用户名: 密码: 验证码:
P-糖蛋白对~(18)F-FDG、~(99m)Tc-MIBI摄取影响的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分P-糖蛋白功能验证及与18F-FDG摄取相关蛋白检测
     目的利用Western Blot法测定Bcap37/MDR1与Bcap37细胞中P-糖蛋白(P-glycoprotein,P-gp)、葡萄糖转运蛋白1(Glucose transporter1,Glut-1)及己糖激酶-II(Hexokinase-II,HK-II)表达,利用罗丹明123荧光染色评价P-gp功能。方法提取Bcap37/MDR1及Bcap37细胞蛋白,采用Western Blot法测定细胞中P-gp、Glut-1及HK-II的表达情况,在有或无P-gp抑制剂维拉帕米(Verapamil,VER)存在的情况下,分别将Bcap37/MDR1与Bcap37细胞与罗丹明123共孵育60min,然后吸去上清液,再用冰冷的PBS液洗脱3次,用荧光显微镜观察细胞内罗丹明123荧光强度。
     结果P-gp在Bcap37/MDR1细胞中有高水平表达,而Bcap37细胞几乎无P-gp表达;Bcap37/MDR1细胞有较高水平的Glut-1表达,而Bcap37细胞仅表现为非常弱的Glut-1的表达; HK-II在两种细胞中均有较高水平表达。Bcap37、Bcap37/MDR1细胞与罗丹明123共孵育,Bcap37细胞内有明显荧光染色,Bcap37/MDR1细胞内仅有弱的荧光染色。加入VER后,Bcap37/MDR1细胞内的荧光染色明显增强。VER对Bcap37细胞荧光染色无明显影响。
     结论P-gp、Glut-1在Bcap37/MDR1细胞中的表达明显强于Bcap37细胞;Bcap37/MDR1所表达的P-gp具有相应的外排功能,该细胞能够用来评价P-gp与18F-FDG、99mTc-MIBI摄取之间的关系。
     第二部分99mTc-MIBI在Bcap37、Bcap37/MDR1细胞中的聚集实验
     目的通过99mTc-MIBI细胞内摄取动力学研究99mTc-MIBI能否评价Bcap37/MDR1细胞P-gp功能及在评价P-gp抑制剂抑制效能中的作用。方法培养Bcap37及Bcap37/MDR1细胞,将Bcap37及Bcap37/MDR1细胞接种于6孔细胞培养板上,接种密度为1×106细胞/孔,将99mTc-MIBI、VER及GF120918用不含胎牛血清的RPMI1640培养基分别配成74KBq/mL99mTc-MIBI溶液、74KBq/mL99mTc-MIBI+100μmol/L VER溶液及74KBq/mL的99mTc-MIBI+50μmol/L GF120918溶液。用上述配制好的溶液孵育Bcap37及Bcap37/MDR1细胞,分别于10min、30min、60min及120min吸取孵育液,置于试管内,用冰冷的PBS液洗脱3次,洗脱液一并放置相应的试管内。然后采用胰酶消化细胞,消化完成后吸出细胞置于试管内,再分别用1mL PBS液洗脱3次,洗脱液置于放置细胞的试管内,采用γ计数仪测量各个试管内的放射性计数,计算Bcap37、Bap37/MDR1细胞中99mTc-MIBI的摄取率。摄取率=细胞内放射性计数/(细胞内放射性计数+上清液放射性计数)×100%,实验重复三次。计算结果用x±s表示,两种细胞间及同种细胞不同处理组间99mTc-MIBI摄取率比较行配对t检验。
     结果Bcap37细胞在有或无抑制剂存在的情况下,99mTc-MIBI摄取率之间无统计学差异;Bcap37/MDR1细胞在有抑制剂存在的情况下99mTc-MIBI摄取率在孵育30min、60min及120min要明显高于无抑制剂存在时的摄取率(P<0.05);在无抑制剂存在的情况下,Bcap37细胞99mTc-MIBI摄取率在孵育30min、60min及120min要明显高于Bcap37/MDR1细胞(P<0.05);在有抑制剂存在的情况下,Bcap37/MDR1细胞的99mTc-MIBI摄取率略低于Bcap37细胞,但两者无统计学差异。
     结论99mTc-MIBI在Bcap37细胞与Bcap37/MDR1细胞中的摄取率有显著差异,P-gp抑制剂能够增加Bcap37/MDR1细胞的99mTc-MIBI摄取率,表明可以用99mTc-MIBI摄取动力学变化评价P-gp的功能;同时多药耐药细胞系99mTc-MIBI摄取率的变化能够用于评价P-gp抑制剂的抑制效率。
     第三部分18F-FDG在Bcap37、Bcap37/MDR1细胞中的聚集实验
     目的测定18F-FDG在Bcap37与Bcap37/MDR1细胞的摄取动力学变化,评价P-gp抑制剂存在时Bcap37与Bcap37/MDR1细胞对18F-FDG摄取的变化,在细胞水平上探讨18F-FDG摄取与P-gp表达之间的关系。方法将Bcap37及Bcap37/MDR1细胞分别接种于6孔细胞培养板上,细胞密度为1×106细胞/孔,将18F-FDG、VER及GF120918用不含胎牛血清的RPMI1640培养基分别配成37KBq/mL18F-FDG溶液、37KBq/mL18F-FDG+100μmol/L VER溶液及37KBq/mL的18F-FDG+50μmol/L GF120918溶液。分别用上述配制好的溶液孵育Bcap37及Bcap37/MDR1细胞,分别于10min、30min、60min及120min吸取孵育液置于试管内,再用冰冷的PBS液洗脱3次,洗脱液一并放置相应的试管内。细胞用胰酶消化,消化完成后吸出细胞置于试管内,用1mL PBS液洗脱3次,洗脱液置于放置细胞的试管内,用γ计数仪测量各个试管内的放射性计数,计算Bcap37、Bap37/MDR1细胞的18F-FDG摄取率,摄取率=细胞内放射性计数/(细胞内放射性计数+上清液放射性计数)×100%,实验重复三次。计算结果用x±s表示,两种细胞间及同种细胞不同处理组间18F-FDG摄取率比较行配对t检验。
     结果无抑制剂存在的情况下,孵育10min时Bcap37/MDR1细胞中18F-FDG摄取率显著高于Bcap37细胞,其摄取率分别为1.88%±0.19%和1.37%±0.18%(P<0.05);孵育60min和120min时Bcap37细胞中18F-FDG摄取率显著高于Bcap37/MDR1细胞,其摄取率分别为2.29%±0.23%、2.34%±0.15%和1.47%±0.14%、1.53%±0.22%(P<0.05)。VER或GF120918共孵育后,Bcap37/MDR1细胞在60min和120min时18F-FDG摄取率分别为2.45%±0.21%、2.46%±0.25%和2.50%±0.24%、2.48%±0.27%,较无抑制剂存在时明显增加(P<0.05)。Bcap37细胞在有无抑制剂存在的情况下,18F-FDG摄取率无明显变化,差异无统计学意义。
     结论细胞实验结果表明18F-FDG是P-gp的底物之一,Bcap37/MDR1细胞与Bcap37细胞间18F-FDG摄取率的差异是由于P-gp所介导的外排引起的,可以用18F-FDG动力学变化评价肿瘤细胞的P-gp功能,细胞内试验结果显示18F-FDG有可能作为活体内无创性评价肿瘤细胞的P-gp功能的显像剂。
     第四部分99mTc-MIBI在Bcap37、Bcap37/MDR1荷瘤小鼠显像研究
     目的利用荷Bcap37/MDR1与Bcap37细胞的BALB/c裸鼠模型,研究99mTc-MIBI在荷瘤小鼠体内显像,探讨99mTc-MIBI显像可否用于活体内评价肿瘤细胞的多药耐药。方法取处于对数生长期的Bcap37及Bcap37/MDR1细胞,用无血清的RPMI1640培养基制成细胞悬液,细胞计数后用无血清的RPMI1640培养基将细胞浓度稀释为1×10~7/mL,按0.2mL/只接种于4~6周龄的BALB/c裸鼠右侧腋窝皮下,5只裸鼠接种Bcap37细胞,5只裸鼠接种Bcap37/MDR1细胞。待肿瘤长至直径1.0~1.5cm时进行99mTc-MIBI SPECT显像。将荷Bcap37细胞裸鼠及荷Bcap37/MDR1细胞裸鼠通过尾静脉给予37MBq(1mCi,0.2mL)配制好的99mTc-MIBI,分别于给药后10min及60min行平面静态显像,隔日在相同采集条件下,尾静脉给予37MBq(1mCi,0.2mL)配制好的含有0.5mg/Kg VER的99mTc-MIBI溶液,分别于给药后10min及60min行平面静态显像。显像结束后,处死荷瘤小鼠后迅速取出肿瘤组织及肝脏组织,制成电镜标本,观察荷瘤小鼠肿瘤组织及肝脏组织线粒体情况。
     结果99mTc-MIBI生理性摄取可见于肝脏、肠道、肾脏及膀胱,部分荷瘤小鼠尾静脉注射部位可见轻度显影。荷Bcap37或Bcap37/MDR1肿瘤细胞裸鼠肿瘤部位在给予99mTc-MIBI后10min未见明显显影,60min后肿瘤部位同样未见明显显影。荷Bcap37或Bcap37/MDR1肿瘤细胞裸鼠在给予含0.5mg/Kg VER的99mTc-MIBI后10min及60min肿瘤部位均未见明显显影。荷Bcap37及Bcap37/MDR1肿瘤细胞裸鼠肿瘤组织细胞内线粒体数量较少,肝脏组织细胞内存在较多的线粒体,且线粒体体积明显大于肿瘤细胞内线粒体。
     结论荷Bcap37与Bcap37/MDR1肿瘤细胞裸鼠肿瘤组织99mTc-MIBI未见显影,同时给予P-gp抑制剂后肿瘤组织仍未见显影,表明选用荷瘤小鼠行99mTc-MIBI显像评价P-gp功能时要筛选肿瘤细胞株,应挑选99mTc-MIBI摄取率高且肿瘤细胞内线粒体较丰富的细胞株。
     第五部分18F-FDG在Bcap37、Bcap37/MDR1荷瘤小鼠显像研究
     目的研究荷Bcap37/MDR1及Bcap37肿瘤细胞荷瘤小鼠在有/无VER存在情况下肿瘤组织的18F-FDG摄取,在活体内评价P-gp与18F-FDG摄取的关系。方法荷瘤小鼠禁食6h,将需要动态采集的荷瘤小鼠置于小动物PET床板上,异氟烷吸入麻醉,胶带固定,身体置于视野中心,维持异氟烷麻醉浓度为2%。床前经尾静脉给予7.4MBq(0.2mCi,0.2mL)18F-FDG,给药后立即采集,共采集90min,得到各个时间段的动态显像图像,绘制感兴趣区(region of interest, ROI)的时间放射性曲线(time activity curve,TAC)。比较荷Bcap37肿瘤细胞裸鼠与荷Bcap37/MDR1肿瘤细胞裸鼠肿瘤组织18F-FDG摄取的TAC曲线。相同采集及处理方法,尾静脉给予含有0.5mg/Kg VER的7.4MBq(0.2mCi,0.2mL)18F-FDG,获得VER治疗后肿瘤组织18F-FDG摄取的TAC曲线。观察VER治疗后其18F-FDG TAC曲线,并与未行VER治疗时进行比较。另取10只荷瘤小鼠(5只荷Bcap37肿瘤细胞,5只荷Bcap37/MDR1肿瘤细胞),采用静态采集方法行18F-FDG Micro PET显像。荷瘤小鼠禁食6h,吸入异氟烷预麻醉,尾静脉给予7.4MBq(0.2mCi,0.2mL)18F-FDG,60min后行静态采集。在相同的采集处理条件下,尾静脉给予含有0.5mg/Kg VER的7.4MBq(0.2mCi,0.2mL)18F-FDG,获得VER治疗后肿瘤组织18F-FDG的静态图像,计算肿瘤组织的SUVmean。比较VER治疗前后肿瘤组织18F-FDG SUVmean的变化。显像结束后,处死荷瘤小鼠后将肿瘤组织制成蜡块,肿瘤标本行P-gp、Glut-1及HK-II免疫组化染色。
     结果18F-FDG Micro-PET动态显像显示Bcap37肿瘤组织18F-FDG摄取渐进性增高,在10~15min内达峰值水平,然后维持在平台水平;Bcap37/MDR1肿瘤组织18F-FDG摄取同样渐进性增高,在大约9min时达到峰值,然后18F-FDG摄取渐进性下降,在25~30min时达到平台,然后维持在平台水平。Bcap37/MDR1肿瘤组织18F-FDG摄取在0~9min要高于Bcap37肿瘤组织,9min后Bcap37肿瘤组织18F-FDG摄取水平要高于Bcap37/MDR1肿瘤组织。有或无VER存在情况下Bcap37肿瘤组织18F-FDG摄取动态曲线无明显差异;Bcap37/MDR1肿瘤组织在有或无VER存在的情况下,其0~15min18F-FDG摄取动态曲线无明显差异,但在15min下降到最低点后,18F-FDG摄取开始渐进性升高,约30min达到最高水平,然后维持在平台水平。VER显著增加Bcap37/MDR1肿瘤组织平台期18F-FDG摄取水平。荷瘤小鼠静态Micro PET显像,在无VER存在情况下Bcap37肿瘤组织SUVmean要显著高于Bcap37/MDR1肿瘤组织(1.00±0.06、0.66±0.11,P<0.05);Bcap37肿瘤组织18F-FDG摄取水平在有或无VER存在情况下无明显差异(1.00±0.06、1.09±0.22,P>0.05);Bcap37/MDR1肿瘤组织在VER存在情况下,18F-FDG摄取水平要明显高于无VER存在时(1.01±0.16、0.66±0.11,P<0.05)。Bcap37/MDR1肿瘤标本细胞膜P-gp免疫组化强染色,Bcap37肿瘤组织细胞膜几乎无P-gp免疫组化染色;Bcap37/MDR1肿瘤组织细胞膜可见Glut-1免疫组化强染色,Bcap37肿瘤组织细胞膜仅有轻度Glut-1免疫组化染色;Bcap37/MDR1与Bcap37肿瘤组织细胞浆内见轻-中度HK-II免疫组化染色。结论动物实验与细胞实验结果相吻合,提示18F-FDG是P-gp的底物。18F-FDG结合VER可能是一种有效、无创检测肿瘤多药耐药的方法。荷Bcap37/MDR1肿瘤细胞裸鼠肿瘤组织18F-FDG在有/无VER存在时呈特征性改变,提示18F-FDG PET或PET/CTList Mode采集在探测肿瘤多药耐药方面可能具有潜在的临床应用价值。
Part Ⅰ Verification of P-glycoprotein functional and detection of someprotein related to18F-FDG uptake expressed in cell lines
     Objective The expression of P-glycoprotein (P-gp), Glut-1and HK-II in Bcap37/MDR1and Bcap37cells were detected using Western Blot. The function of P-gp was evaluatedusing Rhodamine123.
     Methods The proteins for Western Blot assay were extracted in Bcap37/MDR1andBcap37cells. For the function evaluation, Bcap37/MDR1and Bcap37cells were seeded insix-well plates. Those cells were incubated using serum-free RPMI1640mediumcontaining5μmoL/L Rhodamine123with or without100μmol/L verapamil (VER) for1hat37℃. Then the cells were washed with ice-cold phosphate buffered saline (PBS) forthree times and analyzed by the fluorescent microscopy.
     Results P-gp and Glut-1were strongly expressed in Bcap37/MDR1cells, but weaklyexpressed in Bcap37cells. HK-II was expressed strongly both in Bcap37/MDR1andBcap37cells. Bcap37cells exhibited bright fluorescent staining in the presence ofRhodamine123. In contrast, Bcap37/MDR1cells showed only very weak fluorescence.Additionally, inhibition of the P-gp function by adding VER resulted in a marked increaseof the fluorescence in Bcap37/MDR1cells. There was no significant difference in thefluorescence of Bcap37cells in the presence or absence of VER.
     Conclusions Functional P-gp was strongly expressed in Bcap37/MDR1cells.Bcap37/MDR1and Bcap37cells can be used to evaluate the relationship between P-gp and18F-FDG and99mTc-MIBI uptake.
     Part Ⅱ The uptake of99mTc-MIBI in Bcap37and Bcap37/MDR1cells
     Objective To evaluate the uptake kinetics change of99mTc-MIBI in Bcap37andBcap37/MDR1cells using the classical inhibitors of P-gp: VER or GF120918.Methods Bcap37and Bcap37/MDR1were plated in six-well plates3days prior to theexperiments at a density of1×106/well. On the day of experiment,74KBq/mL99mTc-MIBI,74KBq/mL99mTc-MIBI+100μmoL/L VER or74KBq/mL99mTc-MIBI+50μmoL/LGF120918was added to each well. After an incubation period of10min,30min,60minand120min (37℃,5%CO2), the medium was removed and immediately washed threetimes with1mL ice-cold PBS. The cells were collected from the wells usingtrypsin-ethylenediaminetetraacetic acid (EDTA) treatment. The radioactivity of99mTc-MIBI was immediately determined using a gamma counter. The uptake of99mTc-MIBI was expressed at overall99mTc-MIBI radioactivity in Bcap37orBcap37/MDR1cells to the overall radioactivity added to the cells. Three independentexperiments were performed.
     Results The uptake of99mTc-MIBI had no significantly difference with or without VER orGF120918in Bcap37cells. VER or GF120918significantly increased the uptake of99mTc-MIBI in Bcap37/MDR1cells after an incubation period of30min,60min and120min (P<0.05). The uptake of99mTc-MIBI was significantly higher in Bcap37cells than inBcap37/MDR1cells after incubation for30min,60min and120min (P<0.05). The uptakeof99mTc-MIBI in Bcap37/MDR1was a little lower than that in Bcap37cells in thepresence of VER or GF120918.
     Conclusions The difference in the uptake of99mTc-MIBI between Bcap37andBcap37/MDR1reflected the expression level of P-gp. The uptake kinetics of99mTc-MIBImay be used to evaluate the function of P-gp. The inhibitors of P-gp (VER and GF120918)can significantly increase the uptake of99mTc-MIBI in Bcap37/MDR1cells. The change ofthe uptake of99mTc-MIBI in multidrug resistant cell lines can be used to evaluate theinhibitor efficiency of P-gp inhibitors.
     Part Ⅲ The uptake of18F-FDG in Bcap37and Bcap37/MDR1cells
     Objective To evaluate the uptake kinetics change of18F-FDG in Bcap37and Bcap37/MDR1cells in the presence or absence of VER or GF120918, and to elucidate therelationship of18F-FDG uptake and P-gp expression at the cellular level.
     Methods Bcap37and Bcap37/MDR1cells were plated at a density of1×106/well insix-well plates3days prior to the experiments. On the day of experiment,37KBq/mL18F-FDG,37KBq/mL18F-FDG+100μmol/L VER or37KBq/mL18F-FDG+50μmoL/LGF120918was added to each well. After an incubation period of10min,30min,60minand120min (37℃,5%CO2), the medium was removed and the cells were washed threetimes with1mL ice-cold PBS immediately. The cells were collected from the wells bytrypsin-EDTA treatment. The radioactivity of18F-FDG was determined immediately usinga gamma counter. The uptake of18F-FDG was expressed at overall18F-FDG radioactivityin Bcap37or Bcap37/MDR1cells to the overall radioactivity added to the cells. Threeindependent experiments were performed.
     Results18F-FDG uptake was higher in Bcap37/MDR1cells than that in Bcap37cells afterincubation of10min. The uptake rate of18F-FDG was1.88%±0.19%in Bcap37/MDR1cells and1.37%±0.18%in Bcap37cells (P<0.05). In contrast,18F-FDG uptake wassignificantly higher in Bcap37cells than that in Bcap37/MDR1cells after60min and120min incubation. The uptake rate of18F-FDG was2.29%±0.23%,2.34%±0.15%inBcap37/MDR1cells and1.47%±0.14%,1.53%±0.22%in Bcap37cells (P<0.05).18F-FDG uptake was significantly higher in the presence of VER or GF120918inBcap37/MDR1cells than that in the absence of VER or GF120918after60min and120min of incubation (P<0.05), the uptake rate of18F-FDG in the presence of VER orGF120918was2.45%±0.21%,2.46%±0.25%and2.50%±0.24%,2.48%±0.27%.VER or GF120918did not influence the uptake of18F-FDG in Bcap37cells.
     Conclusions18F-FDG was a substrate of P-gp in cellular experiments. P-gp may act as anefflux pump to reduce18F-FDG uptake in Bcap37/MDR1cells. The kinetics of the uptakeof18F-FDG can be used to evaluate the function of P-gp.18F-FDG may have potentialvalue for detecting P-gp in vivo.
     Part Ⅳ The uptake of99mTc-MIBI in Bcap37and Bcap37/MDR1tumors
     Objective Planar scintigraphic images of99mTc-MIBI were acquired in BALB/c severecombined immune deficiency (SCID) mice carrying Bcap37or Bcap37/MDR1tumor. Itwas to be evaluated whether99mTc-MIBI imaging could be used to reflect the function ofP-gp in vivo.
     Methods Bcap37or Bcap37/MDR1cells (1×107cells/mL diluted using RPMI1640culture media,0.2mL) were injected into the subcutaneous tissue of the right axillary fossain SCID mice. The animals underwent99mTc-MIBI SPECT imagine when the solid tumorshad grown to a size of1~1.5cm (after3weeks for Bcap37cells and4weeks forBcap37/MDR1cells). Volumes of200μL99mTc-MIBI, dissolved in0.9%NaCl to a finalconcentration of37MBq/200μL, was injected into mice via the tail vein using a1mLLuer syringe. Five mice carried Bcap37tumors, and five carried Bcap37/MDR1tumors.Image acquisition was performed using a three-head gamma camera equipped with alow-energy high-resolution parallel-hole collimator. Planar scintigraphic images wereacquired at10min and60min after the injection of99mTc-MIBI. The VER-treated animalswere co-injected with0.5mg/Kg VER and37MBq99mTc-MIBI intravenously as a bolus.Image acquisition was performed at10min and60min after injection of99mTc-MIBI. Afterthe scintigraphy were completed, the animals were sacrificed by cervical dislocation.Tissue specimens of tumor and liver were taken from the animals for electron microscopy.Mitochondria was compared between tumor cells and liver cells using electron microscopy.
     Results Planar scintigraphic images of SCID mice showed that the physiologic distributionof99mTc-MIBI uptake was in the liver, intestine, and urinary bladder. In addition, theinjection site at the tail was visible in several animals. There was no significant differenceof99mTc-MIBI uptake between the mice carrying Bcap37or those carrying Bcap37/MDR1tumors. The tumors were not visible in all mice. In addition, no significant differenceswere observed in the images obtained at10min and60min after injection. The tumorswere not visible in the mice treated with VER. Electron microscopy revealed that Bcap37and Bcap37/MDR1tumor cells showing almost no99mTc-MIBI uptake in vivo containedonly a few mitochondria, whereas hepatocytes, displaying high99mTc-MIBI uptake in vivo, were packed densely with mitochondria.
     Conclusions Neither Bcap37nor Bcap37/MDR1tumors could be detected in the SCIDmice with or without VER-treated. The cell lines, with high99mTc-MIBI uptake and richmitochondria, should be selected to evaluate the function of P-gp in vivo.
     Part Ⅴ The uptake of18F-FDG in the Bcap37and Bcap37/MDR1tumorsObjective To evaluate the relationship between18F-FDG uptake and P-gp expression usingBALB/c the SCID mice carrying Bcap37or Bcap37/MDR1tumors.
     Methods The mice were fasted for6h before the trace injection and maintained underisoflurane anesthesia during the injection and scanning periods. After anesthesia, theintravenous injection of0.2mL7.4MBq was completed as a bolus. The dynamic PETscans were carried out for90min. On the PET images, the tumors were covered with oneregion of interest (ROI), and the time-activity curves were obtained. The kinetics of18F-FDG uptake in mice carrying Bcap37or Bcap37/MDR1tumors in the presence orabsence of VER was compared. Ten mice, five with Bcap37tumors and five withBcap37/MDR1tumors, were used, and approximately7.4MBq/0.2mL18F-FDG with orwithout0.5mg/Kg VER was administered via the tail vein. The Micro-PET images wereacquired60min after injection. To quantify the uptake of18F-FDG by the tumors, ROIswere drawn over the tumors and SUVmean was obtained. After the micro-PET imaginewas completed, the animals were sacrificed by cervical dislocation. The tumors were cutand embedded in10%paraffin. P-gp, Glut-1and HK-II were detected usingimmunohistochemical stain.
     Results18F-FDG uptake in Bcap37tumors gradually increased to a peak level at10min to15min and then remained at a constant level. VER did not significantly alter the18F-FDGaccumulation curve in Bcap37tumors.18F-FDG uptake in Bcap37/MDR1tumorsgradually increased until9min and then decreased to a constant level at25min to30min.18F-FDG uptake in Bcap37/MDR1tumors treated with VER increased to a peak level at9min, decreased to a minimum level at15min and then increased again to a peak level atapproximately30min and remained constant level. Bcap37/MDR1tumors showed higher 18F-FDG accumulation than Bcap37tumors from0to9min. In static micro-PET imaging,the mean standardized uptake value (SUVmean) of18F-FDG was significantly higher inBcap37tumors than that in Bcap37/MDR1tumors (1.00±0.06、0.66±0.11,P<0.05). VERdid not influence18F-FDG uptake in Bcap37tumors (1.00±0.06、1.09±0.22,P>0.05).VER significantly increased the SUVmean in Bcap37/MDR1tumors (1.01±0.16、0.66±0.11, P<0.05). Bcap37/MDR1tumors showed strong P-gp and Glut-1immunoreaction,whereas Bcap37tumors showed almost complete absence of P-gp and Glut-1immunoreaction. Both Bcap37/MDR1and Bcap37tumors showed moderate HK-IIimmunoreaction.
     Conclusions It was indicated that18F-FDG was a substrate of P-gp in vivo experiments.18F-FDG combined with VER may be an effective noninvasive method for the diagnosis ofP-gp expression in tumors. In particular, the18F-FDG uptake kinetics curves hadcharacteristic shapes for the mice carrying Bcap37/MDR1tumors. It indicated that18F-FDG PET or PET/CT using the ListMode acquisition mode may have potential clinicalvalue for detecting P-gp in vivo.
引文
1. Juliano RL, Ling V. A surface glycoprotein modulating drug permeability in Chinesehamster ovary cell mutants. Biochim Biophys Acta,1976,455(1):152-62.
    2. Aller SG, Yu J, Ward A.et al. Structure of P-glycoprotein reveals a molecular basis forpoly-specific drug binding. Science,2009,323(5922):1718-22.
    3. Gambhir SS, Czernin J, Schwimmer J.et al. A tabulated summary of the FDG PETliterature. J Nucl Med,2001,42(5Suppl):1S-93S.
    4. Okada J, Yoshikawa K, Itami M.et al. Positron emission tomography usingfluorine-18-fluorodeoxyglucose in malignant lymphoma: a comparison withproliferative activity. J Nucl Med,1992,33(3):325-9.
    5. Wahl RL, Cody RL, Hutchins GD.et al. Primary and metastatic breast carcinoma:initial clinical evaluation with PET with the radiolabeled glucose analogue2-[F-18]-fluoro-2-deoxy-D-glucose. Radiology,1991,179(3):765-70.
    6. Vansteenkiste JF, Stroobants SG, Dupont PJ.et al. Mediastinal lymph node staging withFDG-PET scan in patients with potentially operable non-small cell lung cancer: aprospective analysis of50cases.1997. Chest,2009,136(5Suppl):e30.
    7. Crippa F, Leutner M, Belli F.et al. Which kinds of lymph node metastases can FDGPET detect? A clinical study in melanoma. J Nucl Med,2000,41(9):1491-4.
    8. Reske SN, Kotzerke J. FDG-PET for clinical use. Results of the3rd GermanInterdisciplinary Consensus Conference,"Onko-PET III",21July and19September
    2000. Eur J Nucl Med,2001,28(11):1707-23.
    9. Stokkel MP, ten Broek FW, van Rijk PP. The role of FDG PET in the clinicalmanagement of head and neck cancer. Oral Oncol,1998,34(6):466-71.
    10. Cashman EC, MacMahon PJ, Shelly MJ.et al. Role of positron emissiontomography--computed tomography in head and neck cancer. Ann Otol RhinolLaryngol,2011,120(9):593-602.
    11. Filippi V, Malamitsi J, Vlachou F.et al. The impact of FDG-PET/CT on themanagement of breast cancer patients with elevated tumor markers and negative orequivocal conventional imaging modalities. Nucl Med Commun,2011,32(2):85-90.
    12. Rigo P, Paulus P, Kaschten BJ.et al. Oncological applications of positron emissiontomography with fluorine-18fluorodeoxyglucose. Eur J Nucl Med,1996,23(12):1641-74.
    13. Higashi K, Ueda Y, Ikeda R.et al. P-glycoprotein expression is associated with FDGuptake and cell differentiation in patients with untreated lung cancer. Nucl MedCommun,2004,25(1):19-27.
    14. Seo S, Hatano E, Higashi T.et al. Fluorine-18fluorodeoxyglucose positron emissiontomography predicts tumor differentiation, P-glycoprotein expression, and outcomeafter resection in hepatocellular carcinoma. Clin Cancer Res,2007,13(2Pt1):427-33.
    15. Seo S, Hatano E, Higashi T.et al. Fluorine-18fluorodeoxyglucose positron emissiontomography predicts lymph node metastasis, P-glycoprotein expression, andrecurrence after resection in mass-forming intrahepatic cholangiocarcinoma. Surgery,2008,143(6):769-77.
    16. Seo S, Hatano E, Higashi T.et al. P-glycoprotein expression affects18F-fluorodeoxyglucose accumulation in hepatocellular carcinoma in vivo and in vitro. IntJ Oncol,2009,34(5):1303-12.
    17. Wang Y, Cao J, Zeng S. Involvement of P-glycoprotein in regulating cellular levels ofGinkgo flavonols: quercetin, kaempferol, and isorhamnetin. J Pharm Pharmacol,2005,57(6):751-8.
    1. Wang Y, Cao J, Zeng S. Involvement of P-glycoprotein in regulating cellular levels ofGinkgo flavonols: quercetin, kaempferol, and isorhamnetin. J Pharm Pharmacol,2005,57(6):751-8.
    2. Haberkorn U, Ziegler SI, Oberdorfer F.et al. FDG uptake, tumor proliferation andexpression of glycolysis associated genes in animal tumor models. Nucl Med Biol,1994,21(6):827-34.
    3. Aloj L, Caraco C, Jagoda E.et al. Glut-1and hexokinase expression: relationship with2-fluoro-2-deoxy-D-glucose uptake in A431and T47D cells in culture. Cancer Res,1999,59(18):4709-14.
    4. Burt BM, Humm JL, Kooby DA.et al. Using positron emission tomography with[(18)F]FDG to predict tumor behavior in experimental colorectal cancer. Neoplasia,2001,3(3):189-95.
    5. Higashi T, Tamaki N, Honda T.et al. Expression of glucose transporters in humanpancreatic tumors compared with increased FDG accumulation in PET study. J NuclMed,1997,38(9):1337-44.
    6. Brown RS, Goodman TM, Zasadny KR.et al. Expression of hexokinase II and Glut-1in untreated human breast cancer. Nucl Med Biol,2002,29(4):443-53.
    7. Shen Q, Lin Y, Handa T.et al. Modulation of intestinal P-glycoprotein function bypolyethylene glycols and their derivatives by in vitro transport and in situ absorptionstudies. Int J Pharm,2006,313(1-2):49-56.
    1. Hendrikse NH, Franssen EJ, van der Graaf WT.et al.99mTc-sestamibi is a substratefor P-glycoprotein and the multidrug resistance-associated protein. Br J Cancer,1998,77(3):353-8.
    2. Denoyer D, Perek N, Le Jeune N.et al. The multidrug resistance of in vitro tumor celllines derived from human breast carcinoma MCF-7does not influence pentavalenttechnetium-99m-dimercaptosuccinic Acid uptake. Cancer Biother Radiopharm,2003,18(5):791-801.
    3. Mansi L, Rambaldi PF, Cuccurullo V.et al. Diagnostic and prognostic role of99mTc-Tetrofosmin in breast cancer. Q J Nucl Med,1997,41(3):239-50.
    4. Yang A, Xue J, Li X.et al. Experimental and clinical observations of99mTc-MIBIuptake correlate with P-glycoprotein expression in lung cancer. Nucl Med Commun,2007,28(9):696-703.
    5. Ballinger JR, Hua HA, Berry BW.et al.99Tcm-sestamibi as an agent for imagingP-glycoprotein-mediated multi-drug resistance: in vitro and in vivo studies in a ratbreast tumour cell line and its doxorubicin-resistant variant. Nucl Med Commun,1995,16(4):253-7.
    6. Hendrikse NH, Franssen EJ, van der Graaf WT.et al. Visualization of multidrugresistance in vivo. Eur J Nucl Med,1999,26(3):283-93.
    7. Utsunomiya K, Ballinger JR, Piquette-Miller M.et al. Comparison of the accumulationand efflux kinetics of technetium-99m sestamibi and technetium-99m tetrofosmin inan MRP-expressing tumour cell line. Eur J Nucl Med,2000,27(12):1786-92.
    8. Lorke DE, Kruger M, Buchert R.et al. In vitro and in vivo tracer characteristics of anestablished multidrug-resistant human colon cancer cell line. J Nucl Med,2001,42(4):646-54.
    9. Delmon-Moingeon LI, Piwnica-Worms D, Van den Abbeele AD.et al. Uptake of thecation hexakis(2-methoxyisobutylisonitrile)-technetium-99m by human carcinoma celllines in vitro. Cancer Res,1990,50(7):2198-202.
    10. Marian T, Balkay L, Tron L.et al. Effects of miltefosine on membrane permeabilityand accumulation of [99mTc]-hexakis-2-methoxyisobutyl isonitrile,2-[18F] fluoro-2-deoxy-D-glucose, daunorubucin and rhodamine123in multidrug-resistant andsensitive cells. Eur J Pharm Sci,2005,24(5):495-501.
    1. Seo S, Hatano E, Higashi T.et al. Fluorine-18fluorodeoxyglucose positron emissiontomography predicts tumor differentiation, P-glycoprotein expression, and outcomeafter resection in hepatocellular carcinoma. Clin Cancer Res,2007,13(2Pt1):427-33.
    2. Higashi K, Ueda Y, Ikeda R.et al. P-glycoprotein expression is associated with FDGuptake and cell differentiation in patients with untreated lung cancer. Nucl MedCommun,2004,25(1):19-27.
    3. Seo S, Hatano E, Higashi T.et al. Fluorine-18fluorodeoxyglucose positron emissiontomography predicts lymph node metastasis, P-glycoprotein expression, andrecurrence after resection in mass-forming intrahepatic cholangiocarcinoma. Surgery,2008,143(6):769-77.
    4. Seo S, Hatano E, Higashi T.et al. P-glycoprotein expression affects18F-fluorodeoxyglucose accumulation in hepatocellular carcinoma in vivo and in vitro.Int J Oncol,2009,34(5):1303-12.
    5. Rigo P, Paulus P, Kaschten BJ.et al. Oncological applications of positron emissiontomography with fluorine-18fluorodeoxyglucose. Eur J Nucl Med,1996,23(12):1641-74.
    6. Cashman EC, MacMahon PJ, Shelly MJ.et al. Role of positron emissiontomography--computed tomography in head and neck cancer. Ann Otol RhinolLaryngol,2011,120(9):593-602.
    7. Stokkel MP, ten Broek FW, van Rijk PP. The role of FDG PET in the clinicalmanagement of head and neck cancer. Oral Oncol,1998,34(6):466-71.
    8. Wahl RL, Cody RL, Hutchins GD.et al. Primary and metastatic breast carcinoma:initial clinical evaluation with PET with the radiolabeled glucose analogue2-[F-18]-fluoro-2-deoxy-D-glucose. Radiology,1991,179(3):765-70.
    9. Wahl RL, Quint LE, Greenough RL.et al. Staging of mediastinal non-small cell lungcancer with FDG PET, CT, and fusion images: preliminary prospective evaluation.Radiology,1994,191(2):371-7.
    10. Crippa F, Leutner M, Belli F.et al. Which kinds of lymph node metastases can FDGPET detect? A clinical study in melanoma. J Nucl Med,2000,41(9):1491-4.
    11. Reske SN, Kotzerke J. FDG-PET for clinical use. Results of the3rd GermanInterdisciplinary Consensus Conference,"Onko-PET III",21July and19September
    2000. Eur J Nucl Med,2001,28(11):1707-23.
    12. Vansteenkiste JF, Stroobants SG, Dupont PJ.et al. Mediastinal lymph node staging withFDG-PET scan in patients with potentially operable non-small cell lung cancer: aprospective analysis of50cases.1997. Chest,2009,136(5Suppl):e30.
    13. Filippi V, Malamitsi J, Vlachou F.et al. The impact of FDG-PET/CT on themanagement of breast cancer patients with elevated tumor markers and negative orequivocal conventional imaging modalities. Nucl Med Commun,2011,32(2):85-90.
    14. Bentley J, Bell SE, Quinn DM.et al.2-deoxy-D-glucose toxicity and transport inhuman multidrug-resistant KB carcinoma cell lines. Oncol Res,1996,8(2):77-84.
    15. Bentley J, Quinn DM, Pitman RS.et al. The human KB multidrug-resistant cell lineKB-C1is hypersensitive to inhibitors of glycosylation. Cancer Lett,1997,115(2):221-7.
    16. Lorke DE, Kruger M, Buchert R.et al. In vitro and in vivo tracer characteristics of anestablished multidrug-resistant human colon cancer cell line. J Nucl Med,2001,42(4):646-54.
    17. Marian T, Szabo G, Goda K.et al. In vivo and in vitro multitracer analyses ofP-glycoprotein expression-related multidrug resistance. Eur J Nucl Med Mol Imaging,2003,30(8):1147-54.
    18. Stein WD, Cardarelli C, Pastan I.et al. Kinetic evidence suggesting that the multidrugtransporter differentially handles influx and efflux of its substrates. Mol Pharmacol,1994,45(4):763-72.
    19. Bell SE, Quinn DM, Kellett GL.et al.2-Deoxy-D-glucose preferentially killsmultidrug-resistant human KB carcinoma cell lines by apoptosis. Br J Cancer,1998,78(11):1464-70.
    20. Sarkadi B, Price EM, Boucher RC.et al. Expression of the human multidrug resistancecDNA in insect cells generates a high activity drug-stimulated membrane ATPase. JBiol Chem,1992,267(7):4854-8.
    21. Goda K, Balkay L, Marian T.et al. Intracellular pH does not affect drug extrusion byP-glycoprotein. J Photochem Photobiol B,1996,34(2-3):177-82.
    1.程兵,刘保平,韩星敏.乳腺癌99mTc-MIBI显像与P-糖蛋白和GST-π表达的关系.中华核医学杂志,2003,23(01):32-3.
    2.赵韬.99Tcm-MIBI显像检测乳腺癌P-糖蛋白.国外医学放射医学核医学分册,2004,(06):262-4.
    3. Luker GD, Fracasso PM, Dobkin J.et al. Modulation of the multidrug resistanceP-glycoprotein: detection with technetium-99m-sestamibi in vivo. J Nucl Med,1997,38(3):369-72.
    4. Bender H, Friedrich E, Zamora PO.et al. Effects of induction of multi-drug resistanceon accumulation of99mTc-sestamibi in vitro. Anticancer Res,1997,17(3B):1833-9.
    5. Piwnica-Worms D, Chiu ML, Budding M.et al. Functional imaging ofmultidrug-resistant P-glycoprotein with an organotechnetium complex. Cancer Res,1993,53(5):977-84.
    6. Ballinger JR, Hua HA, Berry BW.et al.99Tcm-sestamibi as an agent for imagingP-glycoprotein-mediated multi-drug resistance: in vitro and in vivo studies in a ratbreast tumour cell line and its doxorubicin-resistant variant. Nucl Med Commun,1995,16(4):253-7.
    7. Muzzammil T, Ballinger JR, Moore MJ.99Tcm-sestamibi imaging of inhibition of themultidrug resistance transporter in a mouse xenograft model of human breast cancer.Nucl Med Commun,1999,20(2):115-22.
    8. Ballinger JR. Experimental and clinical observations of99mTc-MIBI uptake correlatewith P-glycoprotein expression in lung cancer. Nucl Med Commun,2008,29(3):303.
    9. Hendrikse NH, Franssen EJ, van der Graaf WT.et al. Visualization of multidrugresistance in vivo. Eur J Nucl Med,1999,26(3):283-93.
    10. Utsunomiya K, Ballinger JR, Piquette-Miller M.et al. Comparison of the accumulationand efflux kinetics of technetium-99m sestamibi and technetium-99m tetrofosmin inan MRP-expressing tumour cell line. Eur J Nucl Med,2000,27(12):1786-92.
    11. Kannan P, John C, Zoghbi SS.et al. Imaging the function of P-glycoprotein withradiotracers: pharmacokinetics and in vivo applications. Clin Pharmacol Ther,2009,86(4):368-77.
    12. Sharma V. Radiopharmaceuticals for assessment of multidrug resistanceP-glycoprotein-mediated drug transport activity. Bioconjug Chem,2004,15(6):1464-74.
    13. Potschka H, Loscher W. In vivo evidence for P-glycoprotein-mediated transport ofphenytoin at the blood-brain barrier of rats. Epilepsia,2001,42(10):1231-40.
    14. Piwnica-Worms D, Kesarwala AH, Pichler A.et al. Single photon emission computedtomography and positron emission tomography imaging of multi-drug resistantP-glycoprotein--monitoring a transport activity important in cancer, blood-brain barrierfunction and Alzheimer's disease. Neuroimaging Clin N Am,2006,16(4):575-89, viii.
    15. Marian T, Szabo G, Goda K.et al. In vivo and in vitro multitracer analyses ofP-glycoprotein expression-related multidrug resistance. Eur J Nucl Med Mol Imaging,2003,30(8):1147-54.
    16. van Leeuwen FW, Buckle T, Kersbergen A.et al. Noninvasive functional imaging ofP-glycoprotein-mediated doxorubicin resistance in a mouse model of hereditary breastcancer to predict response, and assign P-gp inhibitor sensitivity. Eur J Nucl Med MolImaging,2009,36(3):406-12.
    17.邓智勇,李高峰,闫淑珍等99mTc-MIBI肺显像与肺癌P糖蛋白、多药耐药相关蛋白、肺耐药蛋白表达的关系.南方医科大学学报,2008,28(11):2096-98.
    18.李文亮,杨辉,李德宇等.99mTc-MIBI乳腺亲肿瘤显像与P-gp、TopoⅡ关系的探讨.实用诊断与治疗杂志,2008,22(05):381-2.
    19.张雪梅,张振蔚,吴华.乳腺肿瘤摄取99Tcm-甲氧基异丁基异睛与耐多药蛋白表达的关系.中华肿瘤杂志,2004,26(06):353-5
    20.张雪梅,吴华.99Tcm-MIBI显像评价肿瘤多药耐药及其逆转效果.中华核医学杂志,2004,24(02):97-100.
    21. Lorke DE, Kruger M, Buchert R.et al. In vitro and in vivo tracer characteristics of anestablished multidrug-resistant human colon cancer cell line. J Nucl Med,2001,42(4):646-54.
    22. Delmon-Moingeon LI, Piwnica-Worms D, Van den Abbeele AD.et al. Uptake of thecation hexakis(2-methoxyisobutylisonitrile)-technetium-99m by human carcinoma celllines in vitro. Cancer Res,1990,50(7):2198-202.
    1. Igarashi A, Konno H, Tanaka T.et al. Liposomal photofrin enhances therapeuticefficacy of photodynamic therapy against the human gastric cancer. Toxicol Lett,2003,145(2):133-41.
    2. Gambhir SS, Czernin J, Schwimmer J.et al. A tabulated summary of the FDG PETliterature. J Nucl Med,2001,42(5Suppl):1S-93S.
    3. Okada J, Yoshikawa K, Itami M.et al. Positron emission tomography usingfluorine-18-fluorodeoxyglucose in malignant lymphoma: a comparison withproliferative activity. J Nucl Med,1992,33(3):325-9.
    4. Wahl RL, Cody RL, Hutchins GD.et al. Primary and metastatic breast carcinoma:initial clinical evaluation with PET with the radiolabeled glucose analogue2-[F-18]-fluoro-2-deoxy-D-glucose. Radiology,1991,179(3):765-70.
    5. Wahl RL, Quint LE, Greenough RL.et al. Staging of mediastinal non-small cell lungcancer with FDG PET, CT, and fusion images: preliminary prospective evaluation.Radiology,1994,191(2):371-7.
    6. Vansteenkiste JF, Stroobants SG, Dupont PJ.et al. Mediastinal lymph node staging withFDG-PET scan in patients with potentially operable non-small cell lung cancer: aprospective analysis of50cases.1997. Chest,2009,136(5Suppl):e30.
    7. Crippa F, Leutner M, Belli F.et al. Which kinds of lymph node metastases can FDGPET detect? A clinical study in melanoma. J Nucl Med,2000,41(9):1491-4.
    8. Reske SN, Kotzerke J. FDG-PET for clinical use. Results of the3rd GermanInterdisciplinary Consensus Conference,"Onko-PET III",21July and19September
    2000. Eur J Nucl Med,2001,28(11):1707-23.
    9. Stokkel MP, ten Broek FW, van Rijk PP. The role of FDG PET in the clinicalmanagement of head and neck cancer. Oral Oncol,1998,34(6):466-71.
    10. Rigo P, Paulus P, Kaschten BJ.et al. Oncological applications of positron emissiontomography with fluorine-18fluorodeoxyglucose. Eur J Nucl Med,1996,23(12):1641-74.
    11. Cashman EC, MacMahon PJ, Shelly MJ.et al. Role of positron emissiontomography--computed tomography in head and neck cancer. Ann Otol RhinolLaryngol,2011,120(9):593-602.
    12. Filippi V, Malamitsi J, Vlachou F.et al. The impact of FDG-PET/CT on themanagement of breast cancer patients with elevated tumor markers and negative orequivocal conventional imaging modalities. Nucl Med Commun,2011,32(2):85-90.
    13. Higashi K, Ueda Y, Ikeda R.et al. P-glycoprotein expression is associated with FDGuptake and cell differentiation in patients with untreated lung cancer. Nucl MedCommun,2004,25(1):19-27.
    14. Seo S, Hatano E, Higashi T.et al. Fluorine-18fluorodeoxyglucose positron emissiontomography predicts tumor differentiation, P-glycoprotein expression, and outcomeafter resection in hepatocellular carcinoma. Clin Cancer Res,2007,13(2Pt1):427-33.
    15. Seo S, Hatano E, Higashi T.et al. Fluorine-18fluorodeoxyglucose positron emissiontomography predicts lymph node metastasis, P-glycoprotein expression, andrecurrence after resection in mass-forming intrahepatic cholangiocarcinoma. Surgery,2008,143(6):769-77.
    16. Seo S, Hatano E, Higashi T.et al. P-glycoprotein expression affects18F-fluorodeoxyglucose accumulation in hepatocellular carcinoma in vivo and in vitro.Int J Oncol,2009,34(5):1303-12.
    17. Marian T, Szabo G, Goda K.et al. In vivo and in vitro multitracer analyses ofP-glycoprotein expression-related multidrug resistance. Eur J Nucl Med Mol Imaging,2003,30(8):1147-54.
    18. Stein WD, Cardarelli C, Pastan I.et al. Kinetic evidence suggesting that the multidrugtransporter differentially handles influx and efflux of its substrates. Mol Pharmacol,1994,45(4):763-72.
    19. Bell SE, Quinn DM, Kellett GL.et al.2-Deoxy-D-glucose preferentially killsmultidrug-resistant human KB carcinoma cell lines by apoptosis. Br J Cancer,1998,78(11):1464-70.
    20. Sarkadi B, Price EM, Boucher RC.et al. Expression of the human multidrug resistancecDNA in insect cells generates a high activity drug-stimulated membrane ATPase. JBiol Chem,1992,267(7):4854-8.
    21. Goda K, Balkay L, Marian T.et al. Intracellular pH does not affect drug extrusion byP-glycoprotein. J Photochem Photobiol B,1996,34(2-3):177-82.
    22. Lorke DE, Kruger M, Buchert R.et al. In vitro and in vivo tracer characteristics of anestablished multidrug-resistant human colon cancer cell line. J Nucl Med,2001,42(4):646-54.
    23. Yamada K, Brink I, Engelhardt R. Factors influencing [F-18]2-fluoro-2-deoxy-D-glucose (F-18FDG) accumulation in melanoma cells: is FDG asubstrate of multidrug resistance (MDR)? J Dermatol,2005,32(5):335-45.
    24. Hendrikse NH, Franssen EJ, van der Graaf WT.et al. Visualization of multidrugresistance in vivo. Eur J Nucl Med,1999,26(3):283-93.
    25. Kawamura K, Yamasaki T, Konno F.et al. Synthesis and in vivo evaluation of(1)F-fluoroethyl GF120918and XR9576as positron emission tomography probes forassessing the function of drug efflux transporters. Bioorg Med Chem,2011,19(2):861-70.
    26. Kawamura K, Yamasaki T, Konno F.et al. Evaluation of limiting brain penetrationrelated to P-glycoprotein and breast cancer resistance protein using [(11)C]GF120918by PET in mice. Mol Imaging Biol,2011,13(1):152-60.
    27. Syvanen S, Luurtsema G, Molthoff CF.et al.(R)-[11C]verapamil PET studies to assesschanges in P-glycoprotein expression and functionality in rat blood-brain barrier afterexposure to kainate-induced status epilepticus. BMC Med Imaging,2011,11:1.
    28. Kawamura K, Konno F, Yui J.et al. Synthesis and evaluation of [11C]XR9576toassess the function of drug efflux transporters using PET. Ann Nucl Med,2010,24(5):403-12.
    29. Levchenko A, Mehta BM, Lee JB.et al. Evaluation of11C-colchicine for PET imagingof multiple drug resistance. J Nucl Med,2000,41(3):493-501.
    30. Bruyne SD, Wyffels L, Moerman L.et al. Radiosynthesis and in vivo evaluation of[(11)C]MC80for P-glycoprotein imaging. Bioorg Med Chem,2010,18(17):6489-95.
    31. Dorner B, Kuntner C, Bankstahl JP.et al. Radiosynthesis and in vivo evaluation of1-[18F]fluoroelacridar as a positron emission tomography tracer for P-glycoproteinand breast cancer resistance protein. Bioorg Med Chem,2011,19(7):2190-8.
    32. Kurdziel KA, Kiesewetter DO. PET imaging of multidrug resistance in tumors using18F-fluoropaclitaxel. Curr Top Med Chem,2010,10(17):1792-8.
    33. Bauer F, Kuntner C, Bankstahl JP.et al. Synthesis and in vivo evaluation of[11C]tariquidar, a positron emission tomography radiotracer based on athird-generation P-glycoprotein inhibitor. Bioorg Med Chem,2010,18(15):5489-97.
    34. Luurtsema G, Schuit RC, Klok RP.et al. Evaluation of [11C]laniquidar as a tracer ofP-glycoprotein: radiosynthesis and biodistribution in rats. Nucl Med Biol,2009,36(6):643-9.
    35. Lewis JS, Dearling JL, Sosabowski JK.et al. Copper bis(diphosphine) complexes:radiopharmaceuticals for the detection of multi-drug resistance in tumours by PET. EurJ Nucl Med,2000,27(6):638-46.
    36. Sharma V, Beatty A, Wey SP.et al. Novel gallium(III) complexes transported by MDR1P-glycoprotein: potential PET imaging agents for probing P-glycoprotein-mediatedtransport activity in vivo. Chem Biol,2000,7(5):335-43.
    1. Juliano RL, Ling V. A surface glycoprotein modulating drug permeability in Chinesehamster ovary cell mutants. Biochim Biophys Acta,1976,455(1):152-62.
    2. Szakacs G, Paterson JK, Ludwig JA.et al. Targeting multidrug resistance in cancer. NatRev Drug Discov,2006,5(3):219-34.
    3. Gottesman MM, Fojo T, Bates SE. Multidrug resistance in cancer: role ofATP-dependent transporters. Nat Rev Cancer,2002,2(1):48-58.
    4. Zhou SF. Structure, function and regulation of P-glycoprotein and its clinical relevancein drug disposition. Xenobiotica,2008,38(7-8):802-32.
    5. Loscher W, Potschka H. Role of drug efflux transporters in the brain for drugdisposition and treatment of brain diseases. Prog Neurobiol,2005,76(1):22-76.
    6. Lagas JS, Vlaming ML, Schinkel AH. Pharmacokinetic assessment of multipleATP-binding cassette transporters: the power of combination knockout mice. MolInterv,2009,9(3):136-45.
    7. Litman T, Druley TE, Stein WD.et al. From MDR to MXR: new understanding ofmultidrug resistance systems, their properties and clinical significance. Cell Mol LifeSci,2001,58(7):931-59.
    8. Gottesman MM. Mechanisms of cancer drug resistance. Annu Rev Med,2002,53:615-27.
    9. Aller SG, Yu J, Ward A.et al. Structure of P-glycoprotein reveals a molecular basis forpoly-specific drug binding. Science,2009,323(5922):1718-22.
    10.赵韬.99Tcm-MIBI显像检测乳腺癌P-糖蛋白.国外医学放射医学核医学分册,2004,28(06):262-4.
    11. Gomes CM, Abrunhosa AJ, Ramos P.et al. Molecular imaging with SPECT as a toolfor drug development. Adv Drug Deliv Rev,2011,63(7):547-54.
    12. Langer O, Muller M. Methods to assess tissue-specific distribution and metabolism ofdrugs. Curr Drug Metab,2004,5(6):463-81.
    13. Wagner CC, Langer O. Approaches using molecular imaging technology--use of PETin clinical microdose studies. Adv Drug Deliv Rev,2011,63(7):539-46.
    14. Innis RB, Cunningham VJ, Delforge J.et al. Consensus nomenclature for in vivoimaging of reversibly binding radioligands. J Cereb Blood Flow Metab,2007,27(9):1533-9.
    15. Kakee A, Terasaki T, Sugiyama Y. Brain efflux index as a novel method of analyzingefflux transport at the blood-brain barrier. J Pharmacol Exp Ther,1996,277(3):1550-9.
    16. Okamura T, Kikuchi T, Okada M.et al. Noninvasive and quantitative assessment of thefunction of multidrug resistance-associated protein1in the living brain. J Cereb BloodFlow Metab,2009,29(3):504-11.
    17. Lazarova N, Zoghbi SS, Hong J.et al. Synthesis and evaluation of[N-methyl-11C]N-desmethyl-loperamide as a new and improved PET radiotracer forimaging P-gp function. J Med Chem,2008,51(19):6034-43.
    18. Liow JS, Kreisl W, Zoghbi SS.et al. P-glycoprotein function at the blood-brain barrierimaged using11C-N-desmethyl-loperamide in monkeys. J Nucl Med,2009,50(1):108-15.
    19. Piwnica-Worms D, Kronauge JF, Chiu ML. Uptake and retention of hexakis(2-methoxyisobutyl isonitrile) technetium(I) in cultured chick myocardial cells.Mitochondrial and plasma membrane potential dependence. Circulation,1990,82(5):1826-38.
    20. Backus M, Piwnica-Worms D, Hockett D.et al. Microprobe analysis of Tc-MIBI inheart cells: calculation of mitochondrial membrane potential. Am J Physiol,1993,265(1Pt1):C178-87.
    21. Ballinger JR, Bannerman J, Boxen I.et al. Technetium-99m-tetrofosmin as a substratefor P-glycoprotein: in vitro studies in multidrug-resistant breast tumor cells. J NuclMed,1996,37(9):1578-82.
    22. Ballinger JR, Muzzammil T, Moore MJ. Technetium-99m-furifosmin as an agent forfunctional imaging of multidrug resistance in tumors. J Nucl Med,1997,38(12):1915-9.
    23. Hendrikse NH, Franssen EJ, van der Graaf WT.et al.99mTc-sestamibi is a substratefor P-glycoprotein and the multidrug resistance-associated protein. Br J Cancer,1998,77(3):353-8.
    24. Denoyer D, Perek N, Le Jeune N.et al. The multidrug resistance of in vitro tumor celllines derived from human breast carcinoma MCF-7does not influence pentavalenttechnetium-99m-dimercaptosuccinic Acid uptake. Cancer Biother Radiopharm,2003,18(5):791-801.
    25. Luker GD, Fracasso PM, Dobkin J.et al. Modulation of the multidrug resistanceP-glycoprotein: detection with technetium-99m-sestamibi in vivo. J Nucl Med,1997,38(3):369-72.
    26. Peck RA, Hewett J, Harding MW.et al. Phase I and pharmacokinetic study of the novelMDR1and MRP1inhibitor biricodar administered alone and in combination withdoxorubicin. J Clin Oncol,2001,19(12):3130-41.
    27. Kannan P, John C, Zoghbi SS.et al. Imaging the function of P-glycoprotein withradiotracers: pharmacokinetics and in vivo applications. Clin Pharmacol Ther,2009,86(4):368-77.
    28. Sharma V. Radiopharmaceuticals for assessment of multidrug resistanceP-glycoprotein-mediated drug transport activity. Bioconjug Chem,2004,15(6):1464-74.
    29. Piwnica-Worms D, Kesarwala AH, Pichler A.et al. Single photon emission computedtomography and positron emission tomography imaging of multi-drug resistantP-glycoprotein--monitoring a transport activity important in cancer, blood-brain barrierfunction and Alzheimer's disease. Neuroimaging Clin N Am,2006,16(4):575-89, viii.
    30. Moretti JL, Duran Cordobes M, Starzec A.et al. Involvement of glutathione in loss oftechnetium-99m-MIBI accumulation related to membrane MDR protein expression intumor cells. J Nucl Med,1998,39(7):1214-8.
    31. Vecchio SD, Ciarmiello A, Potena MI.et al. In vivo detection of multidrug-resistant(MDR1) phenotype by technetium-99m sestamibi scan in untreated breast cancerpatients. Eur J Nucl Med,1997,24(2):150-9.
    32. Kao CH, Hsieh JF, Tsai SC.et al. Paclitaxel-Based chemotherapy for non-small celllung cancer: predicting the response with99mTc-tetrofosmin chest imaging. J NuclMed,2001,42(1):17-20.
    33. Sciuto R, Pasqualoni R, Bergomi S.et al. Prognostic value of (99m)Tc-sestamibiwashout in predicting response of locally advanced breast cancer to neoadjuvantchemotherapy. J Nucl Med,2002,43(6):745-51.
    34. Ding HJ, Huang WT, Tsai CS.et al. Usefulness of technetium-99m tetrofosmin liverimaging to detect hepatocellular carcinoma and related to expression of P-glycoproteinor multidrug resistance associated protein-a preliminary report. Nucl Med Biol,2003,30(5):471-5.
    35.张雪梅,张振蔚,吴华.乳腺肿瘤摄取99Tcm-甲氧基异丁基异睛与耐多药蛋白表达的关系.中华肿瘤杂志,2004,26(06):353-5.
    36.程兵,刘保平,韩星敏.乳腺癌99Tcm-MIBI显像与P-糖蛋白和GST-π表达的关系.中华核医学杂志,2003,23(01):32-3.
    37.崔树德,刘真真,刘慧等.甲氧基乙丁基异腈亲肿瘤显像与乳腺癌多药耐药类蛋白关系的研究.中华肿瘤杂志,2005,27(10):606-8.
    38. Pace L, Catalano L, Del Vecchio S.et al. Washout of [99mTc] sestamibi in predictingresponse to chemotherapy in patients with multiple myeloma. Q J Nucl Med MolImaging,2005,49(3):281-5.
    39. Zhou J, Higashi K, Ueda Y.et al. Expression of multidrug resistance protein andmessenger RNA correlate with (99m)Tc-MIBI imaging in patients with lung cancer. JNucl Med,2001,42(10):1476-83.
    40. Chen WS, Luker KE, Dahlheimer JL.et al. Effects of MDR1and MDR3P-glycoproteins, MRP1, and BCRP/MXR/ABCP on the transport of(99m)Tc-tetrofosmin. Biochem Pharmacol,2000,60(3):413-26.
    41. Shukla S, Wu CP, Ambudkar SV. Development of inhibitors of ATP-binding cassettedrug transporters: present status and challenges. Expert Opin Drug Metab Toxicol,2008,4(2):205-23.
    42. Sasajima T, Shimada N, Naitoh Y.et al.(99m)Tc-MIBI imaging for prediction oftherapeutic effects of second-generation MDR1inhibitors in malignant brain tumors.Int J Cancer,2007,121(12):2637-45.
    43. Chen CC, Meadows B, Regis J.et al. Detection of in vivo P-glycoprotein inhibition byPSC833using Tc-99m sestamibi. Clin Cancer Res,1997,3(4):545-52.
    44. Agrawal M, Abraham J, Balis FM.et al. Increased99mTc-sestamibi accumulation innormal liver and drug-resistant tumors after the administration of the glycoproteininhibitor, XR9576. Clin Cancer Res,2003,9(2):650-6.
    45. Pusztai L, Wagner P, Ibrahim N.et al. Phase II study of tariquidar, a selectiveP-glycoprotein inhibitor, in patients with chemotherapy-resistant, advanced breastcarcinoma. Cancer,2005,104(4):682-91.
    46. Abraham J, Edgerly M, Wilson R.et al. A phase I study of the P-glycoproteinantagonist tariquidar in combination with vinorelbine. Clin Cancer Res,2009,15(10):3574-82.
    47. Bigott HM, Prior JL, Piwnica-Worms DR.et al. Imaging multidrug resistanceP-glycoprotein transport function using microPET with technetium-94m-sestamibi.Mol Imaging,2005,4(1):30-9.
    48. Crankshaw CL, Marmion M, Luker GD.et al. Novel technetium (III)-Q complexes forfunctional imaging of multidrug resistance (MDR1) P-glycoprotein. J Nucl Med,1998,39(1):77-86.
    49. Rossetti C, Vanoli G, Paganelli G.et al. Human biodistribution, dosimetry and clinicaluse of technetium(III)-99m-Q12. J Nucl Med,1994,35(10):1571-80.
    50. Dyszlewski M, Blake HM, Dahlheimer JL.et al. Characterization of a novel99mTc-carbonyl complex as a functional probe of MDR1P-glycoprotein transportactivity. Mol Imaging,2002,1(1):24-35.
    51. Bolzati C, Cavazza-Ceccato M, Agostini S.et al. Subcellular distribution andmetabolism studies of the potential myocardial imaging agent[99mTc(N)(DBODC)(PNP5)]+. J Nucl Med,2008,49(8):1336-44.
    52. Hendrikse NH, Schinkel AH, de Vries EG.et al. Complete in vivo reversal ofP-glycoprotein pump function in the blood-brain barrier visualized with positronemission tomography. Br J Pharmacol,1998,124(7):1413-8.
    53. Hendrikse NH, de Vries EG, Eriks-Fluks L.et al. A new in vivo method to studyP-glycoprotein transport in tumors and the blood-brain barrier. Cancer Res,1999,59(10):2411-6.
    54. Hendrikse NH, de Vries EG, Franssen EJ.et al. In vivo measurement of [11C]verapamilkinetics in human tissues. Eur J Clin Pharmacol,2001,56(11):827-9.
    55. Sasongko L, Link JM, Muzi M.et al. Imaging P-glycoprotein transport activity at thehuman blood-brain barrier with positron emission tomography. Clin Pharmacol Ther,2005,77(6):503-14.
    56. Muzi M, Mankoff DA, Link JM.et al. Imaging of cyclosporine inhibition ofP-glycoprotein activity using11C-verapamil in the brain: studies of healthy humans. JNucl Med,2009,50(8):1267-75.
    57. Lee YJ, Maeda J, Kusuhara H.et al. In vivo evaluation of P-glycoprotein function atthe blood-brain barrier in nonhuman primates using [11C]verapamil. J Pharmacol ExpTher,2006,316(2):647-53.
    58. Chung FS, Eyal S, Muzi M.et al. Positron emission tomography imaging of tissueP-glycoprotein activity during pregnancy in the non-human primate. Br J Pharmacol,2010,159(2):394-404.
    59. Eyal S, Chung FS, Muzi M.et al. Simultaneous PET imaging of P-glycoproteininhibition in multiple tissues in the pregnant nonhuman primate. J Nucl Med,2009,50(5):798-806.
    60. Bankstahl JP, Kuntner C, Abrahim A.et al. Tariquidar-induced P-glycoproteininhibition at the rat blood-brain barrier studied with (R)-11C-verapamil and PET. JNucl Med,2008,49(8):1328-35.
    61. Fox E, Bates SE. Tariquidar (XR9576): a P-glycoprotein drug efflux pump inhibitor.Expert Rev Anticancer Ther,2007,7(4):447-59.
    62. Kuntner C, Bankstahl JP, Bankstahl M.et al. Dose-response assessment of tariquidarand elacridar and regional quantification of P-glycoprotein inhibition at the ratblood-brain barrier using (R)-[(11)C]verapamil PET. Eur J Nucl Med Mol Imaging,2010,37(5):942-53.
    63. Bankstahl JP, Loscher W. Resistance to antiepileptic drugs and expression ofP-glycoprotein in two rat models of status epilepticus. Epilepsy Res,2008,82(1):70-85.
    64. Wagner CC, Bauer M, Karch R.et al. A pilot study to assess the efficacy of tariquidarto inhibit P-glycoprotein at the human blood-brain barrier with (R)-11C-verapamil andPET. J Nucl Med,2009,50(12):1954-61.
    65. Eyal S, Ke B, Muzi M.et al. Regional P-glycoprotein activity and inhibition at thehuman blood-brain barrier as imaged by positron emission tomography. ClinPharmacol Ther,2010,87(5):579-85.
    66. Bartels AL, Willemsen AT, Kortekaas R.et al. Decreased blood-brain barrierP-glycoprotein function in the progression of Parkinson's disease, PSP and MSA. JNeural Transm,2008,115(7):1001-9.
    67. de Klerk OL, Willemsen AT, Roosink M.et al. Locally increased P-glycoproteinfunction in major depression: a PET study with [11C]verapamil as a probe forP-glycoprotein function in the blood-brain barrier. Int J Neuropsychopharmacol,2009,12(7):895-904.
    68. Zoghbi SS, Liow JS, Yasuno F.et al.11C-loperamide and its N-desmethylradiometabolite are avid substrates for brain permeability-glycoprotein efflux. J NuclMed,2008,49(4):649-56.
    69. Kannan P, Brimacombe KR, Zoghbi SS.et al. N-desmethyl-loperamide is selective forP-glycoprotein among three ATP-binding cassette transporters at the blood-brainbarrier. Drug Metab Dispos,2010,38(6):917-22.
    70. Kreisl WC, Liow JS, Kimura N.et al. P-glycoprotein function at the blood-brain barrierin humans can be quantified with the substrate radiotracer11C-N-desmethyl-loperamide. J Nucl Med,2010,51(4):559-66.
    71. Seneca N, Zoghbi SS, Shetty HU.et al. Effects of ketoconazole on the biodistributionand metabolism of [11C]loperamide and [11C]N-desmethyl-loperamide in wild-typeand P-gp knockout mice. Nucl Med Biol,2010,37(3):335-45.
    72. Doze P, Elsinga PH, Maas B.et al. Synthesis and evaluation of radiolabeled antagonistsfor imaging of beta-adrenoceptors in the brain with PET. Neurochem Int,2002,40(2):145-55.
    73. Jonsson O, Behnam-Motlagh P, Persson M.et al. Increase in doxorubicin cytotoxicityby carvedilol inhibition of P-glycoprotein activity. Biochem Pharmacol,1999,58(11):1801-6.
    74. Bart J, Dijkers EC, Wegman TD.et al. New positron emission tomography tracer[(11)C]carvedilol reveals P-glycoprotein modulation kinetics. Br J Pharmacol,2005,145(8):1045-51.
    75. Luna-Tortos C, Fedrowitz M, Loscher W. Several major antiepileptic drugs aresubstrates for human P-glycoprotein. Neuropharmacology,2008,55(8):1364-75.
    76. van Vliet EA, van Schaik R, Edelbroek PM.et al. Inhibition of the multidrugtransporter P-glycoprotein improves seizure control in phenytoin-treated chronicepileptic rats. Epilepsia,2006,47(4):672-80.
    77. Stavchansky SA, Tilbury RS, McDonald JM.et al. In vivo distribution of carbon-11phenytoin and its major metabolite, and their use in scintigraphic imaging. J Nucl Med,1978,19(8):936-41.
    78. Baron JC, Roeda D, Munari C.et al. Brain regional pharmacokinetics of11C-labeleddiphenylhydantoin: positron emission tomography in humans. Neurology,1983,33(5):580-5.
    79. Schinkel AH, Mayer U, Wagenaar E.et al. Normal viability and alteredpharmacokinetics in mice lacking mdr1-type (drug-transporting) P-glycoproteins. ProcNatl Acad Sci U S A,1997,94(8):4028-33.
    80. Roh EJ, Park YH, Song CE.et al. Radiolabeling of paclitaxel with electrophilic123I.Bioorg Med Chem,2000,8(1):65-8.
    81. Kiesewetter DO, Jagoda EM, Kao CH.et al. Fluoro-, bromo-, and iodopaclitaxelderivatives: synthesis and biological evaluation. Nucl Med Biol,2003,30(1):11-24.
    82. Li C, Yu DF, Inoue T.et al. Synthesis, biodistribution and imaging properties ofindium-111-DTPA-paclitaxel in mice bearing mammary tumors. J Nucl Med,1997,38(7):1042-7.
    83. Kurdziel KA, Kiesewetter DO, Carson RE.et al. Biodistribution, radiation doseestimates, and in vivo Pgp modulation studies of18F-paclitaxel in nonhuman primates.J Nucl Med,2003,44(8):1330-9.
    84. Gangloff A, Hsueh WA, Kesner AL.et al. Estimation of paclitaxel biodistribution anduptake in human-derived xenografts in vivo with (18)F-fluoropaclitaxel. J Nucl Med,2005,46(11):1866-71.
    85. Hsueh WA, Kesner AL, Gangloff A.et al. Predicting chemotherapy response topaclitaxel with18F-Fluoropaclitaxel and PET. J Nucl Med,2006,47(12):1995-9.
    86. Kurdziel KA, Kalen JD, Hirsch JI.et al. Imaging multidrug resistance with4-[18F]fluoropaclitaxel. Nucl Med Biol,2007,34(7):823-31.
    87. Passchier J, van Waarde A, Doze P.et al. Influence of P-glycoprotein on brain uptakeof [18F]MPPF in rats. Eur J Pharmacol,2000,407(3):273-80.
    88. Lacan G, Plenevaux A, Rubins DJ.et al. Cyclosporine, a P-glycoprotein modulator,increases [18F]MPPF uptake in rat brain and peripheral tissues: microPET and ex vivostudies. Eur J Nucl Med Mol Imaging,2008,35(12):2256-66.
    89. Kawamura K, Yamasaki T, Yui J.et al. In vivo evaluation of P-glycoprotein and breastcancer resistance protein modulation in the brain using [(11)C]gefitinib. Nucl MedBiol,2009,36(3):239-46.
    90. Levchenko A, Mehta BM, Lee JB.et al. Evaluation of11C-colchicine for PET imagingof multiple drug resistance. J Nucl Med,2000,41(3):493-501.
    91. van Tilburg EW, Mooijer MP, Brinkhorst J.et al. Improved and semi-automatedGMP-compliant radiosynthesis of [11C]docetaxel. Appl Radiat Isot,2008,66(10):1414-8.
    92. van Waarde A, Ramakrishnan NK, Rybczynska AA.et al. Synthesis and preclinicalevaluation of novel PET probes for P-glycoprotein function and expression. J MedChem,2009,52(14):4524-32.
    93. Luurtsema G, Schuit RC, Klok RP.et al. Evaluation of [11C]laniquidar as a tracer ofP-glycoprotein: radiosynthesis and biodistribution in rats. Nucl Med Biol,2009,36(6):643-9.
    94. Dorner B, Kuntner C, Bankstahl JP.et al. Synthesis and small-animal positron emissiontomography evaluation of [11C]-elacridar as a radiotracer to assess the distribution ofP-glycoprotein at the blood-brain barrier. J Med Chem,2009,52(19):6073-82.
    95. Kawamura K, Yamasaki T, Konno F.et al. Evaluation of limiting brain penetrationrelated to P-glycoprotein and breast cancer resistance protein using [(11)C]GF120918by PET in mice. Mol Imaging Biol,2011,13(1):152-60.
    96. Bauer F, Kuntner C, Bankstahl JP.et al. Synthesis and in vivo evaluation of[11C]tariquidar, a positron emission tomography radiotracer based on athird-generation P-glycoprotein inhibitor. Bioorg Med Chem,2010,18(15):5489-97.
    97. Kawamura K, Konno F, Yui J.et al. Synthesis and evaluation of [11C]XR9576toassess the function of drug efflux transporters using PET. Ann Nucl Med,2010,24(5):403-12.
    98. Yamasaki T, Kawamura K, Hatori A.et al. PET study on mice bearing human colonadenocarcinoma cells using [11C]GF120918, a dual radioligand for P-glycoproteinand breast cancer resistance protein. Nucl Med Commun,2010,31(11):985-93.
    99. Kawamura K, Yamasaki T, Konno F.et al. Synthesis and in vivo evaluation of(1)F-fluoroethyl GF120918and XR9576as positron emission tomography probes forassessing the function of drug efflux transporters. Bioorg Med Chem,2011,19(2):861-70.
    100. Mairinger S, Erker T, Muller M.et al. PET and SPECT radiotracers to assessfunction and expression of ABC transporters in vivo. Curr Drug Metab,2011,12(8):774-92.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700