92Ge0.08 films on silicon substrates. Thin Solid Films 1977,44(Copyright 1977, IEE):357-370.
    [22]Meyerson BS:Low-temperature silicon epitaxy by ultrahigh vacuum/chemical vapor deposition. Applied Physics Letters 1986,48(Copyright 1986, IEE):797-799.
    [23]Meyerson BS:UHV/CVD growth of Si and Si:Ge alloys:chemistry, physics, and device applications. Proceedings of the IEEE 1992,80(10):1592-1608.
    [24]Sedgwick TO, Berkenblit M, Kuan TS:Low-temperature selective epitaxial growth of silicon at atmospheric pressure. Applied Physics Letters 1989, 54(Copyright 1989, IEE):2689-2691.
    [25]Tillack B, Bolze D, Fischer G et al: SiGe heteroepitaxy for high frequency circuits. In:Proceedings of the 1998 MRS Spring Symposium, April 13,1998-April 15,1998; San Francisco, CA, USA:MRS; 1998:379-384.
    [26]Iyer SS, Patton GL, Delage SS et al: Silicon-germanium base heterojunction bipolar transistors by molecular beam epitaxy. In:Electron Devices Meeting, 1987 International; 1987:874-876.
    [27]Harame DL, Schonenberg K, Gilbert M et al: A 200 mm SiGe-HBT technology for wireless and mixed-signal applications. In:Electron Devices Meeting,1994 IEDM'94 Technical Digest, International; 1994:437-440.
    [28]Nguyen-Ngoc D, Harame DL, Malinowski JC et al: A 200 mm SiGe-HBT BiCMOS technology for mixed signal applications. In:Bipolar/BiCMOS Circuits and Technology Meeting,1995, Proceedings of the 1995; 1995:89-92.
    [29]Ahlgren DC, Freeman G, Subbanna S et al: A SiGe HBT BiCMOS technology for mixed signal RF applications. In:Bipolar/BiCMOS Circuits and Technology Meeting,1997 Proceedings of the; 1997:195-197.
    [30]Joseph A, Coolbaugh D, Zierak M et al: A 0.18μm BiCMOS technology featuring 120/100 GHz (fT/fmax) HBT and ASIC-compatible CMOS using copper interconnect. In:Bipolar/BiCMOS Circuits and Technology Meeting, Proceedings of the 2001; 2001:143-146.
    [31]Orner BA, Liu QZ, Rainey B et al: A 0.13 μm BiCMOS technology featuring a 200/280 GHz (fT/fmax) SiGe HBT. In:Bipolar/BiCMOS Circuits and Technology Meeting,2003 Proceedings of the; 2003:203-206.
    [32]Heinemann B, Barth R, Bolze D et al: A complementary BiCMOS technology with high speed npn and pnp SiGe:C HBTs. In:Electron Devices Meeting,2003 IEDM'03 Technical Digest IEEE International; 2003:5.2.1-5.2.4.
    [33]Rieh JS, Jagannathan B, Chen H et al: Performance and desigh consideratons for high speed SiGe HBTs of fT/fmax=375GHz/210GHz. In:Proc International Conference on Indium Phosphide and Related Materials; 2003:374-377.
    [34]Harame DL, Ahlgren DC, Coolbaugh DD et al: Current status and future trends of SiGe BiCMOS technology. Electron Devices, IEEE Transactions on 2001, 48(11):2575-2594.
    [35]Wennekers P, Reuter R:SiGe technology requirements for millimeter-wave applications. In:Bipolar/BiCMOS Circuits and Technology,2004 Proceedings of the 2004 Meeting; 2004:79-83.
    [36]Akbar G, Wennekers P, Ralf R et al: An Integrated SiGe-BiCMOS Low Noise Transmitter Chip with a Frequency Divider Chain for 77 GHz Applications. In: European Microwave Integrated Circuits Conference,2006 The 1st; 2006: 194-197.
    [37]John JP, Kirchgessner J, Menner M et al: Development of a Cost-Effective, Selective-Epi, SiGe:C HBT Module for 77GHz Automotive Radar. In: Bipolar/BiCMOS Circuits and Technology Meeting,2006; 2006:1-4.
    [38]To K, Welch P, Scheitlin D et al: 60GHz LNA and 15GHz VCO Design for Use in Broadband Millimeter-Wave WPAN System. In:Bipolar/BiCMOS Circuits and Technology Meeting,2007 BCTM'07 IEEE; 2007:210-213.
    [39]Trotta S, Dehlink B, Ghazinour A et al: A 77GHz 3.3V 4-channel transceiver in SiGe BiCMOS technology. In:Bipolar/BiCMOS Circuits and Technology Meeting 2009 BCTM 2009 IEEE; 2009:186-189.
    [40]Pacheco S, Reuter R, Trotta S et al: SiGe technology and circuits for automotive radar applications. In:2011 IEEE 11th Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems, SiRF 2011, January 16,2011-January 19, 2011; Phoenix, AR, United states:IEEE Computer Society; 2011:141-144.
    [41]Masuda T, Nakamura T, Tanabe M et al: SiGe HBT based 24-GHz LNA and VCO for Short-Range Ultra-Wideband Radar Systems. In:Asian Solid-State Circuits Conference,2005; 2005:425-428.
    [42]Masuda T, Shiramizu N, Nakamura T et al: A 24-GHz SiGe-HBT driver amplifier with 40-dB image-rejection. In:Microwave Conference,2009 APMC 2009 Asia Pacific; 2009:361-364.
    [43]Masuda T, Shiramizu N, Nakamura T et al: SiGe HBT amplifiers with high image rejection for quasi-millimeter-wave frequency range. In:Silicon Monolithic Integrated Circuits in RF Systems (SiRF),2010 Topical Meeting on; 2010:132-135.
    [44]Ren S, Rong Y, Claussen S et al: A Ge/SiGe quantum well waveguide modulator monolithically integrated with SOI waveguides. In:8th IEEE International Conference on Group Ⅳ Photonics, GFP 2011, September 14,2011-September 16,2011; London, United kingdom:IEEE Computer Society; 2011:11-13.
    [45]St. Onge SA, Harame DL, Dunn JS et al: A 0.24μm SiGe BiCMOS mixed-signal RF production technology featuring a 47 GHz ft HBT and 0.18μm Lett CMOS. In:Bipolar/BiCMOS Circuits and Technology Meeting,1999 Proceedings of the 1999; 1999:117-120.
    [46]Lanzerotti L, Feilchenfeld N, Coolbaugh D et al: A low complexity 0.13 μ SiGe BiCMOS technology for wireless and mixed signal applications. In: Bipolar/BiCMOS Circuits and Technology,2004 Proceedings of the 2004 Meeting; 2004:237-240.
    [47]Welch B, Pfeiffer U:A 17 dBm 64 GHz voltage controlled oscillator with power amplifier in a 0.13/spl mu/m SiGe BiCMOS technology. In:Radio Frequency Integrated Circuits (RFIC) Symposium,2006 IEEE; 2006:4 pp.
    [48]Guoan W, Hanyi D, Woods W et al: Wideband on-chip RF MEMS switches in a BiCMOS technology for 60 GHz applications. In:Microwave and Millimeter Wave Technology,2008 ICMMT 2008 International Conference on; 2008: 1389-1392.
    [49]Natarajan A, Reynolds SK, Ming-Da T et al: A Fully-integrated 16-Element Phased-array Receiver in SiGe BiCMOS for 60-GHz Communications. IEEE Journal of Solid-State Circuits 2011,46(5):1059-1075.
    [50]Winkler W, Borngraber J, Heinemann B et al: 60GHz and 76GHz oscillators in 0.25μm SiGe:C BiCMOS. In:Solid-State Circuits Conference,2003 Digest of Technical Papers ISSCC 2003 IEEE International; 2003:454-507 vol.451.
    [51]Borokhovych Y, Gustat H, Tillack B et al: A low-power, 10GS/s track-and-hold amplifier in SiGe BiCMOS technology. In:Solid-State Circuits Conference, 2005 ESSCIRC 2005 Proceedings of the 31st European; 2005:263-266.
    [52]Osmany SA, Herzel F, Scheytt JC et al: An Integrated 19-GHz Low-Phase-Noise Frequency Synthesizer in SiGe BiCMOS Technology. In: Compound Semiconductor Integrated Circuit Symposium,2007 CSIC 2007 IEEE; 2007:1-4.
    [53]Diez S, Lozano M, Pellegrini G et al: IHP SiGe:C BiCMOS Technologies as a Suitable Backup Solution for the ATLAS Upgrade Front-End Electronics. Nuclear Science, IEEE Transactions on 2009,56(4):2449-2456.
    [54]Hartmann C, Blau K, Hein MA:An Integrated SiGe HBT Pulselength Modulator for Class-S Power Amplifiers in the UHF Range. IEEE Transactions on Circuits and Systems Ⅰ:Regular Papers 2011,58(1):62-69.
    [55]Glisic S, Schmalz K, Herzel F et al: A fully integrated 60 GHz transmitter front-end in SiGe BiCMOS technology. In:2011 IEEE 11th Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems, SiRF 2011, January 16, 2011-January 19,2011; Phoenix, AR, United states:IEEE Computer Society; 2011:149-152.
    [56]Van Huylenbroeck S, Sibaja-Hernandez A, Piontek A et al: Lateral and vertical scaling of a QSA HBT for a 0.13μm 200GHz SiGe:C BiCMOS technology. In:Bipolar/BiCMOS Circuits and Technology,2004 Proceedings of the 2004 Meeting; 2004:229-232.
    [57]Decoutere S, Sibaja-Hernandez A:SiGeC HBTs:The TCAD challenge reduced to practice. Materials Science in Semiconductor Processing 2005,8(Copyright 2005, IEE):283-288.
    [58]Van Huylenbroeck S, Choi LJ, Sibaja-Hernandez A et al: A 205/275GHz fT/fmax Airgap Isolated 0.13 m BiCMOS Technology featuring on-chip High Quality Passives. In:Bipolar/BiCMOS Circuits and Technology Meeting,2006; 2006:1-4.
    [59]Shuzhen Y, Decoutere S, Sibaja-Hernandez A et al: Recombination in the Ge-spiked monoemitter of the SiGe:C HBTs. Solid-State Electronics 2011, 61(1):81-86.
    [60]Tilke AT, Rochel M, Berkner J et al: A low-cost fully self-aligned SiGe BiCMOS technology using selective epitaxy and a lateral quasi-single-poly integration concept. Electron Devices, IEEE Transactions on 2004, 51(7):1101-1107.
    [61]Forstner HP, Knapp H, Jager H et al: A 77GHz 4-channel automotive radar transceiver in SiGe. In:Radio Frequency Integrated Circuits Symposium,2008 RFIC 2008 IEEE; 2008:233-236.
    [62]Yang SJ, Forstner HP, Haider G et al: A low noise, high gain, highly linear mixer for 77 GHz automotive radar applications in SiGe:C bipolar technology. In: ESSCIRC,2009 ESSCIRC'09 Proceedings of; 2009:312-315.
    [63]Aufinger K, Knapp H, Boguth S et al: Integrated injection logic in a high-speed SiGe bipolar technology. In:2011 25th IEEE Bipolar/BiCMOS Technology and Circuits Meeting, BCTM 2011, October 9,2011-October 11,2011; Atlanta, GA, United states:Institute of Electrical and Electronics Engineers Inc.; 2011:87-90.
    [64]Racanelli M, Pingxi M, Kempf P:SiGe BiCMOS technology for highly integrated wireless transceivers. In:Gallium Arsenide Integrated Circuit (GaAs IC) Symposium,2003 25th Annual Technical Digest 2003 IEEE; 2003:183-186.
    [65]Racanelli M, Kempf P:Silicon foundry technology for RF products. In:Silicon Monolithic Integrated Circuits in RF Systems,2006 Digest of Papers 2006 Topical Meeting on; 2006:5 pp.
    [66]Preisler E, Lanzerotti L, Hurwitz PD et al: Demonstration of a 270 GHz fT SiGe-C HBT within a manufacturing-proven 0.18μm BiCMOS process without the use of a raised extrinsic base. In:Bipolar/BiCMOS Circuits and Technology Meeting,2008 BCTM 2008 IEEE; 2008:125-128.
    [67]Watanabe G, Ortiz J, Holbrook R:High performance rf front end circuits using SiGe:C BiCMOS+copper technologies. In:First International SiGe Technology and Device Meeting (ISTDM 2003) From Materials and Process Technology to Device and Circuit Technology,15-17 Jan 2003; Netherlands:Elsevier; 2004: 405-409.
    [68]Wasekura M, Fuwa H, Segawa T et al: An SOI-BiCDMOS Chipset for Automotive Electronically Controlled Brake System. In:International SOI Conference,2006 IEEE; 2006:117-118.
    [69]Hashimoto T, Tanomura M, Fujii H et al: A CMOS-based RF SiGe BiCMOS technology featuring over-100 GHz fmax SiGe HBTs and 0.13μm CMOS. In: Bipolar/BiCMOS Circuits and Technology Meeting,2002 Proceedings of the 2002; 2002:189-192.
    [70]Kovacevic M, Madihian M:GSM and DCS SiGe BiCMOS mixer ICs with wide LO power range. In:Microwave Symposium Digest,2003 IEEE MTT-S International; 2003:1299-1302 vol.1292.
    [71]Sato F, Hashimoto T, Fujii H et al: A 0.18-μm RF SiGe BiCMOS technology with collector-epi-free double-poly self-aligned HBTs. Electron Devices, IEEE Transactions on 2003,50(3):669-675.
    [72]Pruvost S, Telliez I, Danneville F et al: A 40 GHz single-ended down-conversion mixer in 0.13 μm SiGeC BiCMOS HBT. Microwave and Wireless Components Letters, IEEE 2005,15(8):496-498.
    [73]Devulder M, Deparis N, Telliez I et al: UWB transmitter in BiCMOS SiGe 0.13 μm technology for 60 GHz WLAN communication. In:Ultra-Wideband,2007 ICUWB 2007 IEEE International Conference on; 2007:432-435.
    [74]Demirel N, Kerherve E, Pache D et al: A 24 GHz,18 dBm fully integrated power amplifier in a 0.13μm SiGe HBT technology. In:Research in Microelectronics and Electronics,2008 PRIME 2008 PhD; 2008:185-188.
    [75]Chevalier P, Meister TF, Heinemann B et al: Towards THz SiGe HBTs. In:2011 25th IEEE Bipolar/BiCMOS Technology and Circuits Meeting, BCTM 2011, October 9,2011-October 11,2011; Atlanta, GA, United states:Institute of Electrical and Electronics Engineers Inc.; 2011:57-65.
    [76]Lilienfield HM, U. S. Patent 1900018,1933.
    [77]Lilienfield HM, U. S. Patent 1745175,1930.
    [78]Manasevit HM, Simpson WI:Single-Crystal Silicon on a Sapphire Substrate. Journal of Applied Physics 1964,35(4):1349-1351.
    [79]Washio K, Ohue E, Shimamoto H et al: A 0.2-μm 180-GHz-fmax 6.7-ps-ECL SOI/HRS self-aligned SEG SiGe HBT/CMOS technology for microwave and high-speed digital applications. Electron Devices, IEEE Transactions on 2002, 49(2):271-278.
    [80]Sato F, Hashimoto T, Tezuka H et al: A 60-GHz fT super self-aligned selectively grown SiGe-base (SSSB) bipolar transistor with trench isolation fabricated on SOI substrate and its application to 20-Gb/s optical transmitter ICs. Electron Devices, IEEE Transactions on 1999,46(7):1332-1338.
    [81]Sato F, Hashimoto T, Tatsumi T et al: Sub-20 ps ECL circuits with high-performance super self-aligned selectively grown SiGe base (SSSB) bipolar transistors. Electron Devices, IEEE Transactions on 1995, 42(3):483-488.
    [82]Sugiyama M, Shimizu T, Takemura H et al: Bipolar VLSI memory cell technology utilizing BPSG-filled trench isolation. In:1989 Symposium on VLSI Technology Digest of Technical Papers (Cat No89CH2694-8),22-25 May 1989; Tokyo, Japan:Business Center for Acad. Soc. Japan; 1989:59-60.
    [83]Cai J, Ajmera A, Ouyang C et al: Fully-depleted-collector polysilicon-emitter SiGe-base vertical bipolar transistor on SOI. In:VLSI Technology,2002 Digest of Technical Papers 2002 Symposium on; 2002:172-173.
    [84]Jin C, Kumar M, Steigerwalt M et al: Vertical SiGe-base bipolar transistors on CMOS-compatible SOI substrate. In:Bipolar/BiCMOS Circuits and Technology Meeting,2003 Proceedings of the; 2003:215-218.
    [85]Ouyang QC, Jin C, Tak N et al: A simulation study on thin SOI bipolar transistors with fully or partially depleted collector. In:Bipolar/BiCMOS Circuits and Technology Meeting,2002 Proceedings of the 2002; 2002:28-31.
    [86]Bellini M, Cressler JD, Jin C:Assessing the High-Temperature Capabilities of SiGe HBTs Fabricated on CMOS-compatible Thin-film SOI. In: Bipolar/BiCMOS Circuits and Technology Meeting,2007 BCTM'07 IEEE; 2007: 234-237.
    [87]Jin C, Ning TH:Bipolar transistors on thin SOI:concept, status and prospect. In: Solid-State and Integrated Circuits Technology,2004 Proceedings 7th International Conference on; 2004:2102-2107 vol.2103.
    [88]Tianbing C, Sutton AK, Bellini M et al: Proton radiation effects in vertical SiGe HBTs fabricated on CMOS-compatible SOI. Nuclear Science, IEEE Transactions on 2005,52(6):2353-2357.
    [89]Bellini M, Tianbing C, Chendong Z et al: Reliability Issues in SiGe HBTs Fabricated on CMOS-Compatible Thin-Film SOI. In:Bipolar/BiCMOS Circuits and Technology Meeting,2006; 2006:1-4.
    [90]Qiqing O, Kai X:Simulation Study of Reduced Self-Heating in Novel Thin-SOI Vertical Bipolar Transistors. In:Simulation of Semiconductor Processes and Devices,2005 SISPAD 2005 International Conference on; 2005:55-58.
    [91]Tianhing C, Bellini M, Zhao E et al: Substrate bias effects in vertical SiGe HBTs fabricated on CMOS-compatible thin film SOI. In:Bipolar/BiCMOS Circuits and Technology Meeting,2005 Proceedings of the; 2005:256-259.
    [92]Bellini M, Jun B, Chen T et al: X-Ray Irradiation and Bias Effects in Fully-Depleted and Partially-Depleted SiGe HBTs Fabricated on CMOS-Compatible SOI. Nuclear Science, IEEE Transactions on 2006, 53(6):3182-3186.
    [93]Avenier G, Schwartzmann T, Chevalier P et al: A self-aligned vertical HBT for thin SOI SiGeC BiCMOS. In:Bipolar/BiCMOS Circuits and Technology Meeting,2005 Proceedings of the; 2005:128-131.
    [94]Boissonnet L, Judong F, Vandelle B et al: A 0.13μm thin SOI CMOS technology with low-cost SiGe:C HBTs and complementary high-voltage LDMOS. In:Bipolar/BiCMOS Circuits and Technology Meeting,2006; 2006: 1-4.
    [95]Chantre A, Avenier G, Chevalier P et al: SiGe HBT design for CMOS compatible SOI. In:SiGe Technology and Device Meeting,2006 ISTDM 2006 Third International; 2006:1-2.
    [96]Duvernay J, Brossard F, Borot G et al: Development of a self-aligned pnp HBT for a complementary thin-SOI SiGeC BiCMOS technology. In: Bipolar/BiCMOS Circuits and Technology Meeting,2007 BCTM'07 IEEE; 2007: 34-37.
    [97]Bellini M, Phillips SD, Diestelhorst RM et al: Novel Total Dose and Heavy-Ion Charge Collection Phenomena in a New SiGe HBT on >Thin-Film SOI Technology. Nuclear Science, IEEE Transactions on 2008,55(6):3197-3201.
    [98]Avenier G, Fregonese S, Chevalier P et al: Electrical Behavior and Technology Optimization of Si/SiGeC HBTs on Thin-Film SOI. Electron Devices, IEEE Transactions on 2008,55(2):585-593.
    [99]Peng C, Seth S, Cressler JD et al: An Investigation of DC and RF Safe Operating Area of n-p-n+p-n-p SiGe HBTs on SOI. IEEE Transactions on Electron Devices 2011,58(8):2573-2581.
    [100]Hermann P, Hecker M, Renn F et al: Effects of patterning induced stress relaxation in strained SOI/SiGe layers and substrate. Journal of Applied Physics 2011,109(12).
    [101]Babcock JA, Sadovnikov A, Choi LJ et al: Forward and inverse mode early voltage dependence on current and temperature for advanced SiGe-pnp on SOI. In:2011 25th IEEE Bipolar/BiCMOS Technology and Circuits Meeting, BCTM 2011, October 9,2011-October 11,2011; Atlanta, GA, United states:Institute of Electrical and Electronics Engineers Inc.; 2011:9-12.
    [102]戴显英,胡辉勇,张鹤鸣et al:光辅助超高真空CVD系统制备SiGe异质结双极晶体管研究.光子学报2003(04):509-512.
    [103]胡辉勇,舒钰,张鹤鸣et al:含有本征SiGe层的SiGe异质结双极晶体管集电结耗尽层宽度模型.物理学报2011(01):602-608.
    [104]胡辉勇,张鹤鸣,戴显英et al: SiGe HBT传输电流模型研究.半导体学报2006(06):1059-1063.
    [105]胡辉勇,张鹤鸣,戴显英et al:SiGe HBT大信号扩散电容模型研究.电子器件2006(01):82-84+87.
    [106]马建立,张鹤鸣,宋建军et al:(001)面任意方向单轴应变硅材料能带结构.物理学报2011(02):558-563.
    [107]宋建军,张鹤鸣,戴显英et al:应变Si价带色散关系模型.物理学报2008(11):7228-7232.
    [108]宋建军,张鹤鸣,胡辉勇et al应变Si/(001)Si_(1-x)Ge_x本征载流子浓度模型.物理学报2010(03):2064-2067.
    [109]宋建军,张鹤鸣,胡辉勇et al:应变Si_(1-x)Ge_x能带结构研究.物理学报2009(11):7947-7951.
    [110]赵丽霞,张鹤鸣,胡辉勇et al:应变Si电子电导有效质量模型.物理学报2010(09):6545-6548.
    [111]林成鲁:SOl技术的新进展.半导体技术2003,28(9):5.
    [112]魏星,王湘,陈猛et al:薄膜厚埋层SOI材料的新制备技术.半导体学报2008,29(7):4.
    [113]谢欣云,刘卫丽,门传玲et al:多孔硅外延转移技术制备以氮化硅为绝缘埋层的SOl新结构.半导体学报2003,24(2):5.
    [114]朱鸣,林成鲁,邢昆山:SOI器件中浮体效应的研究进展.功能材料与器件学报2002,8(3):6.
    [115]张苗,吴雁军,刘卫丽et al: Cu gettering to nanovoids in SOI materials.中国科学E辑(英文版)2003,46(1):11.
    [116]Cheng-Li L, Yu-Ting C, Fon-Shan H et al:The Impact of Oxide Traps Induced by SOI Thickness on Reliability of Fully Silicide Metal-Gate Strained SOI MOSFET. Electron Device Letters, IEEE 2010,31(2):165-167.
    [117]Di Z, Huang A, Fu RKY et al:Thermal stability of diamondlike carbon buried layer fabricated by plasma immersion ion implantation and deposition in silicon on insulator. Journal of Applied Physics 2005,98(5):053502-053502-053505.
    [118]Di Z, Chu PK, Zhu M et al:Fabrication of silicon-on-SiO2 diamondlike-carbon dual insulator using ion cutting and mitigation of self-heating effects. Applied Physics Letters 2006,88(14):142108-142108-142103.
    [119]Lin C, Zhou W, Zou S et al: Ti silicide formation on thin film silicon on insulator. Applied Physics Letters 1990,56(20):2004-2006.
    [120]Zhang M, Zeng X, Chu PK et al:Gettering of Cu by microcavities in bonded/ion-cut silicon-on-insulator and separation by implantation of oxygen. Journal of Applied Physics 1999,86(8):4214-4219.
    [121]Liao SH, Chang ST, Lin CY:Investigation of Geometry Scaling Effect on Si BJT and SiGe HBT fabricated on SOI Substrates. In:SiGe Technology and Device Meeting,2006 ISTDM 2006 Third International; 2006:1-2.
    [122]Chang ST, Liu YH, Liu CW:Buried oxide thickness effect and lateral scaling of SiGe HBT on SOI substrate. In:Semiconductor Device Research Symposium, 2003 International; 2003:16-17.
    [123]Liao SH, Wang WC, Chang ST et al:A Simulation Study of Oxide Thickness Effect on the Performance of SiGe HBTs with SOI Structure. In:Electron Devices and Solid-State Circuits,2007 EDSSC 2007 IEEE Conference on; 2007: 271-274.
    [124]史辰,陈建新,杨维明:基于SOS/SOI绝缘衬底的Si/SiGe HBT设计.微电子学2004,34(4):4.
    [125]戴广豪,李文杰,王生荣et al:基于SOI结构的SiGe HBT频率特性研究.微电子学2006,36(4):3.
    [126]Guang-hao D, Sheng-rong W, Wen-jie L:Improvement on Frequency Performance of SOI SiGe HBT.半导体光子学与技术(英文版)2006,12(3):4.
    [127]姚飞,薛春来,成步文et al:SOI衬底和n+衬底上SiGe HBT的研制.电子器件2007,30(5):3.
    [128]徐小波,张鹤鸣,胡辉勇et al:SOI部分耗尽SiGe HBT集电结空间电荷区模型.物理学报2011,60(7).
    [129]Xu X-B, Zhang H-M, Hu H-Y et al:Substrate bias effects on collector resistance in SiGe heterojunction bipolar transistors on thin film silicon-on-insulator. Chinese Physics B 2011,20(5):058503 (058505 pp.).
    [130]Xu X-B, Zhang H-M, Hu H-Y et al:Analytical Base-collector Depletion Capacitance in Vertical SiGe Heterojunction Bipolar Transistors Fabricated on CMOS-compatible Silicon on Insulator. Chinese Physics B 2011,20(1):018502 (018505 pp.).
    [131]Xu X-B, Zhang H-M, Hu H-Y et al:Early Effect Modeling of Silicon-on-insulator SiGe Heterojunction Bipolar Transistors. Chinese Physics B 2011,20(5):058502 (058506 pp.).
    [132]Xu X-B, Zhang H-M, Hu H-Y et al:Weak avalanche multiplication in SiGe heterojunction bipolar transistors on thin film silicon-on-insulator. Chinese Physics B 2011,20(10):108502 (108506 pp.).
    [133]Xu X-B, Zhang H-M:An Analytical Avalanche Multiplication Model for Partially Depleted Silicon-on-insulator SiGe Heterojunction Bipolar Transistors. Chinese Physics Letters 2011,28(7):078505 (078504 pp.).
    [134]Xu X-B, Xu K-X, Zhang H-M et al:A device model for thin silicon-on-insulator SiGe heterojunction bipolar transistors with saturation effects. Chinese Physics B 2011,20(9):098501 (098505 pp.).
    [135]Xu X, Zhang H, Hu H et al:Generalized Early voltage model of bipolar transistors for linearly graded germanium in base. In:2nd International Conference on Mechanical and Aerospace Engineering, ICMAE 2011, July 29, 2011-July 31,2011; Bangkok, Thailand:Trans Tech Publications; 2012: 3311-3315.
    [136]Xiaobo X, Heming Z, Huiyong H et al:Negative substrate bias effects on collector resistance in SiGe HBTs on thin film SOI. In:Electric Information and Control Engineering (ICEICE),2011 International Conference on; 2011: 2380-2382.
    [137]Dismukes JP, Ekstrom L, Paff RJ:Lattice Parameter and Density in Germanium-Silicon Alloys1. The Journal of Physical Chemistry 1964, 68(10):3021-3027.
    [138]Kasper E, Schuh A, Bauer G et al:Test of Vegard's law in thin epitaxial SiGe layers. Journal of Crystal Growth 1995,157(1-4):68-72.
    [139]Fabbri R, Cembali F, Servidori M et al:Analysis of thin film solid solutions on single crystal silicon by simulation of x ray rocking curves:Si and GeSi binary alloys. Journal of Applied Physics 1993,74(4):2359-2369.
    [140]de Gironcoli S, Giannozzi P, Baroni S:Structure and thermodynamics of Si_{x}Ge_{1-x} alloys from ab initio Monte Carlo simulations. Physical Review Letters 1991,66(16):2116-2119.
    [141]Chandrasekaran K:Computational Investigation of Novel Device Structures and Concepts. School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 2003.
    [142]Jayaraman R, Sodini CG:A 1/f noise technique to extract the oxide trap density near the conduction band edge of silicon. Electron Devices, IEEE Transactions on 1989,36(9):1773-1782.
    [143]Matthews JW, Blakeslee AE:Defects in epitaxial multilayers.Ⅰ. Misfit dislocations. Journal of Crystal Growth 1974,27(Copyright 1975, IEE):118-125.
    [144]Jain SC, Gosling TJ, Willis JR et al: Theoretical comparison of the stability characteristics of capped and uncapped GexSil-x strained epilayers. Solid-State Electronics 1992,35(Copyright 1992, IEE):1073-1079.
    [145]Bean JC, Feldman LC, Fiory AT et al:GexSil-x/Si strained-layer superlattice grown by molecular beam epitaxy. In:Proceedings of the 30th National Symposium of the American Vacuum Society,31 Oct-4 Nov 1983; USA; 1984: 436-440.
    [146]Houghton DC, Gibbings CJ, Tuppen CG et al:The structural stability of uncapped versus buried Sil-xGex strained layers through high temperature processing. In:3rd International Symposium on Silicon Molecular Beam Epitaxy, Symposium A of the 1989 E-MRS Conference,30 May-2 June 1989; Switzerland; 1989:171-182.
    [147]Iyer SS, Patton GL, Stork JMC et al:Heterojunction bipolar transistors using Si-Ge alloys. Electron Devices, IEEE Transactions on 1989,36(10):2043-2064.
    [148]Braunstein R, Moore AR, Herman F:Intrinsic Optical Absorption in Germanium-Silicon Alloys. Physical Review 1958,109(3):695-710.
    [149]Lang DV, People R, Bean JC et al:Measurement of the band gap of GexSi1-x/Si strained layer heterostructures. Applied Physics Letters 1985,47(12):1333-1335.
    [150]King CA, Hoyt JL, Gibbons JF:Bandgap and transport properties of Si1-xGex by analysis of nearly ideal Si/Si1-xGex/Si heterojunction bipolar transistors. Electron Devices, IEEE Transactions on 1989,36(10):2093-2104.
    [151]Weber J, Alonso MI:Near-band-gap photoluminescence of Si-Ge alloys. Physical Review B 1989,40(8):5683-5693.
    [152]Bean JC:Silicon-based semiconductor heterostructures:column IV bandgap engineering. Proceedings of the IEEE 1992,80(4):571-587.
    [153]Poortmans J, Jain SC, Totterdell DHJ et al:Theoretical calculation and experimental evidence of the real and apparent bandgap narrowing due to heavy doping in p-type Si and strained Sil-xGex layers. Solid-State Electronics 1993, 36(Copyright 1993, IEE):1763-1771.
    [154]Matutinovic-Krstelj Z, Venkataraman V, Prinz EJ et al:Base resistance and effective bandgap reduction in n-p-n Si/Si1-xGex/Si HBTs with heavy base doping. Electron Devices, IEEE Transactions on 1996,43(3):457-466.
    [155]Gan CH, del Alamo JA, Bennett BR et al: Si/Si1-xGex valence band discontinuity measurements using a semiconductor-insulator-semiconductor (SIS) heterostructure. Electron Devices, IEEE Transactions on 1994, 41(12):2430-2439.
    [156]Yuan JS. In:SiGe, GaAs and InP heterojunction bipolar transistors. New York: Wiley; 1999.
    [157]Lopez-Gonzalez JM, Prat L:The importance of bandgap narrowing distribution between the conduction and valence bands in abrupt HBTs. Electron Devices, IEEE Transactions on 1997,44(7):1046-1051.
    [158]Neugroschel A, Guoxin L, Chih-Tang S:Low frequency conductance voltage analysis of Si/GexSi1-x/Si heterojunction bipolar transistors. Electron Devices, IEEE Transactions on 2000,47(1):187-196.
    [159]Jain SC, Poortmans J, Iyer SS et al:Electrical and optical bandgaps of GexSi1-x strained layers. Electron Devices, IEEE Transactions on 1993, 40(12):2338-2343.
    [160]Prinz EJ, Garone PM, Schwartz PV et al:The effect of base-emitter spacers and strain dependent densities of states in Si/Si1-xGex/Si heterojunction bipolar transistors. In:Electron Devices Meeting,1989 IEDM'89 Technical Digest, International; 1989:639-642.
    [161]Chun SK, Wang KL:Effective mass and mobility of holes in strained Sil-xGex layers on (001) Sil-yGey substrate. IEEE Transactions on Electron Devices 1992,39(Copyright 1992, IEE):2153-2164.
    [162]Cams TK, Chun SK, Tanner MO et al:Hole mobility measurements in heavily doped Sil-xGex strained layers. IEEE Transactions on Electron Devices 1994, 41(Copyright 1994, IEE):1273-1281.
    [163]Klaassen DBM:A unified mobility model for device simulation.Ⅰ. Model equations and concentration dependence. Solid-State Electronics 1992, 35(Copyright 1992, IEE):953-959.
    [164]Bufler FM, Graf P, Meinerzhagen B et al: Low- and high-field electron-transport parameters for unstrained and strained Sil-xGex. IEEE Electron Device Letters 1997,18(Copyright 1997, IEE):264-266.
    [165]Fossum JG:Computer-aided numerical analysis of silicon solar cells. Solid-State Electronics 1976,19(Copyright 1976, IEE):269-277.
    [166]Fossum JG, Lee DS:A physical model for the dependence of carrier lifetime on doping density in nondegenerate silicon. Solid-State Electronics 1982, 25(Copyright 1982, IEE):741-747.
    [167]Fossum JG, Mertens RP, Lee DS et al: Carrier recombination and lifetime in highly doped silicon. Solid-State Electronics 1983,26(Copyright 1983, IEE):569-576.
    [168]Tyagi MS, Van Overstraeten R:Minority carrier recombination in heavily-doped silicon. Solid-State Electronics 1983,26(Copyright 1983, IEE):577-597.
    [169]Bennett HS, Wilson CL:Statistical comparisons of data on bandgap narrowing in heavily doped silicon:Electrical and optical measurements. Journal of Applied Physics 1984,55(10):3582-3587.
    [170]Slotboom JW, de Graaff HC:Bandgap narrowing in silicon bipolar transistors. Electron Devices, IEEE Transactions on 1977,24(8):1123-1125.
    [171]Slotboom JW, De Graaff HC:Measurements of bandgap narrowing in Si bipolar transistors. Solid-State Electronics 1976,19(Copyright 1976, IEE):857-862.
    [172]Slotboom JW:The pn-product in silicon. Solid-State Electronics 1977, 20(Copyright 1977, IEE):279-283.
    [173]Klaassen DBM, Slotboom JW, De Graaff HC:Unified apparent bandgap narrowing in n-and p-type silicon. Solid-State Electronics 1992, 35(Compendex):125-129.
    [174]del Alamo J, Swirhun S, Swanson RM:Simultaneous measurement of hole lifetime, hole mobility and bandgap narrowing in heavily doped n-type silicon. In:Electron Devices Meeting,1985 International; 1985:290-293.
    [175]del Alamo J, Swirhun S, Swanson RM:Measuring and modeling minority carrier transport in heavily doped silicon. Solid-State Electronics,28(1-2):47-54.
    [176]Swirhun SE, Kwark YH, Swanson RM:Measurement of electron lifetime, electron mobility and band-gap narrowing in heavily doped p-type silicon. In: Electron Devices Meeting,1986 International; 1986:24-27.
    [177]del Alamo JA, Swanson RM:Measurement of steady-state minority-carrier transport parameters in heavily doped n-type silicon. Electron Devices, IEEE Transactions on 1987,34(7):1580-1589.
    [178]Kerr JA, Berz F:The effect of emitter doping gradient on fT in microwave bipolar transistors. Electron Devices, IEEE Transactions on 1975,22(1):15-20.
    [179]Floyd B, Pfeiffer U, Reynolds S et al: Silicon millimeter-wave radio circuits at 60-100 GHz (invited). In:2007 Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems, SiRF07, January 10,2007-January 12,2007; Long Beach, CA, United states:Inst. of Elec. and Elec. Eng. Computer Society; 2007:213-218.
    [180]Fleetwood DM, Thome FV, Tsao SS et al: High-temperature silicon-on-insulator electronics for space nuclear power systems:requirements and feasibility. IEEE Transactions on Nuclear Science 1988,35(5):1099-1112.
    [181]Shahidi GG, Ajmera A, Assaderaghi F et al: Partially-depleted SOI technology for digital logic. In:1999 IEEE International Solid-State Circuits Conference Digest of Technical Papers ISSCC First Edition,15-17 Feb 1999; Piscataway, NJ, USA:IEEE; 1999:426-427.
    [182]Shahidi GG:SOI technology for the GHz era. IBM Journal of Research and Development 2002,46(2-3):121-131.
    [183]Larson LE:Device and technology requirements for next generation communications systems. In:International Electron Devices Meeting Technical Digest IEDM,10-13 Dec 2000; Piscataway, NJ, USA:IEEE; 2000:737-740.
    [184]Kroemer H:Two integral relations pertaining to the electron transport through a bipolar transistor with a nonuniform energy gap in the base region. Solid-State Electronics 1985,28(11):1101-1103.
    [185]Fregonese S, Avenier G, Maneux C et al: A compact model for SiGe HBT on thin-film SOI. IEEE Transactions on Electron Devices 2006,53(2):296-303.
    [186]Kirk CT, Jr.:A theory of transistor cutoff frequency (fT) falloff at high current densities. Electron Devices, IRE Transactions on 1962,9(2):164-174.
    [187]施敏,伍国珏:半导体器件物理.西安:西安交通大学;2008.
    [188]Fregonese S, Avenier G, Maneux C et al: Base-collector junction charge investigation of Si/SiGe HBT on thin film SOI. In:Solid-State Device Research Conference,2005 ESSDERC 2005 Proceedings of 35th European; 2005: 153-156.
    [189]Fregonese S, Avenier G, Maneux C et al: A transit time model for thin SOI Si/SiGe HBT. In:Bipolar/BiCMOS Circuits and Technology Meeting,2005 Proceedings of the; 2005:184-187.
    [190]Early JM:Effects of Space-Charge Layer Widening in Junction Transistors. Proceedings of the IRE 1952,40(11):1401-1406.
    [191]Gummel HK, Poon HC:An integral charge control model of bipolar transistors. Bell System Technical Journal 1970,49(5):827-852.
    [192]Van Der Ziel A:A sufficient condition for an Early voltage. Solid-State Electronics 1974,17(1):108-110.
    [193]Scott D, Roulston D:IC-VCE characteristics of double diffused bipolar transistors under low level injection. Solid-State Electronics 1980, 23(3):201-207.
    [194]Pyne D, Khokle WS:Analysis of the Early voltage in bipolar transistors. IEEE Transactions on Electron Devices 1986, ED-33(10):1539-1544.
    [195]Yuan JS, Liou JJ:An improved Early voltage model for advanced bipolar transistors. IEEE Transactions on Electron Devices 1991,38(1):179-182.
    [196]McAndrew CC, Seitchik JA, Bowers DF et al: VBIC95, the vertical bipolar inter-company model. Solid-State Circuits, IEEE Journal of 1996, 31(10):1476-1483.
    [197]Mijalkovic S:Generalised Early factor for compact modelling of bipolar transistors with non-uniform base. Electronics Letters 2003,39(24):1757-1758.
    [198]Paasschens JCJ, Kloosterman WJ, Havens RJ:Modelling two SiGe HBT specific features for circuit simulation. In:Bipolar/BiCMOS Circuits and Technology Meeting, Proceedings of the 2001; 2001:38-41.
    [199]Andersson M, Xia Z, Kuivalainen P et al: Compact Si1-xGex/Si heterojunction bipolar transistor model for device and circuit simulation. Circuits, Devices and Systems, IEE Proceedings-1995,142(1):1-7.
    [200]Rubel O, Baranovskii SD, Zvyagin IP et al: Lucky-drift model for avalanche multiplication in amorphous semiconductors. Physica Status Solidi C 2004(5):1186-1193.
    [201]Kloosterman WJ, Paasschens JCJ, Havens RJ:A comprehensive bipolar avalanche multiplication compact model for circuit simulation. In:Proceedings of the 2000 BIPOLAR/BiCMOS Circuits and Technology Meeting 2000,24-26 Sept 2000; Piscataway,NJ, USA:IEEE; 2000:172-175.
    [202]Avenier G, Chevalier P, Vandelle B et al: Investigation of fully- and partially-depleted self-aligned SiGeC HBTs on thin film SOI. In:ESSDERC 2005:35 th European Solid-State Device Research Conference, September 12, 2005-September 16,2005; Grenoble, France:Institute of Electrical and Electronics Engineers Computer Society; 2005:133-136.
    [203]Suzuki K:Optimum base doping profile for minimum base transit time. Electron Devices, IEEE Transactions on 1991,38(9):2128-2133.
    [204]Yuan JS:Effect of base profile on the base transit time of the bipolar transistor for all levels of injection. Electron Devices, IEEE Transactions on 1994, 41(2):212-216.
    [205]Van Overstraeten RJ, DeMan HJ, Mertens RP:Transport equations in heavy doped silicon. Electron Devices, IEEE Transactions on 1973,20(3):290-298.
    [206]Suzuki K, Nakayama N:Base transit time of shallow-base bipolar transistors considering velocity saturation at base-collector junction. Electron Devices, IEEE Transactions on 1992,39(3):623-628.
    [207]Roulston DJ:Early voltage in very-narrow-base bipolar transistors. IEEE Electron Device Letters 1990, 11(2):88-89.
    [208]Thornber KK:Relation of drift velocity to low-field mobility and high-field saturation velocity. Journal of Applied Physics 1980,51(4):2127-2136.
    [209]Slotboom JW, de Graaff HC:Measurements of bandgap narrowing in Si bipolar transistors. Solid-State Electronics 1976,19(10):857-862.
    [210]Szeto S, Reif R:Reduction of ft by nonuniform base bandgap narrowing. Electron Device Letters, IEEE 1989,10(8):341-343.
    [211]Suzuki K:Optimum base-doping profile for minimum base transit time considering velocity saturation at base-collector junction and dependence of mobility and bandgap narrowing on doping concentration. Electron Devices, IEEE Transactions on 2001,48(9):2102-2107.
    [212]Joseph AJ, Cressler JD, Richey DM et al: Neutral base recombination and its influence on the temperature dependence of Early voltage and current gain-Early voltage product in UHV/CVD SiGe heterojunction bipolar transistors. IEEE Transactions on Electron Devices 1997,44(3):404-413.
    [213]Shafi ZA, Gibbings CJ, Ashburn P et al: The importance of neutral base recombination in compromising the gain of Si/SiGe heteroj unction bipolar transistors. IEEE Transactions on Electron Devices 1991,38(8):1973-1976.
    [214]Shafi ZA, Ashburn P, Post IRC et al: Analysis and modeling of the base currents of Si/Si1-xGex heterojunction bipolar transistors fabricated in high and low oxygen content material. Journal of Applied Physics 1995,78(4):2823-2829.
    [215]Kull GM, Nagel LW, Shiuh-Wuu L et al: A unified circuit model for bipolar transistors including quasi-saturation effects. Electron Devices, IEEE Transactions on 1985,32(6):1103-1113.
    [216]de Graaff HC, Kloosterman WJ:Modeling of the collector epilayer of a bipolar transistor in the MEXTRAM model. Electron Devices, IEEE Transactions on 1995,42(2):274-282.
    [217]Paasschens JCJ, Kloosterman WJ, Havens RJ et al: Improved compact modeling of output conductance and cutoff frequency of bipolar transistors. Solid-State Circuits, IEEE Journal of 2001,36(9):1390-1398.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700