用户名: 密码: 验证码:
无线协作通信的策略及协议研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
无线信道的衰落特性是阻碍信道容量增加和服务质量改善的主要原因之一,而MIMO技术是应对衰落的有效方法。但是MIMO技术要求每个通信设备必须具有多根天线,往往不易实现,协作通信正是在这种背景下应运而生的。协作通信的概念是建立在中继信道模型的基础上,受MIMO技术的启发而提出的。协作通信把无线信道,无线网络,物理层传输技术等综合在一起进行设计和优化,不仅能够提高无线通信系统的容量,减少通信的中断概率,而且可以扩大无线网络的连通性,节省数据传输的能量。协作通信是一种技术,更是一种通信的方式、一种思想,它可以和其它的通信技术充分融合,在无线通信领域中得到广泛的应用,成为下一代无线通信技术的重要研究领域。
     本文着眼于协作通信中相关策略和协议设计,针对协作通信的四个关键问题进行了研究。首先,本文研究了如何根据中继节点的空间分布选择合适的协作协议。然后,分析了干扰问题与协作通信的关系以及协作通信应该采用何种方式来有效应对干扰。针对蜂窝网络中的异构协作这一新兴的研究领域,详细分析了两种协作模式和能够达到的性能指标。最后研究了一种适用于协作通信的MAC层协议,并通过仿真结果验证了其可行性。
     本文主要取得如下研究成果:
     1借用了几何分析的方法,结合信息论的相关原理,证明了协作通信协议可以获取的最大互信息量和中继节点的空间分布有着密切的关系。给出了一种基于中继节点空间分布的协作协议选择策略,并通过仿真验证了可行性。介绍了一种机会分布式空时编码协议,能够实现性能和复杂度的折中。
     2研究了协作通信带来的干扰问题对系统性能的影响,说明了通过选择不同的中继节点可以尽量避免干扰。提出了一种干扰避免的中继节点选择算法,中继节点可以充分利用干扰带来的机会进行协商,来共同寻找更适合的中继节点。仿真结果证明:基于干扰避免的中继节点选择算法相对于未考虑干扰问题的中继节点选择算法,可以获得约7%的平均信道容量的提升。
     3介绍了两种适用于异构协作的协作模式,分别称为VAA DSTC和VAA BLAST。详细描述了这两种协作模式的工作过程,而且采用分集复用折中作为分析工具,比较了两种协作模式各自的性能。提出并证明了:移动设备的异构通信接口数据率的差异,可以带来额外的复用增益。
     4介绍了一个支持协作通信的通用框架,并围绕着该框架,研究了支持协作通信的MAC协议(简称为协作MAC协议)。该协作MAC协议能够与802.11协议兼容,不仅可以支持多种协作通信协议,而且可以支持不同数量的中继节点。该协作MAC协议还考虑了如何通过中继节点的选择尽量避免干扰的问题。
     论文重点研究了协作通信中亟需解决的几个关键问题,为协作通信从理论走向应用进行了探索性的研究。论文的研究有助于加快协作通信在无线领域的实用化步伐,具有一定的理论前瞻性和实用性的价值。
Fading is the primary factor which encumbers the increasing of wireless channel capacity and improving the quality of service. MIMO technique is the most effective method to cope with fading. However, in MIMO system, each node must be equipped with multiple antennas, which is uneasy to be applied in reality. Cooperative communication is exactly under this kind of background to emerge with the tide of the times. The concept of cooperative communication is based on relay channel model and inspired by MIMO technique. In cooperative communication, the wireless channel, wireless networks and physical layer techniques are integated for designing and optimizing, which brings many merits. Such as increasing wireless channel capacity, decreasing the outage probability, improving the connectivity in wireless networks and minimizing energy consumption. Cooperative communication is not just a technique, it can be regard as a method of communication, a kind of thought. Cooperative communication can inosculate with other techniques and be broadly applied in wireless communciation. Cooperative communication is becoming one of the most important theme in next generation research field on wireless communication.
     With a view to the design of strategies and protocols, this thesis focuses on four key problems in cooperative communication. First, investigate how to choose the appropriate protocol based on the spatial distribution of relay nodes. Then, analyse the relationship between cooperative communication and interference problem and how should cooperative communication cope with the interference problem. Aiming at heterogenous cooperative communication, a new research field in cellular networks, this thesis analyzes two cooperative modes and the corresponding performances can be achieved. In the end, a MAC layer protocol which can support cooperative communication is introduced, and its feasibility is verified by simulation results.
     The contributions of this thesis include:
     1 Recur to geometric analysis and information theoretic formulas, it is proved that which cooperative protocols can bring larger maximum mutual information has tight relation with the spatial distribution of relay nodes. Then, a strategy for cooperative protocols selection based on spatial distribution of relay nodes is given. Next, an opportunistic dis- tributed space-time coding cooperative protocol is introduced, which can achieve the tradeoff between better performance and complexity.
     2 The interference induced by relay nodes has effects on the system performance and it can be mitigated by choosing different relay nodes. A relay assignment algorithm with interference mitigation is provided, where the nodes can utilize the opportunity caused by interference to negotiate, looking for more suitable relay nodes. The simulation results verify that this new relay assignment algorithm can enhance average wireless channel capacity by 7%.
     3 Introduce two cooperative modes: VAA_DSTC and VAA_BLAST, which are suitable for heterogenous cooperative communication. Describe the work flows of these two modes and utilize diversity-multiplexing tradeoff (DMT) to evaluate the performances of them. Put forward and prove that the difference between heterogeneous interfaces of mobile equipment can bring extra multiplexing gain.
     4 Introduce an generic architecture which can support cooperative communication and investigate a cooperative MAC layer protocol compatible with legacy MAC layer protocol of 802.11. This cooperative MAC layer protocol can support different cooperative protocols and different number of relay nodes. Moreover, this cooperative MAC layer protocol concerns how to mitigate interference problem by selecting different relay nodes.
     The entire works of this thesis are exploring four key problem in cooperative communciation, which is helpful for the reseach on cooperative communication from theory to practice. The research will accelerate the pace of research on cooperative communication, has forward-looking in theory and practicability in reality.
引文
[1] D. N. C. Tse and P. Viswanath, Fundamentals of Wireless Communication.Cambridge, U.K.: Cambridge University Press, 2005.
    [2] Chen, Y. P., J. Zhang, et al. Link-layer-and-above diversity in multihop wireless networks. IEEE Communications Magazine, 2009, 47(2): 118-124.
    [3] Paulraj, R. Nabar, and D. Gore, Introduction to Space-Time Wireless Communications, Cambridge, U.K.: Cambridge Univ. Press, 2003.
    [4] E. Telatar. Capacity of multi-antenna Gaussian channels. Europ. Trans. Telecommun., 1999, 10(6): 585-596.
    [5] G. J. Foschini. Layered space-time architecture for wireless communication in a fading environment when using multi-element antennas. AT&T Bell Labs. Tech. J., 1996, 1(2): 41-59.
    [6] D. Gesbert, M. Shafi, S. Da-shan, P. J. Smith, et al. From theory to practice: an overview of MIMO space-time coded wireless systems. IEEE Journal on Selected Areas in Communications, 2003, 21(3): 281-302.
    [7] F. H. P. Fitzek and M. D. Katz. Cooperation in Wireless Networks: Principles and Applications: Real Egoistic Behavior is to Cooperate. Netherlands, Springer, 2006.
    [8] Z. Murtaza, K. Bongjun, and H. Ivan Wang-Hei. Cooperative transmit-power estimation under wireless fading. In Proceedings of the 9th ACM international symposium on Mobile ad hoc networking and computing, Hong Kong, China: ACM, 2008.
    [9] G. Ganesan and L. Ye. Cooperative Spectrum Sensing in Cognitive Radio, Part Ⅰ: Two User Networks. IEEE Transactions on Wireless Communications, 2007, 6(6): 2204-2213.
    [10] G. Ganesan and Y. Li. Cooperative Spectrum Sensing in Cognitive Radio, Part Ⅰ: Two User Networks. IEEE Transactions on Wireless Communications, 2007, 6(6):2214-2222, 2007.
    [11] T. Cover and A. E. Gamal. Capacity theorems for the relay channel. IEEE Transactions on Information Theory, 1979, 25(5): 572-584.
    [12] A. Sendonaris, E. Erkip, and B. Aazhang. User cooperation diversity. Part Ⅰ. System description. IEEE Transactions on Communications, 2003, 51(11): 1927-1938.
    [13] A. Sendonaris, E. Erkip, and B. Aazhang. User cooperation diversity. PartⅠ. System description. IEEE Transactions on Communications, 2003, 51(11): 1939-1948.
    [14] J. N. Laneman, D. N. C. Tse, and G. W. Wornell. Cooperative diversity in wireless networks: Efficient protocols and outage behavior. IEEE Transactions on Information Theory, 2004, 50(12): 3062-3080.
    [15] A. Sendonaris, E. Erkip, and B. Aazhang. Increasing uplink capacity via user cooperation diversity. In Proceedings IEEE International Symposium on Information Theory, Cambridge, MA, USA, 1998.
    [16] J.N. Laneman and G.W.Wornell. Distributed space-time-coded protocols for exploiting cooperative diversity in wireless networks. IEEE Transactions on Information Theory, 2003, 49(10): 2415-2425.
    [17] A. Scaglione, D. L. Goeckel, and J. N. Laneman. Cooperative communications in mobile ad hoc networks. IEEE Signal Processing Magazine, 2006, 23(5): 18-29.
    [18] V. Stankovic, A. Host-Madsen, and X. Zixiang. Cooperative diversity for wireless ad hoc networks. IEEE Signal Processing Magazine,, 2006, 23(5): 37-49.
    [19] B. Aazhang, R.S Blum, J.N. Laneman, et al. IEEE Journal on Selected Areas in Communications - Special Issue on Cooperative Communications and Networking, 2007, 25(2).
    [20] G. Kramer, R. Berry, A. E1 Gamal, et al. IEEE Transactions on Information Theory -Special Issue on Models, Theory, and Codes for Relaying and Cooperation in Communication Networks, 2007, 53(10).
    [21] Bhargava, V.K.; Letaief, K.B. IEEE Transactions on wireless communications - Special issue on cooperative communications, 2008, 7(5) Part 2.
    [22] Chin, W.H.; Qian, Y.; Giambene, G. IEEE Communications Magazine, 2009, 47(2).
    [23] Wireless Personal Communication: An International Journal. 2007, 43(1).
    [24] V. Genc, S. Murphy, Y. Yu, et al. IEEE 802.16J relay-based wireless access networks: an overview. IEEE Wireless Communications, 2008, 15(5): 56-63.
    [25] D. Supratim, M. Vivek, and R. Venkatesh. WiMAX relay networks: opportunistic scheduling to exploit multiuser diversity and frequency selectivity. In Proceedings of the 14th ACM international conference on Mobile computing and networking San Francisco, California, USA: ACM, 2008.
    [26]Part 16: Air interface for fixed and mobile broadband wireless access systems: Multihop relay specification.IEEE Baseline Document for Draft Standard for Local and Metropolitan Area Networks, 2007.
    [27]S.W.Peters and R.W.Heath, Jr..The future of WiMAX: Multihop relaying with IEEE 802.16j.IEEE Communications Magazine, 2009, 47(1):104-111.
    [28]E.van der Meulen.Three-terminal communication channels.Adv.Appl.Probab., 1971,3:120-154.
    [29]A.Host-Madsen and Z.Junshan.Capacity bounds and power allocation for wireless relay channels.IEEE Transactions on Information Theory, 2005, 51(6): 2020-2040.
    [30]M.Gastpar and M.Vetterli.On the capacity of large Gaussian relay networks.IEEE Transactions on Information Theory, 2005, 51(3): 765-779.
    [31]W.Bo, Z.Junshan, and A.Host-Madsen.On the capacity of MIMO relay channels.IEEE Transactions on Information Theory, 2005, 51(1): 29-43.
    [32]A.El Gamal, N.Hassanpour, and J.Mammen.Relay Networks With Delays.IEEE Transactions on Information Theory, 2007, 53(10): 3413-3431.
    [33]张源,高西奇。三节点无线高斯中继信道容量分析。通信学报,2006, 27 (7):127-134。
    [34]A.Host-Madsen.Capacity bounds for Cooperative diversity.IEEE Transactions on Information Theory, 2006, 52(4): 1522-1544.
    [35]G.Kramer, M.Gastpar, and P.Gupta.Cooperative Strategies and Capacity Theorems for Relay Networks.IEEE Transactions on Information Theory, 2005, 51(9):3037-3063.
    [36]L.-L.Xie and P.R.Kumar.A network information theory for wireless communications: Scaling laws and optimal operation.IEEE Transactions on Information Theory,2004, 50(5): 748-767.
    [37]S.Aeron and V.Saligrama.Wireless ad hoc networks: Strategies and scaling laws for the fixed SNR regime.IEEE Transactions on Information Theory, 2007, 53(6): 2044-2059.
    [38]P.Gupta and P.R.Kumar.The capacity of wireless networks.IEEE Transactions on Information Theory,,2000, 46(2): 388-404.
    [39] M. Grossglauser and D. N. C. Tse. Mobility increases the capacity of ad hoc wireless networks. IEEE/ACM Transactions on Networking, 2002, 10(4): 477-486.
    [40] B. Wang. Capacity Bounds and Scaling Laws of Wireless Relay Networks [Ph.D. issertation]. Arizona State University, 2006.
    [41] O. Dousse, M. Franceschetti, and P. Thiran. On the throughput scaling of wireless relay networks. IEEE Transactions on Information Theory, 2006, 52(6): 2756-2761.
    [42] H. Bolcskei, R. U. Nabar, O. Oyman, et al. Capacity scaling laws in MIMO relay networks. IEEE Transactions on Wireless Communications, 2006, 5(6): 1433-1444.
    [43] A.Ozgur, O. Leveque, and D. N. C. Tse. Hierarchical Cooperation Achieves Optimal Capacity Scaling in Ad Hoc Networks. IEEE Transactions on Information Theory, 2007, 53(10): 3549-3572.
    [44] V. Stefan, S. L. Hermann, K. Holger, et al. Opportunistic relaying vs. selective cooperation: analyzing the occurrence-conditioned outage capacity. In Proceedings of the 11th international symposium on Modeling, analysis and simulation of wireless and mobile systems Vancouver, British Columbia, Canada: ACM, 2008.
    [45] Savazzi, S. and U. Spagnolini. Distributed Orthogonal Space-Time Coding: Design and Outage Analysis for Randomized Cooperation. IEEE Transactions on Wireless Communications, 2007, 6(12): 4546-4557.
    [46] L. Wang, B. Liu, D. Goeckel, et al. Connectivity in Cooperative Wireless Ad Hoc Networks. In Mobile and Ad Hoc Networking and Computing(MobiHOC), Hong Kong SAR, China, 2008.
    [47] S. Song, D. L. Goeckel and D. Towsley. Collaboration improves the connectivity of wireless networks. In Conference on Computer Communications (INFOCOM), Barcelona, April 2006.
    [48] S. M. Alamouti. A simple transmit diversity technique for wireless communications. IEEE Journal on Selected Areas in Communications, 1998, 16(8): 1451-1458.
    [49] Jakllari, G., Krishnamurthy, S. V., Faloutsoset al. A Framework for Distributed Spatio-Temporal Communications in Mobile Ad Hoc Networks. In Conference on Computer Communications (INFOCOM), Barcelona, 2006.
    [50] M. Zorzi, M. Levorato, and F. Librino. Cooperation in UMTS cellular networks: A practical perspective. In IEEE 19th International Symposium on Personal, Indoor and Mobile Radio Communications(PIMRC), Cannes, France, 2008.1-6.
    [51]王渊,谢显中,杨俊敏。协作通信对增强TD-SCDMA系统覆盖的研究。微计算机信息,2008,24: 104-106。
    [52]R.Pabst, B.H.Walke, D.C.Schultz, et al.Relay-based deployment concepts for wireless and mobile broadband radio.IEEE Communications Magazine, 2004, 42(9):80-89.
    [53]C.Shuguang, A.J.Goldsmith, and A.Bahai.Energy-efficiency of MIMO and cooperative MIMO techniques in sensor networks.IEEE Journal on Selected Areas in Communications,,2004, 22(6): 1089-1098.
    [54]X.Huang, H.Zhai, and Y.Fang.Robust cooperative routing protocol in mobile wireless sensor networks.IEEE Transactions on Wireless Communications, 2008, 7(12):5278-5285.
    [55]Thatte, G.and U.Mitra.Sensor Selection and Power Allocation for Distributed Estimation in Sensor Networks: Beyond the Star Topology.IEEE Transactions on Signal Processing, 2008, 56(7): 2649-2661.
    [56]徐侃如。协作式MIMO传感器网络中能量高效的传输策略研究【博士论文】。华中科技大学,2007年。
    [57]Irmer, R., H.P.Mayer, et al.Multisite field trial for LTE and advanced concepts.IEEE Communications Magazine, 2009, 47(2): 92-98.
    [58]L.Pei, N.Chun, T.Korakis et al.A cooperative MAC for distributed space-time coding in an IEEE 802.16 network.In 5th International Conference on Broadband Communications, Networks and Systems(BROADNETS), London, UK, 2008.25-31.
    [59]R.Ram.Challenges: a radically new architecture for next generation mobile ad hoc networks.In Proceedings of the 11th annual international conference on Mobile computing and networking Cologne (MobiCom), Germany: ACM, 2005.
    [60]A.George, H.Stathes, and M.Lazaros.A cooperative uplink power control scheme for elastic data services in wireless CDMA systems.ACM SIGCOMM Computer Communication Review, 2006, 36(3): 5-14.
    [61]A.NEGI.Analysis of relay based cellular systems [Ph.D.dissertation].Portland State University, 2007
    [62] Y. Kim and H. Liu. Infrastructure Relay Transmission With Cooperative MIMO. IEEE Transactions on Vehicular Technology, 2008, 57(4): 2180-2188.
    [63] H. Zhengqing and T. Chen-Khong. CCMAC: coordinated cooperative MAC for wireless LANs. In Proceedings of the 11th international symposium on Modeling, analysis and simulation of wireless and mobile systems Vancouver, British Columbia, Canada: ACM, 2008.
    [64] G. Lei, D. Xiaoning, W. Haining, et al. Cooperative Relay Service in a Wireless LAN. IEEE Journal on Selected Areas in Communications, 2007, 25(2), 355-368.
    [65] Alejandro,Ribeiro, Renqiu, et al. Multi-source cooperation with full-diversity spectral-efficiency and controllable- complexity. IEEE Journal on Selected Areas in Communications,, 2007, 25(2): 415-425.
    [66] C. Shan and W. Xin. Opportunistic and cooperative spatial multiplexing in MIMO ad hoc networks. In Proceedings of the 9th ACM international symposium on Mobile ad hoc networking and computing(MobiHoc), Hong Kong, China: ACM, 2008.
    [67] B. Nilanjan, D. C. Mark, T. Don, et al. Relays, base stations, and meshes: enhancing mobile networks with infrastructure. In Proceedings of the 14th ACM international conference on Mobile computing and networking(MobiCom). San Francisco, California, USA: ACM, 2008.
    [68] Aitor Del, Coso, Umberto, Spagnolini, and Christian, Ibars. Cooperative Distributed MIMO Channels in Wireless Sensor Networks. IEEE Journal on Selected Areas in Communications, 2007, 25(2): 402-414.
    [69] Q. Zhang, J. Jia, and J. Zhang. Cooperative relay to improve diversity in cognitive radio networks. IEEE Communications Magazine, 2009, 47(2): 111-117.
    [70] Z. Jing, A. Todd, Z. Yang, et al. Extending drive-thru data access by vehicle-to-vehicle relay. In Proceedings of the fifth ACM international workshop on VehiculAr Inter-NETworking(VANET). San Francisco, California, USA: ACM, 2008.
    [71] C. Yifan, T. Jianqi, J. C. Y. et al. Cooperative Communications in Ultra-Wideband Wireless Body Area Networks: Channel Modeling and System Diversity Analysis. IEEE Journal on Selected Areas in Communications, 2009, 27(1): 5-16.
    [72] Krikidis, I., J. Thompson, et al. A Cross-Layer Approach for Cooperative Networks. IEEE Transactions on Vehicular Technology, 57(5): 3257-3263.
    [73] M. Dianati, L. Xinhua, K. Naik, et al. A node-cooperative ARQ scheme for wireless ad hoc networks. IEEE Transactions on Vehicular Technology, 2006, 55(3) 1032-1044.
    [74] I. Cerutti, A. Fumagalli, and P. Gupta. Delay Models of Single-Source Single-Relay Cooperative ARQ Protocols in Slotted Radio Networks With Poisson Frame Arrivals. IEEE/ACM Transactions on Networking, 2008, 16(2): 371-382.
    [75] Wei, S. Diversity-Multiplexing Tradeoff of Asynchronous Cooperative Diversity in Wireless Networks. IEEE Transactions on Information Theory, 2007, 53(11):4150-4172.
    [76] Karthikeyan, Sundaresan and Sampath, Rangarajan. On exploiting diversity and spatial reuse in relay-enabled wireless networks. In Mobile and Ad Hoc Networking and Computing (MobiHoc). Hong Kong SAR, China: ACM, 2008.
    [77] N. Truman Chiu-Yam and Y. Wei. Joint optimization of relay strategies and resource allocations in cooperative cellular networks. IEEE Journal on Selected Areas in Communications, 2007, 25(2): 328-339.
    [78] Shin, O. S., A. M. Chan, et al. Design of an OFDM Cooperative Space-Time Diversity System. IEEE Transactions on Vehicular Technology, 2007, 56(4): 2203-2215.
    [79] Xiao, L., T. E. Fuja, et al. "A Network Coding Approach to Cooperative Diversity. IEEE Transactions on Information Theory, 2007, 53(10): 3714-3722.
    [80] L. Pei, T. Zhifeng, L. Zinan, et al. Cooperative wireless communications: a cross-layer approach. IEEE Wireless Communications, 2006, 13(4): 84-92.
    [81] A. K. Sadek. Cross-layer design for cooperative communications and networking [Ph.D. dissertation]. University of Maryland, College Park, USA 2007.
    [82] J. Ai, A. A. Abouzeid, and Z. Ye. Cross-Layer Optimal Policies for Spatial Diversity Relaying in Mobile Ad Hoc Networks," IEEE Transactions on Wireless Communications, 2008, 7(8): 2930-2939.
    [83] A. E. Khandani, J. Abounadi, E. Modiano, et al. Cooperative Routing in Static Wireless Networks. IEEE Transactions on Communications, 2007, 55(11): 2185-2192.
    [84] M. Kurth, A. Zubow, and J. P. Redlich. Cooperative Opportunistic Routing Using Transmit Diversity in Wireless Mesh Networks. In IEEE Conference on Computer Communications (INFOCOM), Phoenix, USA, 2008. 1310-1318.
    [85] B. Gui, L. Dai, and L. J. Cimini. Routing strategies in multihop cooperative networks. IEEE Transactions on Wireless Communications, 2009, 8(2): 843-855.
    [86] Peng Zhang, Furong Wang, Lai Tu, Kewei Li, Sacko Diouba and Ibrahim khider. Opportunistic Virtual Antenna Array with Optimal Relay mobile terminals Selection. In IEEE 4th International Conference on Wireless Communication, Networking and Mobile Computing (WiCOM), Dalian, China, 2008.
    [87] Peng Zhang, Furong Wang, Zhengguang Xu, Sacko Diouba and Lai Tu. Opportunistic Distributed Space-Time Coding with Semi-distributed Relay-selection method. Research Journal of Information Technology, 8(1): 41-50, 2009.
    [88] Peng Zhang, Zhengguang Xu, Lai Tu and Xu Xie. A Relay Assignment Algorithm With Interference Mitigation For Cooperative Communication. In IEEE Wireless Communications and Networking Conference (WCNC), Budapest, Hungary, 2009.
    [89] Peng Zhang, Furong Wang, Lai Tu and Sacko Diouba. Performance Analysis and Diversity-Multiplexing Tradeoff in Virtual Antenna Array. IEEE 2nd Future Generation and Networking (FGCN), Sanya, China, 2008.
    [90] Bletsas, A. Khisti, D.P. Reed, et al. A simple cooperative diversity method based on network path selection. IEEE Journal on Selected Areas in Communications, 2006, 24(3):659-672.
    [91] Nosratinia, T. E. Hunter, and A. Hedayat. Cooperative communication in wireless networks. IEEE Communications Magazine, 2004, 42(10): 74-80.
    [92] S. Savazzi and U. Spagnolini. Cooperative Fading Regions for Decode and Forward Relaying. IEEE Transactions on Information Theory, 2008, 54(11): 4908-4924.
    [93] Avestimehr, A. S. and Tse, D. N. C. Outage Capacity of the Fading Relay Channel in the Low-SNR Regime. IEEE Transactions on Information Theory, 53(4):1401-1415.
    [94] R. U. Nabar, H. Bolcskei, and F. W. Kneubuhler. Fading relay channels: performance limits and space-time signal design. IEEE Journal on Selected Areas in Communications, 2004, 22(6): 1099-1109.
    [95] S. Erik, O. Ozgur, N. Ravi, and P. Arogyaswami. Finite-SNR diversity-multiplexing tradeoffs in fading relay channels. IEEE Journal on Selected Areas in Communications, , 2007, 25(2): 245-257.
    [96] K. Azarian, H. El Gamal, and P. Schniter. On the achievable diversity-multiplexing tradeoff in half-duplex cooperative channels. IEEE Transactions on Information Theory, 2005, 51(12): 4152-4172.
    [97] Y. Sheng and J. C. Belfiore. Optimal Space-Time Codes for the MIMO Am-plify-and-Forward Cooperative Channel. IEEE Transactions on Information Theory, 2007, 53(2): 647-663.
    [98] S. Yang and J. C. Belfiore. Towards the Optimal Amplify-and-Forward Cooperative Diversity Scheme. IEEE Transactions on Information Theory, 2007, 53(9):3114-3126.
    [99] I. Krikidis, J. Thompson, S. McLaughlin,et al. Optimization Issues for Cooperative Amplify-and-Forward Systems Over Block-Fading Channels. IEEE Transactions on Vehicular Technology, 2008, 57(5): 2868-2884.
    [100] K. Azarian, H. El Gamal, and P. Schniter. On the Optimality of the ARQ-DDF Protocol. IEEE Transactions on Information Theory, 2008, 54(4): 1718-1724.
    [101] A. Ramesh, C. C. Pamela, and B. M. Laurence. Statistical channel knowledge-based optimum power allocation for relaying protocols in the high SNR regime. IEEE Journal on Selected Areas in Communications, 2007, 25(2): 292-305.
    [102] Yindi, J. and B. Hassibi. Distributed Space-Time Coding in Wireless Relay Networks. IEEE Transactions on Wireless Communications, 2006, 5(12): 3524-3536.
    [103] Cui, T., F. Gao, et al. Distributed Space-Time Coding for Two-Way Wireless Relay Networks. IEEE Transactions on Signal Processing, 2009, 57(2): 658-671.
    [104] K. G. Seddik, A. K. Sadek, A. S. Ibrahim, et al. Design Criteria and Performance Analysis for Distributed Space-Time Coding. IEEE Transactions on Vehicular Technology, 2008, 57(4): 2280-2292.
    [105] P. Viswanath, D. N. C. Tse, and R. Laroia. Opportunistic beamforming using dumb antennas. IEEE Transactions on Information Theory, 2002, 48(6): 1277-1294.
    [106] E. Beres and R. Adve. Selection Cooperation in Multi-Source Cooperative Networks. IEEE Transactions on Wireless Communications, 2008, 7(1): 118-127.
    [107] J. Cai, X. Shen, J. W. Mark, et al. Semi-Distributed User Relaying Algorithm for Amplify-and-Forward Wireless Relay Networks. IEEE Transactions on Wireless Communications, 2008, 7(4): 1348-1357.
    [108] A. K. Sadek, H. Zhu, and K. J. R. Liu. An efficient cooperation protocol to extend coverage area in cellular networks. In IEEE Wireless Communications and Networking Conference (WCNC), Las Vegas, Nevada, USA, 2006. 1687-1692.
    [109] Y. Liang, V. V. Veeravalli, and H. Vincent Poor. Resource Allocation for Wireless Fading Relay Channels: Max-Min Solution. IEEE Transactions on Information Theory, 2007, 53(10): 3432-3453.
    [110] S. Cui and A. J. Goldsmith. Cross-layer design of energy-constrained networks using cooperative MIMO techniques. Signal Processing: ELSEVIER, 2006, 84:1804-1814.
    [111] Sadek, A. K., Ray Liu, K.J., et al. Cognitive Multiple Access Via Cooperation: Protocol Design and Performance Analysis. IEEE Transactions on Information Theory, 2007, 53(10): 3677-3696.
    [112] B. Xiaole, X. Dong, Y. Ziqiu, et al. Complete optimal deployment patterns for full-coverage and k-connectivity wireless sensor networks. In Proceedings of the 9th ACM international symposium on Mobile ad hoc networking and computing (Mo-biHoc), Hong Kong, China: ACM, 2008.
    [113] Thomas M.Cover and Joy A.Thomas. Elements of Information Theory (2nd Edition). Wiley-Interscience, 1991.
    [114] Chen, M., S. Serbetli, et al. Distributed power allocation strategies for parallel relay networks. IEEE Transactions on Wireless Communications, 2008, 7(2):552-561.
    [115] Zhiguo, D., G. Yu, et al. On the Performance of Opportunistic Cooperative Wireless Networks. IEEE Transactions on Communications, 2008, 56(8): 1236-1240.
    [116] Aggelos, B., K. Ashish, et al. Low complexity virtual antenna arrays using cooperative relay selection. In Proceedings of international conference on Wireless communications and mobile computing, British Columbia, Canada: ACM, 2006.
    [117] R. Tannious and A. Nosratinia. Spectrally-efficient relay selection with limited feedback. IEEE Journal on Selected Areas in Communications, 2008, 26(8):1419-1428.
    [118] K. Lo, R. W. Heath Jr., and S. Vishwanath. The impact of channel feedback on opportunistic relay selection for hybrid-ARQ in wireless networks. IEEE Transac- tions on Vehicular Technology:Accepted for future publication, 2008.
    [119] B.Zhao and M.C.Valenti.Practical relay networks: a generalization of hy-brid-ARQ.IEEE Journal on Selected Areas in Communications, 2005, 23(1): 7-18.
    [120] E.Beres and R.Adve.On Selection Cooperation in Distributed Networks.In 40th Annual Conference on Information Sciences and Systems, 2006.1056-1061.
    [121] D.S.Michalopoulos and G.K.Karagiannidis.Performance analysis of single relay selection in rayleigh fading.IEEE Transactions on Wireless Communications,2008, 7(10): 3718-3724.
    [122] A.S.Ibrahim, A.K.Sadek, W.Su, et al.Relay Selection in Multi-Node Cooperative Communications: When to Cooperate and Whom to Cooperate with?.In Global Telecommunications Conference (GLOBECOM), San Francisco, California, USA,2006: 1-5.
    [123]V.Mahinthan, C.Lin, J.W.Mark, et al.Partner Selection Based on Optimal Power Allocation in Cooperative-Diversity Systems.IEEE Transactions on Vehicular Technology, 2008, 57(1):511-520.
    [124]高伟东,王文博,袁广翔等。协作通信中的中继节点选取和功率分配联合优化。北京邮电大学学报,2008, 31(2):68-71。
    [125]Z.Haitao, Z.Yan, S.Cong, et al.On the effectiveness of cooperative diversity in ad hoc networks: a MAC layer study.In IEEE International Conference on Acoustics Speech, and Signal Processing (ICASSP'05), Pennsylvania, USA,2005.509-512.
    [126]N.Aria and E.H.Todd.Grouping and partner selection in cooperative wireless networks.IEEE Journal on Selected Areas in Communications, 2007, 25(2):369-378.
    [127]Z.Lin, E.Erkip, and A.Stefanov.Cooperative Regions and Partner Choice in Coded Cooperative Systems.IEEE Transactions on Communications, 2006, 54(4):760-760.
    [128]Jing, Y.and H.Jafarkhani.Single and multiple relay selection schemes and their achievable diversity orders.IEEE Transactions on Wireless Communications, 2009,8(3): 1414-1423.
    [129]Y.Shi, S.Sharma, Y.T.Hou, and S.Kompella.Optimal relay assignment for cooperative communications.In Mobile and Ad Hoc Networking and Computing (Mo- biHOC), Hong Kong SAR, China: ACM, 2008.
    [130] Ioannis Krikidis, John Thompson, et al. Relay Selection Issues for Am-plify-and-Forward Cooperative Systems with Interference. In IEEE Wireless Communications and Networking Conference (WCNC), Budapest, Hungary, 2009.
    [131] S. Vakil and B. Liang. Cooperative Diversity in Interference Limited Wireless Networks. IEEE Transactions on Wireless Communications, 2008, 7(8): 3185-3195.
    [132] Yan, Zhu, and Haitao, Zheng. Understanding the Impact of Interference on Collaborative Relays. IEEE Transactions on Mobile Computing, 2008, 7(6): 724-736.
    [133] Z. Jin and Z. Qian. Cooperative Routing in Multi-Source Multi-Destination Multi-Hop Wireless Networks. In IEEE 27th Conference on Computer Communications (INFOCOM), Phoenix, USA, 2008. 2369-2377.
    [134] Sepko, B. J. and L. Wookwon. A study on effect of interference in cooperative communication. IEEE Radio and Wireless Symposium, Orlando, FL, USA, 2008.651-654.
    [135] L. Pei, T. Zhifeng, N. Sathya, et al. CoopMAC: A Cooperative MAC for Wireless LANs. IEEE Journal on Selected Areas in Communications, 2007, 25(2): 340-354.
    [136] Yi, S., Z. Wei, et al. Cooperative Multiplexing and Scheduling in Wireless Relay Networks. IEEE International Conference on Communications (ICC), Beijing, China, 2008. 3034-3038.
    [137] Z. Lizhong and D. N. C. Tse. Diversity and multiplexing: a fundamental tradeoff in multiple-antenna channels. IEEE Transactions on Information Theory, 2003, 49(5):1073-1096.
    [138] M. Yuksel and E. Erkip. Multiple-Antenna Cooperative Wireless Systems: A Diversity-Multiplexing Tradeoff Perspective. IEEE Transactions on Information Theory, 2007, 53(10): 3371-3393.
    [139] Z. Lei, M. Wei, M. Yao, et al. Diversity and Multiplexing Tradeoff in General Fading Channels. IEEE Transactions on Information Theory, 2007, 53(4):1549-1557.
    [140] T. Tabet, S. Dusad, and R. Knopp. Diversity-Multiplexing-Delay Tradeoff in Half-Duplex ARQ Relay Channels. IEEE Transactions on Information Theory, 2007,53(10): 3797-3805.
    [141]Andrea Goldsmith.Wireless Communications.USA: Cambridge University Press,2004.
    [142]V.Tarokh, H.Jafarkhani, et al.Space-time block codes from orthogonal designs.IEEE Transactions on Information Theory, 1999.45(5): 1456-1467.
    [143]K.D.Lee and V.C.M.Leung.Evaluations of Achievable Rate and Power Consumption in Cooperative Cellular Networks With Two Classes of Nodes.IEEE Transactions on Vehicular Technology, 2008, 57(2): 1166-1175.
    [144] M.Dohler.Virtual Antenna Arrays [Ph.D.dissertation].University of London, 2003.
    [145] Puneet, S., L.Sung-Ju, et al.Aggregating Bandwidth for Multihomed Mobile Collaborative Communities.IEEE Transactions on Mobile Computing, 2007, 6(3):280-296.
    [146]K.Byung Chul, C.Jin Seek, and U.Chong Kwan.Enhancing 3G High Speed Wireless Data Performance Through Utilization of 3G-WLAN System Cooperation: A Cross-Network, Cross-Layer Approach.Wireless Personal Communications, 2007.43: 89-106.
    [147]杨玉东,李方伟,田雨等。基于协作通信的TD-VAA-SCDMA系统。电信科学,2006, 7: 47-51。
    [148]彭木根,王文博。基于协同机理的下一代宽带无线通信系统。数据通信,2007,2: 1-5。
    [149]Z.Shunqing and V K.N.Lau.Design and Analysis of Multi-Relay Selection for Cooperative Spatial Multiplexing.In IEEE International Conference on Communications (ICC), Beijing, China, 2008.1129-1133.
    [150]Simeone, O., O.Somekh, et al.Local Base Station Cooperation Via Finite-Capacity Links for the Uplink of Linear Cellular Networks.IEEE Transactions on Information Theory, 2009, 55(1): 190-204.
    [151]H.Shan, W.Zhuang, and Z.Wang.Distributed cooperative MAC for multihop wireless networks.IEEE Communications Magazine, 2009, 47(2): 126-133.
    [152]IEEE Computer Society.802.11:Wireless LAN Medium Access Control (MAC) and Physical Layer(PHY) Specifications, 1997.
    [153]J.Gentian, V.K.Srikanth, F.Michalis et al.On broadcasting with cooperative diversity in multi-hop wireless networks. IEEE Journal on Selected Areas in Communications, 2007, 25(2): 484-496.
    [154] Y. Haiming, S. Hsin-Yi, and B. Sikdar. A MAC Protocol for Cooperative MIMO Transmissions in Sensor Networks. In IEEE Global Telecommunications Conference (GLOBECOM), Washington, DC, USA, 2007. 636-640.
    [155] S. Moh, C. Yu, S-M. Park,et al. CD-MAC: Cooperative Diversity MAC for Robust Communication in Wireless Ad Hoc Networks. In IEEE International Conference on Communications (ICC), Glasgow, Scotland, 2007. 3636 -364.
    [156] Mohd Riduan, A., D. Eryk, et al. Performance evaluation of MAC protocols for cooperative MIMO transmissions in sensor networks. Proceedings of the 5th ACM symposium on Performance evaluation of wireless ad hoc, sensor, and ubiquitous networks. Vancouver, British Columbia, Canada: ACM, 2008.
    [157] Z. Hao and C. Guohong. rDCF: A Relay-Enabled Medium Access Control Protocol for Wireless Ad Hoc Networks. IEEE Transactions on Mobile Computing, 2006, 5(9): 1201-1214.
    [158] R. Ahmad, Z. Fu-Chun, M. Drieberg, et al. An Enhanced Relay-Enabled Medium Access Control Protocol for Wireless Ad Hoc Networks. In IEEE Vehicular Technology Conference(VTC), Calgary, Canada, 2008. 1-5.
    [159] M. S. Gokturk and O. Gurbuz. Cooperation in Wireless Sensor Networks: Design and Performance Analysis of a MAC Protocol. In IEEE International Conference on Communications (ICC), Beijing, China, 2008. 4284-4289.
    [160] C.-T. Chou, J. Yang, and D. Wang. Cooperative MAC Protocol with Automatic Relay Selection in Distributed Wireless Networks. In Fifth Annual IEEE International Conference on Pervasive Computing and Communications (PerCom), NY, USA, 2007. 526-531.
    [161] Zhang, J., Q. Zhang, et al. VC-MAC: A Cooperative MAC Protocol in Vehicular Networks. IEEE Transactions on Vehicular Technology, 2009, 58(3): 1561-1571.
    [162] Andrea, M., R. Francesco. Cooperative cross layer MAC protocols for directional antenna ad hoc networks. Mobile Computing and Communications Review, 2008, 12(2): 12-30.
    [163] L. Feilu, T. Korakis, T. Zhifeng, et al. A MAC-PHY Cross-Layer Protocol for Ad Hoc Wireless Networks. In IEEE Wireless Communications and Networking Conference (WCNC), Las Vegas, Nevada, USA, 2008. 1792-1797.
    [164] Escrig, B., B. Paillassa, et al. A framework for cooperative communications at the system level. 5th IEEE International Conference on Mobile Ad Hoc and Sensor Systems (MASS), Atlanta, Georgia, USA, 2008. 653-658.
    [165] H. Gavin, V. Nitin, and B. Paramvir. A rate-adaptive MAC protocol for multi-Hop wireless networks. In Proceedings of the 7th annual international conference on Mobile computing and networking (MobiCom), Rome, Italy: ACM, 2001.
    [166] Q. Lili, Z. Yin, W. Feng, et al. A general model of wireless interference. In Proceedings of the 13th annual ACM international conference on Mobile computing and networking (MobiCom), Montreal, Quebec, Canada: ACM, 2007.
    [167] L. Yi, Q. Lili, Z. Yin, et al. Predictable performance optimization for wireless networks. In Proceedings of conference on Applications, technologies, architectures, and protocols for computer communications (SIGCOMM), Seattle, Washington, USA: ACM, 2008. 413-426.
    [168] S. Christian, R. Andrea, and S. Paolo. An O(log n) dominating set protocol for wireless ad-hoc networks under the physical interference model. in Proceedings of the 9th ACM international symposium on Mobile ad hoc networking and computing (MobiHoc), Hong Kong, China: ACM, 2008.
    [169] R. Charles, M. Ratul, R. Maya, et al. Measurement-based models of delivery and interference in static wireless networks. In Proceedings of conference on Applications, technologies, architectures, and protocols for computer communications (SIGCOMM), Pisa, Italy: ACM, 2006. 51-62.
    [170] G. Ramakrishna, W. David, G. Ben, et al. Understanding and mitigating the impact of RF interference on 802.11 networks. In Proceedings of conference on Applications, technologies, architectures, and protocols for computer communications (SIGCOMM), Kyoto, Japan: ACM, 2007.
    [171] H. Daniel, A. Thomas, and W. David. Taking the sting out of carrier sense: interference cancellation for wireless LANs. In Proceedings of the 14th ACM international conference on Mobile computing and networking (MobiCom), San Francisco, California, USA: ACM, 2008.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700