用户名: 密码: 验证码:
HMGB1在老龄大鼠术后认知受损中的作用及机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:1.探讨麻醉和手术对老龄大鼠认知功能的影响。
     2.初步探讨晚期炎症因子HMGB1在老龄大鼠发生术后认知受损中的作用。
     方法:第一部分:①.22-23月龄雌性老龄SD大鼠随机分为对照组(n=15)、麻醉组(A1、A3、A7麻醉后第1、3、7天,n=15/组)和手术组(S1、S3、S7手术后1、3、7天,n=15/组)。麻醉组大鼠3%异氟烷诱导后气管插管,2%异氟烷维持2小时,麻醉过程监测大鼠生命体征及气体浓度。手术组与麻醉组相同的麻醉条件下行脾脏切除手术,对照组单纯吸入空氧混合气体2小时.②.造模前Morris水迷宫定向航行试验训练6天,第7天造模,造模后1、3、7天Morris水迷宫记忆测试试验测试大鼠空间学习记忆能力,smart junior软件跟踪记录大鼠游泳的距离、潜伏期及速度。
     第二部分:各项指标检测每组随机5个样本,①.行为学测试后取血,提取血清,ELISA检测血清中HMGB1、TNF-α、IL-1β的表达。②.灌注后取脑组织IgG免疫组化法检测海马区血脑屏障通透性,荧光染色法检测海马区HMGB1表达,尼氏染色观察海马区神经元形态及数目。③.取海马组织透射电镜法检测血脑屏障微观结构。④.取双侧海马组织液氮冻存,冻存的右侧海马组织RT-PCR检测HMGB1、 TNF-α、IL-1β及受体RAGE的mRNA表达。⑤.冻存的左侧海马组织进行western blot检测HMGB1、TNF-α、IL-1β及受体RAGE的蛋白表达。SPSS17.0软件进行统计学分析。
     结果:第一部分:手术创伤导致大鼠认知受损,在手术后1、3天游泳距离(1天732.97±157.38cm,3天613.17±175.63cm,P<0.001)及潜伏期(1天44.54±6.63s,3天38.3±6.25s,P<0.001)与对照组(距离:322.36±116.88cm,潜伏期:24.7±8.63s)相比延长,在单独麻醉后1天上述指标也具有统计学意义(距离557.93±187.42sP=0.003,潜伏期35.99±7.70s P=0.001)。
     第二部分:①.手术创伤导致外周血中HMGB1在手术后1天表达上调(0.204±0.023ug/L,P=0.003),术后3天及7天组无统计学差异,TNF-α、IL-1β在各组之间无显著差异。②.免疫组化结果显示术后1天血脑屏障通透性增加,电镜结果显示术后1天血脑屏障的微观结构受损,而麻醉组损伤相对较轻。③.手术创伤导致海马组织中HMGB1、TNF-α、IL-1β及受体RAGE在术后1天及3天表达上调(P<0.001),上述指标麻醉后1天也具有统计学意义(P<0.001)。④.手术创伤未导致海马CA1区神经元丢失,与对照组相比无统计学差异。
     结论:第一部分:①.麻醉、手术引起老龄大鼠术后认知功能短期且可逆性受损。②.手术创伤引起老龄大鼠认知功能受损程度相对麻醉而言更为严重,且持续时间更长。
     第二部分:①手术创伤诱导老龄大鼠外周血HMGB1表达上调与POCD密切相关。②.外周血HMGB1增加可能是引起海马区血脑屏障受损及进一步神经炎症的机制之一。③HMGB1-RAGE通路激活可能是手术刺激引起术后认知功能障碍的机制之一。
Aim:1.To explore the impact of anesthesia and surgery on cognitive function in aged rats.
     2. We sought to determine the relationship between cognitive decline and inflammation, namely high mobility group box-1(HMGB1), after surgery in aged rats.
     Methods:(1) The first part of the experiment:①Female Sprague Dawley (SD) aged rats (22-23months) were randomly divided into seven groups:control (C,n=15)、anesthesia only (A1、A3、A7anesthesia at days1、3and7, n=15/group), anesthesia plus surgery (S1、S3、S7surgery at days1、3and7, n=15/group). Rats were exposed to isoflurane anesthesia (3%isoflurane for induction followed by2%for maintenance) for2h with endotracheal intubation in anesthesia group, monitoring of vital signs and gas concentration. Animals in the anesthesia plus surgery groups underwent splenectomy. Rats in the control group were exposed to oxygen for2h in a gas chamber.②Spatial learning and memory were evaluated in the MWM, rats were trained for6days with three trials per day, On day7, animals underwent surgery and/or general anesthesia; on posttreatment days1,3and7, rats were subjected to a reversal test. The time to reach the platform (latency)、 distance and speed was recorded by smart junior system.
     (2) The second part of the experiment:5rats in each group were randomly used for one indicator.①.After MWM test, blood samples were collected, the Levels of HMGB1、TNF-a and IL-1β in the serum were measured by ELISA.②. After perfused, the brain was removed. BBB permeability was measured by IgG immuno-histochemistry, expression of HMGB1in the hippocampus was measured using immunofluorescenc, the morphology and number of the neurons were measured by nissl staining③. BBB ultrastructure was measured by transmission electron microscope (TEM).④. The hippocampi were quickly dissected and frozen in liquid nitrogen, the mRNA levels of HMGB1、TNF-α IL-1β and RAGE were measured by PT-PCR.⑤.The protein levels of HMGB1. TNF-α、IL-1β and RAGE were measured by western blot. All statistical data were analyzed using SPSS17.0.
     Results:The first part of the experiment:surgical trauma resulted in impairments in distance (732.97±157.38cm at day1,613.17±175.63cm at day3,P<0.001respectively) and latency(44.54±6.63s at day1,38.3±6.25s at dya3,P<0.001respectively) on postoperative day1and3in aged rats compared with control group (distance:322±116.88cm latency:24.7±8.63s). Distance (557.93±187.42cm P=0.003) and latency(35.99±7.70s P=0.001) were impaired at day1after anesthesia.
     The second part of the experiment:①HMGB1was significantly upregulated after surgery on postoperative day1(0.204±0.023ug/L,P=0.003), before returning to baseline,No changes from baseline were observed in TNF-α and IL-1β at all time points.②Immunohistochemistry and TEM showed BBB disruption induced by surgery and anesthesia.③Levels of HMGB1、TNF-α、IL-1β and the RAGE were significantly upregulated in the hippocampus of operated animals (P<0.001), and significantly increased after exposure to anesthesia at day1(P<0.001).④The number of neurons in the hippocampal CA1region was not decreased by surgery, and no statistically significant difference compared with the control group.
     Conclusions:The first part of the experiment:Anesthesia and surgical trauma, appears to contribute to the cognitive dysfunction in aged rats, and more severely in surgery group.
     The second part of the experiment:①The proinflammatory cytokines HMGB1was upregulated by surgical trauma contribute to the cognitive dysfunction in aged rats.②HMGB1in the peripheral may contribute to the BBB dysfunction and neuroinflammation.③HMGB1and RAGE signaling appear pivotal mediators of surgery-induced cognitive decline after peripheral surgical trauma.
引文
[1]Ronald D. Miller. Miller's Anesthesia seventh edition[M]. Jeanine P. Churchill Livingstone Inc,2009:89
    [2]Terrando N,Brzezinski M,Degos V,et al.Perioperative cognitive decline in the aging population[J]. Mayo Clinic proceedings. Mayo Clinic,2011,86(9): 885-93.
    [3]Moller JT, Cluitmans P, Rasmussen LS, et al. Long-term postoperative cognitive dysfunction in the elderly ISPOCD1 study. ISPOCD investigators. International Study of Post-Operative Cognitive Dysfunction[J]. Lancet,1998,351(9106): 857-61.
    [4]Monk TG, Weldon BC, Garvan CW, et al. Predictors of cognitive dysfunction after major noncardiac surgery[J]. Anesthesiology,2008,108(1):18-30.
    [5]Lyketsos CG, Toone L, Tschanz J, et al. A population-based study of the association between coronary artery bypass graft surgery (CABG) and cognitive decline:the Cache County study[J]. International journal of geriatric psychiatry, 2006,21(6):509-18.
    [6]Petersen RC, Doody R, Kurz A, et al. Current concepts in mild cognitive impairment[J]. Arch Neurol,2001,58(12):1985-92.
    [7]Tang JX, Baranov D, Hammond M, et al. Human Alzheimer and inflammation biomarkers after anesthesia and surgery[J]. Anesthesiology,2011,115(4): 727-32.
    [8]Xie Z, Tanzi RE. Alzheimer's disease and post-operative cognitive dysfunction[J]. Experimental gerontology,2006,41(4):346-59.
    [9]Monk TG, Price CC. Postoperative cognitive disorders[J]. Curr Opin Crit Care, 2011,17(4):376-81.
    [10]Newman S, Stygall J, Hirani S, et al.Postoperative cognitive dysfunction after noncardiac surgery:a systematic review[J]. Anesthesiology,2007,106(3): 572-90.
    [11]Krenk L, Rasmussen LS, Kehlet H. New insights into the pathophysiology of postoperative cognitive dysfunction[J]. Acta anaesthesiologica Scandinavica, 2010,54(8):951-6.
    [12]Cibelli M, Fidalgo AR, Terrando N, et al. Role of interleukin-lbeta in postoperative cognitive dysfunction[J]. Annals of neurology.2010,68(3): 360-8.
    [13]Terrando N, Monaco C, Ma D, et al. Tumor necrosis factor-alpha triggers a cytokine cascade yielding postoperative cognitive decline[J]. Proceedings of the National Academy of Sciences of the United States of America,2010,107(47): 20518-22.
    [14]Rosczyk HA, Sparkman NL, Johnson RW. Neuroinflammation and cognitive function in aged mice following minor surgery[J]. Experimental gerontology, 2008,43(9):840-6.
    [15]Kamer AR, Monaco C, Ma D, et al. Meloxicam improves object recognition memory and modulates glial activation after splenectomy in mice[J]. European journal of anaesthesiology,2012,29(7):332-7.
    [16]Vizcaychipi MP, Lloyd DG, Wan Y, et al. Xenon pretreatment may prevent early memory decline after isoflurane anesthesia and surgery in mice[J]. PloS one,2011,6(11):e26394.
    [17]Gao HM, Zhou H, Zhang F, et al. HMGB1 Acts on Microglia Macl to Mediate Chronic Neuroinflammation That Drives Progressive Neurodegeneration[J]. Journal of Neuroscience,2011,31(3):1081-1092.
    [18]Scaffidi P, Misteli T, Bianchi ME. Release of chromatin protein HMGB1 by necrotic cells triggers inflammation[J]. Nature,2002,418(6894):191-5.
    [19]Lotze MT, Tracey KJ. High-mobility group box 1 protein (HMGB1):nuclear weapon in the immune arsenal[J]. Nat Rev Immunol,2005,5(4):331-42.
    [20]Park JS, Svetkauskaite D, He Q, et al. Involvement of toll-like receptors 2 and 4 in cellular activation by high mobility group box 1 protein[J]. J Biol Chem, 2004,279(9):7370-7.
    [21]Tang D, Billiar TR, Lotze MT. A Janus tale of two active high mobility group box 1(HMGB1)redox states[J].Mol Med,2012,18:1360-2.
    [22]Bae JS. Role of high mobility group box 1 in inflammatory disease:focus on sepsis[J]. Arch Pharm Res,2012,35(9):1511-23.
    [23]Zhang J, Takahashi HK, Liu K, et al. Anti-high mobility group box-1 monoclonal antibody protects the blood-brain barrier from ischemia-induced disruption in rats. Stroke,2011,42(5):1420-8.
    [24]Chavan SS, Huerta PT, Robbiati S, et al. HMGB1 Mediates Cognitive Impairment in Sepsis Survivors[J]. Molecular medicine.2012,18(6):930-937.
    [25]Andersson U, Tracey KJ. HMGB1 is a therapeutic target for sterile inflammation and infection[J]. Annual review of immunology,2011,29: 139-62.
    [26]Sims GP, Rowe DC, Rietdijk ST, et al. HMGB1 and RAGE in inflammation and cancer[J]. Annual review of immunology,2010,28:367-88.
    [27]Cao XZ, Ma HW, Jun K, et al. Postoperative cognitive deficits and neuroinflammation in the hippocampus triggered by surgical trauma are exacerbated in aged rats[J]. Progress in Neuro-Psychopharmacology and Biological Psychiatry,2010,34(8):1426-1432.
    [28]Mena MA, Perucho J, Rubio I, et al. Studies in animal models of the effects of anesthetics on behavior, biochemistry, and neuronal cell death[J]. J Alzheimers Dis,2010,22Supp13:43-8.
    [29]Criado AB, Gomez e Segura IA. Reduction of isoflurane MAC by fentanyl or remifentanil in rats[J]. Vet Anaesth Analg,2003,30(4):250-6.
    [30]张文超,汪赛赢,欧阳文.吸入麻醉诱导下大鼠气管插管的应用研究[J].现代医药卫生,2010,26(16):2401-2402.
    [31]Selkoe DJ. Aging brain, aging mind[J].Sci Am,1992,267(3):134-42.
    [32]Wei J, Xu H, Davies JL, et al. Increase of plasma IL-6 concentration with age in healthy subjects[J]. Life Sciences,1992,51(25):1953-6.
    [33]Hager K, Machein U, Krieger S, et al. Interleukin-6 and selected plasma proteins in healthy persons of different ages[J]. Neurobiology of aging,1994, 15(6):771-2.
    [34]Roubenoff R, Harris TB, Abad LW, et al. Monocyte cytokine production in an elderly population:effect of age and inflammation[J]. J Gerontol A Biol Sci Med Sci,1998,53(1):M20-6.
    [35]Yaffe K, Lindquist K, Penninx BW, et al. Inflammatory markers and cognition in well-functioning African-American and white elders[J]. Neurology,2003, 61(1):76-80.
    [36]Buchanan JB, Sparkman NL, Chen J, et al. Cognitive and neuroinflammatory consequences of mild repeated stress are exacerbated in aged mice[J]. Psychoneuroendocrinology,2008,33(6):755-765.
    [37]Sparkman NL, Johnson RW. Neuroinflammation Associated with Aging Sensitizes the Brain to the Effects of Infection or Stress[J]. Neuroimmunomodulation,2008,15(4-6):323-330.
    [38]Stratmann G. Review article:Neurotoxicity of anesthetic drugs in the developing brain[J]. Anesthesia and analgesia,2011,113(5):1170-9.
    [39]Lin D, Zuo Z. Isoflurane induces hippocampal cell injury and cognitive impairments in adult rats[J]. Neuropharmacology,2011,61(8):1354-9.
    [40]Culley DJ, Yukhananov RY, Xie Z, et al. Altered hippocampal gene expression 2 days after general anesthesia in rats[J]. European journal of pharmacology, 2006,549(1-3):71-8.
    [41]Terrando N, Eriksson LI, Ryu JK, et al. Resolving postoperative neuroinflammation and cognitive decline[J]. Annals of neurology,2011,70(6): 986-95.
    [42]Yan XB, Ouyang Wen, Li Guan, et al. Involvement of neuronal nitric oxide synthase in cognitive impairment in isoflurane-treated rats[J]. Neuroscience Letters,2012,506(2):240-244.
    [43]Hudson AE, Hemmings HCJr. Are anaesthetics toxic to the brain[J]? Br J Anaesth,2011,107(1):30-7.
    [44]张挺杰,皋源,江燕,等.老年病人术后精神障碍的发生率和病因分析[J].临床麻醉学杂志,2003,19(2):98-99
    [45]周静,周苏明.老年人手术后精神障碍临床分析[J].实用老年医学,2006,20(1):46-47.
    [46]Rasmussen LS, Johnson T, Kuipers HM, et al. Does anaesthesia cause postoperative cognitive dysfunction? A randomised study of regional versus general anaesthesia in 438 elderly patients[J]. Acta anaesthesiologica Scandinavica,2003,47(3):260-6.
    [47]Williams-Russo P, Sharrock NE, Mattis S, et al. Cognitive effects after epidural vs general anesthesia in older adults. A randomized trial[J]. JAMA,1995, 274(1):44-50.
    [48]Hocker J, Stapelfeldt C, Leiendecker J, et al., Postoperative neurocognitive dysfunction in elderly patients after xenon versus propofol anesthesia for major noncardiac surgery:a double-blinded randomized controlled pilot study[J]. Anesthesiology,2009,110(5):1068-76.
    [49]Coburn M, Baumert JH, Roertgen D, et al. Emergence and early cognitive function in the elderly after xenon or desflurane anaesthesia:a double-blinded randomized controlled trial[J]. Br J Anaesth,2007,98(6):756-62.
    [50]Fujita Y, Nakamura K, Horiguchi Y, et al. Effect of different perioperative analgesic methods on postoperative cognitive dysfunction in elderly patients undergoing upper abdominal surgery[J]. Masui,2011,60(10):1153-8.
    [51]Silbert BS, Scott DA, Evered LA, et al. A comparison of the effect of high-and low-dose fentanyl on the incidence of postoperative cognitive dysfunction after coronary artery bypass surgery in the elderly[J]. Anesthesiology,2006,104(6): 1137-45.
    [52]Rasmussen LS, Steentoft A, Rasmussen H, et al. Benzodiazepines and postoperative cognitive dysfunction in the elderly. ISPOCD Group. International Study of Postoperative Cognitive Dysfunction[J]. Br J Anaesth, 1999,83(4):585-9.
    [53]Rortgen D, Kloos J, Fries M, et al. Comparison of early cognitive function and recovery after desflurane or sevoflurane anaesthesia in the elderly:a double-blinded randomized controlled trial[J]. Br J Anaesth,2010,104(2): 167-74.
    [54]Canet J, Raeder J, Rasmussen LS, et al. Cognitive dysfunction after minor surgery in the elderly[J]. Acta Anaesthesiol Scand,2003,47(10):1204-10.
    [55]Newman MF, Kirchner JL, Phillips-Bute B, et al. Longitudinal assessment of neurocognitive function after coronary-artery bypass surgery[J]. N Engl J Med, 2001,344(6):395-402.
    [56]Evered L, Scott DA, Silbert B, et al. Postoperative Cognitive Dysfunction Is Independent of Type of Surgery and Anesthetic[J]. Anesthesia and analgesia, 2011,112(5):1179-1185.
    [57]Kasten-Jolly J, Lawrence DA. CNS Cytokines[J].2011,1.-359-382.
    [58]Banks WA. Physiology and pathology of the blood-brain barrier:implications for microbial pathogenesis, drug delivery and neurodegenerative disorders[J]. J Neurovirol,1999,5(6):538-55.
    [59]Desai BS, Monahan AJ, Carvey PM, et al. Blood-brain barrier pathology in Alzheimer's and Parkinson's disease:implications for drug therapy[J]. Cell Transplant,2007,16(3):285-99.
    [60]Zlokovic BV. The blood-brain barrier in health and chronic neurodegenerative disorders[J]. Neuron,2008,57(2):178-201.
    [61]van Munster BC, Korse CM, de Rooij S.E, et al. Markers of cerebral damage during delirium in elderly patients with hip fracture[J]. Bmc Neurology, 2009. 9.
    [62]Tombaugh GC, Rowe WB,Chow AR, et al. Theta-frequency synaptic potentiation in CA1 in vitro distinguishes cognitively impaired from unimpaired aged Fischer 344 rats[J].J Neurosci,2002,22(22):9932-40.
    [63]Kesner RP, Gilbert PE, Wallenstein GV. Testing neural network models of memory with behavioral experiments[J]. Curr Opin Neurobiol,2000,10(2): 260-5.
    [64]韩济生,关新民主编.医用神经生物学[M].武汉:武汉出版社,1996.232-233.
    [65]Capuron L, Miller AH. Immune system to brain signaling: neuropsychopharmacological implications[J]. Pharmacology & therapeutics, 2011,130(2):226-38.
    [66]Oppenheim JJ, Feldmann M, Durum SK. Cytokine reference:a compendium of cytokines and other mediators of host defense[M]. San Diego:Academic Press, 2001:2
    [67]Terrando N, Rei Fidalgo A, Vizcaychipi M, et al. The impact of IL-1 modulation on the development of lipopolysaccharide-induced cognitive dysfunction[J]. Critical care,2010,14(3):p. R88.
    [68]Dantzer R, O'Connor JC, Freund GG, et al. From inflammation to sickness and depression:when the immune system subjugates the brain[J]. Nature reviews. Neuroscience,2008,9(1):46-56.
    [69]EckenhoffRG, Laudansky KF. Anesthesia, surgery, illness and Alzheimer's disease[J]. Progress in neuro-psychopharmacology & biological psychiatry, 2012.
    [70]Griffin WS, Liu L, Li Y, et al. Interleukin-1 mediates Alzheimer and Lewy body pathologies[J]. J Neuroinflammation,2006,3:5.
    [71]Fidalgo AR, Cibelli M, White JP, et al. Peripheral orthopaedic surgery down-regulates hippocampal brain-derived neurotrophic factor and impairs remote memory in mouse[J]. Neuroscience,2011,190:194-9.
    [72]Li YC, Xi CH, An YF, et al. Perioperative inflammatory response and protein S-100β concentrations-relationship with post-operative cognitive dysfunction in elderly patients[J]. Acta anaesthesiologica Scandinavica,2012, 56(5):595-600.
    [73]Beloosesky Y, Hendel D, Weiss A, et al. Cytokines and c-reactive protein production in hip-fracture-operated elderly patients[J]. Journals of Gerontology Series a-Biological Sciences and Medical Sciences, 2007,62(4):420-426.
    [74]Kalman J, Juhasz A, Bogats G, et al. Elevated levels of inflammatory biomarkers in the cerebrospinal fluid after coronary artery bypass surgery are predictors of cognitive decline[J]. Neurochemistry International,2006,48(3): 177-180.
    [75]Ferrari S, Finelli P, Rocchi M.The Active Gene That Encodes Human High Mobility Group 1 protein (HMG1) contains introns and maps to chromosome 13[J]. Genomics,1996,35(2):367-71.
    [76]Wang H, Bloom O, Zhang M, et al. HMG-1 as a late mediator of endotoxin lethality in mice[J]. Science,1999,285(5425):248-51.
    [77]Mantell LL, Parrish WR, Ulloa L. HMGB-1 as a therapeutic target for infectious and inflammatory disordere[J]. Shock,2006,25(1):4-11.
    [78]Yang H, Wang H, Czura CJ, et al. The cytokine activity of HMGB1[J]. Journal of leukocyte biology,2005,78(1):1-8.
    [79]Agnello D, Wang H, Yang H, et al. HMGB-1, a DNA-binding protein with cytokine activity, induces brain TNF and IL-6 production, and mediates anorexia and taste aversion[J]. Cytokine,2002,18(4):231-6.
    [80]O'Connor KA, Hansen MK, Rachal PC, et al. Further characterization of high mobility group box 1 (HMGB1) as a proinflammatory cytokine:central nervous system effects[J]. Cytokine,2003,24(6):254-65.
    [81]Hreggvidsdottir HS, Ostberg T, Wahamaa H, et al. The alarmin HMGB1 acts in synergy with endogenous and exogenous danger signals to promote inflammationfJ]. Journal of leukocyte biology,2009,86(3):655-62.
    [82]Sha Y, Zmijewski J, Xu Z, et al. HMGB1 develops enhanced proinflammatory activity by binding to cytokines[J]. Journal of immunology,2008,180(4): 2531-7.
    [83]Wahamaa H, Schierbeck H, Hreggvidsdottir HS, et al. High mobility group box protein 1 in complex with lipopolysaccharide or IL-1 promotes an increased inflammatory phenotype in synovial fibroblasts[J]. Arthritis Res Ther,2011, 13(4):R136.
    [84]Suda K, Takeuchi H, Ishizaka A, et al. High-mobility-group box chromosomal protein 1 as a new target for modulating stress response[J]. Surgery Today, 2010,40(7); 592-601.
    [85]Yang H, Tracey KJ. Targeting HMGB1 in inflammation[J]. Biochimica et biophysica acta,2010,1799(1-2):149-56.
    [86]Guazzi S, Strangio A, Franzi AT, et al.HMGB1, an architectural chromatin protein and extracellular signalling factor, has a spatially and temporally restricted expression pattern in mouse brain[J]. Gene expression patterns: GEP,2003,3(1):29-33.
    [87]Fang P, Schachner M, Shen YQ. HMGB1 in development and diseases of the central nervous system[J]. Mol Neurobiol,2012,45(3):499-506.
    [88]Mazarati A, Maroso M, Iori V, et al. High-mobility group box-1 impairs memory in mice through both toll-like receptor 4 and Receptor for Advanced Glycation End Products[J]. Experimental neurology,2011,232(2):143-8.
    [89]Schmidt AM, Yan SD, Yan SF, et al. The multiligand receptor RAGE as a progression factor amplifying immune and inflammatory responses[J]. The Journal of clinical investigation,2001,108(7):949-55.
    [90]Li W, Ling HP, You WC, et al. Recombinant high-mobility group box 1 protein (HMGB-1) promotes myeloid differentiation primary response protein 88 (Myd88) upregulation in mouse primary cortical neurons[J]. Neurol Sci,2012.
    [91]Quan N. Immune-To-Brain Signaling:How Important are the Blood-Brain Barrier-independent Pathways[J]? Molecular Neurobiology,2008,37(2-3): 142-152.
    [92]Persidsky Y, Ramirez SH, Haorah J, et al. Blood-brain barrier:structural components and function under physiologic and pathologic conditions[J]. J Neuroimmune Pharmacol,2006,1(3):223-36.
    [93]Correale J, Villa A. The blood-brain-barrier in multiple sclerosis:functional roles and therapeutic targeting[J]. Autoimmunity,2007,40(2):148-60.
    [94]Remy S, Beck H. Molecular and cellular mechanisms of pharmacoresistance in epilepsy[J]. Brain,2006,129(Pt 1):18-35.
    [95]Davies DC. Blood-brain barrier breakdown in septic encephalopathy and brain tumours[J]. JAnat,2002,200(6):639-46.
    [96]Begley DJ, Pontikis CC, Scarpa M. Lysosomal storage diseases and the blood-brain barrier[J]. Curr Pharm Des,2008,14(16):1566-80.
    [97]Farrall AJ, Wardlaw JM. Blood-brain barrier:ageing and microvascular disease-systematic review and meta-analysis[J]. Neurobiology of aging,2009, 30(3):337-52.
    [98]Popescu BO, Toescu EC, Popescu LM, et al. Blood-brain barrier alterations in ageing and dementia[J]. Journal of the neurological sciences,2009,283(1-2): 99-106.
    [99]Villeda SA, Luo J, Mosher KI, et al. The ageing systemic milieu negatively regulates neurogenesis and cognitive function[J]. Nature.2011,477(7362): 90-4.
    [100]Zeevi N, Pachter J, McCullough LD, et al. The blood-brain barrier:geriatric relevance of a critical brain-body interface[J]. Journal of the American Geriatrics Society,2010,58(9):1749-57.
    [101]Huber JD, Witt KA, Hom S, et al. Inflammatory pain alters blood-brain barrier permeability and tight junctional protein expression[J]. American Journal of Physiology-Heart and Circulatory Physiology,2001,280(3):H1241-H1248.
    [102]Oztas B, Akgul S, Arslan FB. Influence of surgical pain stress on the blood-brain barrier permeability in rats[J]. Life Sciences,2004,74(16): 1973-1979.
    [103]Tetrault S, Chever O, Sik A, et al. Opening of the blood-brain barrier during isoflurane anaesthesia[J]. The European journal of neuroscience,2008,28(7): 1330-41.
    [104]Masamoto K, Fukuda M, Vazquez A, et al. Dose-dependent effect of isoflurane on neurovascular coupling in rat cerebral cortex[J]. The European journal of neuroscience,2009,30(2):242-50.
    [105]Kim JB, Lim CM, Yu YM, et al. Induction and subcellular localization of high-mobility group box-1 (HMGB1) in the postischemic rat brain[J]. Journal of neuroscience research,2008,86(5):1125-31.
    [106]Klune J, Dhupar R, Cardinal J et al. HMGB1:Endogenous Danger Signaling[J].Molecular medicine,2008,14(7-8):476-484
    [107]Hayakawa K, Qiu J, Lo EH. Biphasic actions of HMGB 1 signaling in inflammation and recovery after stroke[J]. Annals of the New York Academy of Sciences,2010,1207(1):50-57.
    [108]Shankar SK. Biology of aging brain[J]. Indian J Pathol Microbiol,2010,53(4): 595-604.
    [109]Dilger RN, Johnson RW. Aging, microglial cell priming, and the discordant central inflammatory response to signals from the peripheral immune system[J]. J Leukoc Biol,2008,84(4):932-9.
    [110]Stern Y. Cognitive reserve[J]. Neuropsychologia,2009,47(10):2015-28.
    [111]Goh JO, Park DC. Neuroplasticity and cognitive aging:the scaffolding theory of aging and cognition[J]. Restor Neurol Neurosci,2009,27(5):391-403.
    [1]Ronald D. Miller. Miller's Anesthesia seventh edition[M]. Jeanine P. Churchill Livingstone Inc,2009:89
    [2]Silbert B, Evered L, Scott DA. Cognitive decline in the elderly:Is anaesthesia implicated[J]? Best Practice & Research Clinical Anaesthesiology,2011,25(3): 379-393.
    [3]Newman S, Stygall J, Hirani S, et al. Postoperative cognitive dysfunction after noncardiac surgery:a systematic review[J]. Anesthesiology,2007,106(3): 572-90.
    [4]Krenk L, Rasmussen LS, Kehlet H. New insights into the pathophysiology of postoperative cognitive dysfunction[J]. Acta anaesthesiologica Scandinavica, 2010,54(8):951-6.
    [5]Steinmetz J, Christensen KB, Lund T, et al. Long-term Consequences of Postoperative Cognitive Dysfunction. Anesthesiology,2009,110(3):548-555.
    [6]Murkin JM, Newman SP, Stump DA, et al. Statement of consensus on assessment of neurobehavioral outcomes after cardiac surgery[J]. Ann Thorac Surg,1995, 59(5:1289-95.
    [7]Anthony JC, LeResche L, Niaz U, et al. Limits of the'Mini-Mental State'as a screening test for dementia and delirium among hospital patients[J]. Psychological Medicine,2009,12(02):397.
    [8]Bedford PD. Adverse cerebral effects of anaesthesia on old people[J]. Lancet, 1955,269(6884):259-63.
    [9]Moller JT, Cluitmans P, Rasmussen LS, et al. Long-term postoperative cognitive dysfunction in the elderly ISPOCDl study. ISPOCD investigators. International Study of Post-Operative Cognitive Dysfunction[J]. Lancet,1998,351(9106): 857-61.
    [10]Monk TG, Weldon BC, Garvan CW, et al. Predictors of cognitive dysfunction after major noncardiac surgery[J]. Anesthesiology,2008,108(1):p.18-30.
    [11]Evered L, Scott DA, Silbert B, et al. Postoperative Cognitive Dysfunction Is Independent of Type of Surgery and Anesthetic[J]. Anesthesia and analgesia, 2011,112(5):1179-1185.
    [12]Rodriguez RA, Rubens FD, Wozny D, et al. Cerebral Emboli Detected by Transcranial Doppler During Cardiopulmonary Bypass Are Not Correlated With Postoperative Cognitive Deficits[J]. Stroke; a journal of cerebral circulation,2010,41(10):2229-2235.
    [13]Royse CF, Andrews DT, Newman SN, et al. The influence of propofol or desflurane on postoperative cognitive dysfunction in patients undergoing coronary artery bypass surgery[J]. Anaesthesia,2011,66(6):455-464.
    [14]Rasmussen LS. Post-operative cognitive dysfunction-incidence, risk factors, and correlation with biochemical markers for brain damage[J]. Acta anaesthesiologica Scandinavica,2008,52(3):442-443.
    [15]Phillips Bute B. Association of Neurocognitive Function and Quality of Life 1 Year After Coronary Artery Bypass Graft (CABG) Surgery[J]. Psychosomatic Medicine,2006,68(3):369-375.
    [16]Rosczyk HA, Sparkman NL, Johnson RW. Neuroinflammation and cognitive function in aged mice following minor surgery[J]. Experimental gerontology, 2008,43(9):840-6.
    [17]Cao XZ, Ma H, Wang JK, et al. Postoperative cognitive deficits and neuroinflammation in the hippocampus triggered by surgical trauma are exacerbated in aged rats[J]. Progress in Neuro-Psychopharmacology and Biological Psychiatry,2010,34(8):1426-1432.
    [18]Selkoe DJ. Aging brain, aging mind[J].Sci Am,1992,267(3):134-42.
    [19]Forette F, Seux ML, Staessen JA, et al. The prevention of dementia with antihypertensive treatment:new evidence from the Systolic Hypertension in Europe (Syst-Eur) study[J]. Archives of internal medicine,2002,162(18): 2046-52.
    [20]Kuo HK, Jones RN, Milberg WP, et al. Effect of Blood Pressure and Diabetes Mellitus on Cognitive and Physical Functions in Older Adults:A Longitudinal Analysis of the Advanced Cognitive Training for Independent and Vital Elderly Cohort[J]. Journal of the American Geriatrics Society,2005,53(7):1154-1161.
    [21]Kivipelto M, Helkala EL, Hanninen T, et al. Midlife vascular risk factors and late-life mild cognitive impairment:A longitudinal, population-based study[J]. Neurology,2001,56(8):A241-A241.
    [22]Grichnik KP, Ijsselmuiden AJJ, D'Amico TA, et al. Cognitive decline after major noncardiac operations:A preliminary prospective study[J]. Annals of Thoracic Surgery,1999,68(5):1786-1791.
    [23]Wei J, Xu H, Davies JL, et al. Increase of plasma IL-6 concentration with age in healthy subjects[J]. Life Sciences,1992,51(25):1953-6.
    [24]Hager K, Machein U, Krieger S, et al. Interleukin-6 and selected plasma proteins in healthy persons of different ages[J]. Neurobiology of aging,1994, 15(6):771-2.
    [25]Roubenoff R, Harris TB, Abad LW, et al. Monocyte cytokine production in an elderly population:effect of age and inflammation[J]. J Gerontol A Biol Sci Med Sci,1998,53(1):M20-6.
    [26]Yaffe K, Lindquist K, Penninx BW, et al. Inflammatory markers and cognition in well-functioning African-American and white elders[J]. Neurology,2003, 61(1):76-80.
    [27]Buchanan JB, Sparkman NL, ChenJ, et al. Cognitive and neuroinflammatory consequences of mild repeated stress are exacerbated in aged mice[J]. Psychoneuroendocrinology,2008,33(6):755-765.
    [28]Sparkman NL, Johnson RW. Neuroinflammation Associated with Aging Sensitizes the Brain to the Effects of Infection or Stress[J]. Neuroimmunomodulation,2008,15(4-6):323-330.
    [29]Dik MG, Jonker C, Bouter LM, et al. APOE-epsilon4 is associated with memory decline in cognitively impaired elderly[J]. Neurology,2000,54(7):1492-7.
    [30]Fillenbaum GG, Landerman LR, Blazer DG, et al. The relationship of APOE genotype to cognitive functioning in older African-American and Caucasian community residents[J]. Journal of the American Geriatrics Society,2001, 49(9):1148-55.
    [31]Tagarakis GI, Tsolaki Tagaraki F, Tsolaki M, et al. The Role of Apolipoprotein E in Cognitive Decline and Delirium after Bypass Heart Operations[J]. American Journal of Alzheimer's Disease and Other Dementias,2007,22(3): 223-228.
    [32]Steed L, Kong R, Stygall J,et al. The role of apolipoprotein E in cognitive decline after cardiac operation[J]. Annals of Thoracic Surgery,2001,71(3): 823-826.
    [33]Abildstrom H, Christiansen M, Siersma VD, et al. Apolipoprotein E genotype and cognitive dysfunction after noncardiac surgery [J]. Anesthesiology,2004, 101(4):855-61.
    [34]Steinmetz J, Jespersgaard C, Dalhoff K, et al. Cytochrome P450 polymorphism and postoperative cognitive dysfunction[J]. Minerva Anestesiologica,2012, 78(3):303-309.
    [35]McEwen BS, Sapolsky RM. Stress and cognitive function[J]. Curr Opin Neurobiol,1995,5(2):205-16.
    [36]Gustafson Y, Brannstrom B, Berggren D, et al. A geriatric-anesthesiologic program to reduce acute confusional states in elderly patients treated for femoral neck fractures[J]. Journal of the American Geriatrics Society,1991, 39(7):655-62.
    [37]Hudetz JA, Hoffmann RG, Patterson KM, et al. Preoperative Dispositional Optimism Correlates With a Reduced Incidence of Postoperative Delirium and Recovery of Postoperative Cognitive Function in Cardiac Surgical Patients[J]. Journal of Cardiothoracic and Vascular Anesthesia,2010,24(4):560-567.
    [38]Leung JM, Tsai TL, Sands LP. Preoperative Frailty in Older Surgical Patients Is Associated with Early Postoperative Delirium[J]. Anesthesia & Analgesia, 2011,112(5):1199-1201.
    [39]Jankowski CJ, Trenerry MR, Cook DJ, et al. Cognitive and functional predictors and sequelae of postoperative delirium in elderly patients undergoing elective joint arthroplasty[J]. Anesthesia and analgesia,2011,112(5):1186-93.
    [40]Crosby G, Culley DJ. Surgery and anesthesia:healing the body but harming the brain[J]? Anesthesia and analgesia,2011,112(5):999-1001.
    [41]Leuner B, Gould E. Structural Plasticity and Hippocampal Function[J]. Annual Review of Psychology,2010,61(1):111-140.
    [42]Yan XB, Ouyang W, Li G, et al. Involvement of neuronal nitric oxide synthase in cognitive impairment in isoflurane-treated rats[J]. Neuroscience Letters, 2012,506(2):240-244.
    [43]Lin D, Zuo Z. Isoflurane induces hippocampal cell injury and cognitive impairments in adult rats[J]. Neuropharmacology,2011,61 (8):1354-9.
    [44]Culley DJ, Yukhananov RY, Xie Z, et al. Altered hippocampal gene expression 2 days after general anesthesia in rats[J]. European journal of pharmacology, 2006,549(1-3):71-8.
    [45]Rasmussen LS, Johnson T, Kuipers HM, et al. Does anaesthesia cause postoperative cognitive dysfunction? A randomised study of regional versus general anaesthesia in 438 elderly patients[J]. Acta anaesthesiologica Scandinavica,2003,47(3):260-6.
    [46]Kasten Jolly J, Lawrence DA. CNS Cytokines[J]. Neurochemical Mechanisms in Disease,Advances in Neurobiology,2011,1:359-382.
    [47]Terrando N, Rei Fidalgo A, Vizcaychipi M, et al. The impact of IL-1 modulation on the development of lipopolysaccharide-induced cognitive dysfunction[J]. Critical care,2010,14(3):R88.
    [48]Terrando N, Monaco C, Ma D, et al. Tumor necrosis factor-alpha triggers a cytokine cascade yielding postoperative cognitive decline[J]. Proceedings of the National Academy of Sciences of the United States of America,2010,107(47): 20518-22.
    [49]Fidalgo AR, Cibelli M, White JP, et al. Peripheral orthopaedic surgery down-regulates hippocampal brain-derived neurotrophic factor and impairs remote memory in mouse[J]. Neuroscience,2011,190:194-9.
    [50]Li YC, Xi CH, An YF, et al. Peri operative inflammatory response and protein S-100β concentrations-relationship with post-operative cognitive dysfunction in elderly patients[J]. Acta anaesthesiologica Scandinavica,2012, 56(5):595-600.
    [51]Beloosesky Y, Hendel D, Weiss A, et al. Cytokines and c-reactive protein production in hip-fracture-operated elderly patients[J]. Journals of Gerontology Series a-Biological Sciences and Medical Sciences,2007,62(4):420-426.
    [52]Kalman J, Juhasz A, Bogats G, et al. Elevated levels of inflammatory biomarkers in the cerebrospinal fluid after coronary artery bypass surgery are predictors of cognitive decline[J]. Neurochemistry International,2006,48(3): 177-180.
    [53]Goodwin GH, Sanders C, Johns EW. A new group of chromatin-associated proteins with a high content of acidic and basic amino acids[J]. Eur J Biochem,1973,38(1):14-9.
    [54]Ferrari S, Finelli P, Rocchi M. The Active Gene That Encodes Human High Mobility Group 1 Protein (HMG1) Contains Introns and Maps to Chromosome 1[J]. Genomics,1996,35 (2):367-371.
    [55]Yang H, Wang H, Czura CJ, et al. The cytokine activity of HMGB1[J]. Journal of leukocyte biology,2005,78(1):1-8.
    [56]Wang H, Bloom O, Zhang M, et al.HMG-1 as a late mediator of endotoxin lethality in mice[J]. Science,1999,285(5425):248-51.
    [57]Mantell LL, Parrish WR, Ulloa L. HMGB-1 as a therapeutic target for infectious and inflammatory disorders[J].Shock,2006,25(1):4-11.
    [58]Agnello D, Wang H, Yang H, et al. HMGB-1, a DNA-binding protein with cytokine activity, induces brain TNF and IL-6 production, and mediates anorexia and taste aversion[J]. Cytokine,2002,18(4):231-6.
    [59]O'Connor K.A, Hansen MK, Rachal Pugh C, et al. Further characterization of high mobility group box 1 (HMGB1) as a proinflammatory cytokine:central nervous system effects[J]. Cytokine,2003,24(6):254-65.
    [60]Hreggvidsdottir HS, Ostberg T, Wahamaa H, et al. The alarmin HMGB1 acts in synergy with endogenous and exogenous danger signals to promote inflammation[J]. Journal of leukocyte biology,2009,86(3):655-62.
    [61]Sha Y, Zmijewski J, Xu Z, et al. HMGB1 develops enhanced proinflammatory activity by binding to cytokines[J]. Journal of immunology,2008,180(4): 2531-7.
    [62]Wahamaa H, Schierbeck H, Hreggvidsdottir HS, et al. High mobility group box protein 1 in complex with lipopolysaccharide or IL-1 promotes an increased inflammatory phenotype in synovial fibroblasts[J]. Arthritis Res Ther,2011, 13(4):R136.
    [63]Suda K, Takeuchi H, Ishizaka A, et al. High-mobility-group box chromosomal protein 1 as a new target for modulating stress response[J]. Surgery Today, 2010,40(7):592-601.
    [64]Yang H, Tracey KJ. Targeting HMGB1 in inflammation[J]. Biochimica et biophysica acta,2010,1799(1-2):149-56.
    [65]Guazzi S, Strangio A, Franzi AT, et al. HMGB1, an architectural chromatin protein and extracellular signalling factor, has a spatially and temporally restricted expression pattern in mouse brain[J]. Gene expression patterns: GEP,2003,3(1):29-33.
    [66]Fang P, Schachner.M, Shen YQ. HMGB1 in development and diseases of the central nervous system[J]. Mol Neurobiol,2012,45(3):499-506.
    [67]He HJ, Wang Y, Le Y, et al. Surgery Upregulates High Mobility Group Box-1 and Disrupts the Blood-Brain Barrier causing Cognitive Dysfunction in Aged Rats[J]. CNS Neuroscience & Therapeutics,2012,18(12):994-1002.
    [68]Chavan SS, Huerta PT, Robbiati S, et al. HMGB1 Mediates Cognitive Impairment in Sepsis Survivors[J]. Molecular medicine,2012,18(6):930-937.
    [69]Mazarati A, Maroso M, Iori V, et al. High-mobility group box-1 impairs memory in mice through both toll-like receptor 4 and Receptor for Advanced Glycation End Products[J]. Experimental neurology,2011,232(2):143-8.
    [70]Li W, Ling HP, You WC, et al. Recombinant high-mobility group box 1 protein (HMGB-1) promotes myeloid differentiation primary response protein 88 (Myd88) upregulation in mouse primary cortical neurons[J]. Neurol Sci,2012.
    [71]Gao HM, Zhou H, Zhang F, et al. HMGB1 Acts on Microglia Macl to Mediate Chronic Neuroinflammation That Drives Progressive Neurodegeneration[J]. Journal of Neuroscience,2011,31(3):1081-1092.
    [72]Quan N. Immune-To-Brain Signaling:How Important are the Blood-Brain Barrier-independent Pathways[J]? Molecular Neurobiology,2008,37(2-3): 142-152.
    [73]Persidsky Y, Ramirez SH, Haorah J, et al. Blood-brain barrier:structural components and function under physiologic and pathologic conditions[J]. J Neuroimmune Pharmacol,2006,1(3):223-36.
    [74]Correale J, Villa A. The blood-brain-barrier in multiple sclerosis:functional roles and therapeutic targeting[J]. Autoimmunity,2007,40(2):148-60.
    [75]Desai BS, Monahan AJ, Carvey PM, et al. Blood-brain barrier pathology in Alzheimer's and Parkinson's disease:implications for drug therapy[J]. Cell Transplant,2007,16(3):285-99.
    [76]Remy S, Beck H. Molecular and cellular mechanisms of pharmacoresistance in epilepsy[J]. Brain,2006,129(Pt 1):18-35.
    [77]Davies DC. Blood-brain barrier breakdown in septic encephalopathy and brain tumours[J]. J Anat,2002,200(6):639-46.
    [78]Begley DJ, Pontikis CC, Scarpa M. Lysosomal storage diseases and the blood-brain barrier[J]. Curr Pharm Des,2008,14(16):1566-80.
    [79]Huber JD, Witt KA, Hom S, et al. Inflammatory pain alters blood-brain barrier permeability and tight junctional protein expression[J]. American Journal of Physiology-Heart and Circulatory Physiology,2001,280(3):H1241-H1248.
    [80]Oztas B, Akgul S, Arslan FB. Influence of surgical pain stress on the blood-brain barrier permeability in rats[J]. Life Sciences,2004,74(16): 1973-1979.
    [81]Tetrault S, Chever O, Sik A, et al. Opening of the blood-brain barrier during isoflurane anaesthesia[J]. The European journal of neuroscience,2008,28(7): 1330-41.
    [82]Masamoto K, Fukud M, Vazquez A, et al. Dose-dependent effect of isoflurane on neurovascular coupling in rat cerebral cortex[J]. The European journal of neuroscience,2009,30(2):242-50.
    [83]van Munster BC, Korse CM, de Rooij SE, et al. Markers of cerebral damage during delirium in elderly patients with hip fracture[J]. Bmc Neurology,2009, 9.
    [84]Hayakawa K, Qiu J, Lo EH. Biphasic actions of HMGB1 signaling in inflammation and recovery after stroke[J]. Annals of the New York Academy of Sciences,2010,1207(1):50-57.
    [85]Sims GP, Rowe DC, Rietdijk ST, et al. HMGB1 and RAGE in inflammation and cancer[J]. Annual review of immunology,2010,28:367-88.
    [86]Klune J, Dhupar R, Cardinal Jon. HMGB1:Endogenous Danger Signaling[J]. Molecular medicine,2008,14(7-8):1476-484
    [87]Fan L, Wang TL, Xu YC, et al. Minocycline may be useful to prevent/treat postoperative cognitive decline in elderly patients[J]. Medical Hypotheses, 2011,76(5):733-736.
    [88]Cibelli M, Fidalgo AR, Terrando N, et al. Role of interleukin-lbeta in postoperative cognitive dysfunction [J]. Annals of neurology,2010,68(3): 360-8.
    [89]Mattioli F, Stampatori C, Bellomi F, et al. Neuropsychological rehabilitation in adult multiple sclerosis[J]. Neurological Sciences,2010,31(S2):271-274.
    [90]Price CC, Garvan CW, Monk TG. Type and severity of cognitive decline in older adults after noncardiac surgery[J]. Anesthesiology,2008,108(1):8-17.
    [91]Steinmetz J, Christensen KB, Lund T, et al. Long-term consequences of postoperative cognitive dysfunction[J]. Anesthesiology,2009,110(3):548-55.
    [92]Hu Z, Ou Y, Duan K, et al. Inflammation:a bridge between postoperative cognitive dysfunction and Alzheimer's disease[J]. Med Hypotheses,2010, 74(4):722-4.
    [93]Dijkstra JB, Jolles J. Postoperative cognitive dysfunction versus complaints:a discrepancy in long-term findings[J]. Neuropsychol Rev,2002,12(1):1-14.
    [94]Rudolph JL, Schreiber KA, Culley DJ, et al. Measurement of post-operative cognitive dysfunction after cardiac surgery:a systematic review[J]. Acta Anaesthesiol Scand,2010,54(6):663-77.
    [95]Williams-Russo P, Sharrock NE, Mattis S, et al. Cognitive effects after epidural vs general anesthesia in older adults[J]. A randomized trial. JAMA,1995, 274(1):44-50.
    [96]Hanning CD. Postoperative cognitive dysfunction[J]. Br J Anaesth,2005,95(1): 82-7.
    [97]Terrando N, Brzezinski M, Degos V, et al. Perioperative cognitive decline in the aging population[J]. Mayo Clin Proc,2011,86(9):885-93.
    [98]Ancelin ML, de Roquefeuil G, Ledesert B, et al. Exposure to anaesthetic agents, cognitive functioning and depressive symptomatology in the elderly[J]. Br J Psychiatry,2001,178:360-6.
    [99]Hudetz JA, Patterson KM, Amole O, et al. Postoperative cognitive dysfunction after noncardiac surgery:effects of metabolic syndrome[J]. J Anesth,2011, 25(3):337-44.
    [100]Bekker A, Lee C, de Santi S, et al. Does mild cognitive impairment increase the risk of developing postoperative cognitive dysfunction[J]? Am J Surg, 2010,199(6):782-8.
    [101]Gogenur I. Postoperative circadian disturbances[J]. Dan Med Bull,2010, 57(12):B4205.
    [102]Stratmann G. Review article:Neurotoxicity of anesthetic drugs in the developing brain[J]. Anesthesia and analgesia,2011,113(5):1170-9.
    [103]Terrando N, Eriksson LI, Ryu JK, et al. Resolving postoperative neuro inflammation and cognitive decline[J]. Annals of neurology,2011, 70(6):986-95.
    [104]Hudson AE, Hemmings HC Jr. Are anaesthetics toxic to the brain[J]? Br J Anaesth,2011,107(1):30-7.
    [105]Yirmiya R, Goshen I. Immune modulation of learning, memory, neural plasticity and neurogenesis[J]. Brain Behav Immun,2011,25(2):181-213.
    [106]Xie GL, Zhang W, Chang YZ, et al. Relationship between perioperative inflammatory response and postoperative cognitive dysfunction in the elderly[J]. Medical Hypotheses,2009,73(3):402-403.
    [107]Maze M, Cibelli M, Grocott HP. Taking the lead in research into postoperative cognitive dysfunction[J]. Anesthesiology,2008,108(1):1-2.
    [108]Fidalgo AR, Cibelli M, White JPM, et al. Systemic inflammation enhances surgery-induced cognitive dysfunction in mice[J]. Neuroscience Letters, 2011,498(1):63-66.
    [109]Wuri G, Wang DX, Zhou Y, et al. Effects of surgical stress on long-term memory function in mice of different ages[J]. Acta Anaesthesiol Scand,2011, 55(4):474-85.
    [110]Tan WF, Cao XZ, Wang JK, et al. Protective effects of lithium treatment for spatial memory deficits induced by tau hyperphosphorylation in splenectomized rats[J]. Clin Exp Pharmacol Physiol,2010,37(10):1010-5.
    [111]Hovens IB, Schoemaker RG, van der Zee EA, et al. Thinking through postoperative cognitive dysfunction:How to bridge the gap between clinical and pre-clinical perspectives[J]. Brain Behav Immun,2012,26(7):1169-79.
    [112]Andreasen NC, O'Leary DS, Arndt S, et al. I. PET studies of memory:novel and practiced free recall of complex narratives[J]. Neuroimage,1995,2(4): 284-95.
    [113]Andreasen NC, O'Leary DS, Cizadlo T, et al. II. PET studies of memory:novel versus practiced free recall of word lists[J]. Neuroimage,1995,2(4):296-305.
    [114]Andreasen NC, O'Leary DS, Cizadlo T, et al. Remembering the past:two facets of episodic memory explored with positron emission tomography[J]. Am J Psychiatry,1995,152(11):1576-85.
    [115]Brand N, Jolles J. Learning and retrieval rate of words presented auditorily and visually[J].J Gen Psychol,1985,112(2):201-10.
    [116]Dickerson BC, Miller SL, Greve DN, et al. Prefrontal-hippocampal-fusiform activity during encoding predicts intraindividual differences in free recall ability:an event-related functional-anatomic MRI study[J]. Hippocampus, 2007,17(11):1060-70.
    [117]Forn C, Belloch V, Bustamante JC, et al. A symbol digit modalities test version suitable for functional MRI studies[J]. Neurosci Lett, 2009,456(1): 11-4.
    [118]Liotti M, Woldorff MG, Perez R, et al. An ERP study of the temporal course of the Stroop color-word interference effect[J]. Neuropsychologia,2000, 38(5):701-11.
    [119]MacLeod CM, MacDonald PA. Interdimensional interference in the Stroop effect:uncovering the cognitive and neural anatomy of attention[J]. Trends Cogn Sci,2000,4(10):383-391.
    [120]Sylvester CY, Wager TD, Lacey SC, et al. Switching attention and resolving interference:fMRI measures of executive functions[J]. Neuropsychologia, 2003,41(3):357-70.
    [121]Wager TD, Jonides J, Reading S. Neuroimaging studies of shifting attention: a meta-analysis[J]. Neuroimage,2004,22(4):1679-93.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700