用户名: 密码: 验证码:
Anabaena PCC7120中异形胞发育的信号传导机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
Anabaena PCC7120是一种丝状蓝细菌,在培养基中缺失化合态氮源的条件下,丝状体上分化形成异形胞执行固氮的功能。本论文主要的目的是研究异形胞发育过程中信号传导基因的功能。
     Anabaena PCC7120的全基因组序列可以从CyanoBase数据库获得。基于其全基因组数据分析,发现了211个与双组份信号传导系统有关的基因,其中,有131个组氨酸激酶基因,80个反应调控子基因。根据这些基因的结构特征将它们分别分为7个亚家族和6个亚家族。分析显示,Anabaena PCC7120中有一些蛋白同时含有双组份系统和丝/苏氨酸激酶或磷酸酶的模件。其中,有一个由13个基因组成的亚家族,这个家族的蛋白既含有丝/苏氨酸激酶结构域也含有组氨酸激酶结构域。另外,还有4个基因编码的蛋白同时含有反应调控子结构域和丝/苏氨酸磷酸酶结构域。通过基因组比较分析发现,211个基因中约有35%的基因在Synechocystis PCC6803中可以找到同源基因,但其中有一个亚家族的组氨酸激酶基因和两个亚家族的反应调控子基因在Synechocystis PCC 6803中不存在任何同源基因。
     本研究中共将109个基因进行了失活,其中19个基因获得了单交换突变株但未获得双交换突变株,74个获得了双交换突变株。在缺氮的条件下对双交换突变株分别进行表型观察。结果显示,有一个突变株不能分化异形胞;三个突变株可以形成异形胞,但在缺氮的条件下仍不能维持生长;4个突变株可以分化异形胞,但在缺氮条件下生长缓慢。这些基因可能在异形胞的分化或功能中发挥作用。
     本研究还针对407个基因(包括信号传导有关的基因及转录因子)制备了基因芯片。利用基因芯片研究氮源缺失条件下基因表的达变化。结果显示,在缺氮培养24小时的条件下,28个基因的表达发生变化。以上结果为综合性研究异形胞的发育的分子机制提供了重要的分子生物学及遗传学的基础,便于更加深入的了解异形胞发育过程中的调控网络。
Anabaena PCC 7120 is a filamentous cyanobacterium capable of both photosynthesis and dinitrogen fixation under aerobic conditions. Under conditions of combined nitrogen depletion, 5-10% of the cells along each fillament are induced to become specialized ones, called heterocysts, that are capable of molecular nitrogen fixation. Heterocyst create a microoxic environment to protect nitrogenase from oxygen. Up to now , the mechanism of singnal transduction involved in heterocyst differentiation is still unclear. The main objective of this study was to analyse genes of singnal transduction involved in heterocyst differentiation.
    Genome sequences of Anabaena PCC 7120 are available at the CyanoBase databank. Based on the genomic data, 211 genes encoding two-component signaling elements have been retrieved. There are 131 genes encoding histine kinase and 80 genes encoding response regulator, that are classified into 7 and 6 subfamilies respectively. Many proteins in Anabaena PCC 7120 have incorporated both modules of two-component systems and catalytic domains of either Ser/Thr kinases or phosphatases. A subfamily of 13 genes encode proteins with both a Ser/Thr kinase domain anti a His kinase domain, and another four genes were also found whose products have both a response regulator domain and a Ser/Thr phosphatase domain. Of all the signaling proteins in Anabaena PCC 7120, about one third (35%) are conserved in the genome of the unicellular cyanobacterium strain Synechocystis PCC 6803. Interestingly, one subfamily of His kinases and two subfamilies of response regulators are present in Anabaena PCC 7120, but absent in Synechocystis P
    CC 6803.
    109 genes were inactivated by insertion of a cassete confering antibiotic resistance. 19 single and 74 double recombinants were obtained. These mutants were examined for phenotypes after nitrogen depletion .The result showed that one mutant was unable to differentiate heterocyst, three formed heterocysts but still could not maintain normal growth, four growed slowly with heterocyst differentiation. These genes may play roles in hetetocyst differentiation or function.
    The gene chip used in this study contained 407 genes. The genes expression profil responding to nitrogen deprivation was analyzed using this gene-chip.The results indicated that 28 of 407 genes had an altered pattern of expression 24 hours after nitrogen deprivation. These studies provide a genetic and molecular basis for the understranding of the signaling network underlying heterocyst development in caynobacteria.
引文
1.许文亮,刘永定,宋立荣.蓝藻的二元信号传导系统.生物学杂志,2003,(23)
    2. Alex L A, Simon M I. Protein kinase and signal transduction in prokaryotes and eukaryotes. Trends in Genet, 1994, (10): 133-138
    3. Appleby J L, Parkinson J S, Bourret R B. Signal transduction via the multi-step phosphorelay: not necessarily a road less travelled. Cell, 1996, (86): 845-848.
    4. Bakal C J, Davies J E. No longer an exclusive club: eukaryotic signalling domains in bacteria. Trends in Cell Biol, 2000, (10): 32-38.
    5. Bancroft I, Wolk C P, Oren E V. Physical and genetic maps of the genome of the heterocyst-forming cyanobacterium Anabaena sp. strain PCC7120. J. Bact, 1989, 171(1): 5940-5948
    6. Barik S. Protein phosphorylation and signal transduction. Subcell Biochem. 1996, (26): 115-64.
    7. Bauer C C, Ramaswamy K S, Endley S, Seappino L A, Golden J W, Haselkorn R. Suppression of heterocyst differentiation in Anabaena PCC 7120 by a cosmid carrying wild-type genes encoding enzymes for fatty acid synthesis. FEMS Microbiol Lett, 11997, 151: 23-30.
    8. Bilwes A M, Alex L A, Crane B R, Simon M I. Structure of CheA, a signal-transducing histidine kinase. Cell, 1999, 96(1): 131-41.
    9. Black TA, Wolk CP. Analysis of a HerS mutation in Anabaena sp. strain PCC 7120 implicates a secondary metabolite in the regulation of heterocyst spacing. J Bacteriol, 1994, 176: 2282-2292.
    10. Bourret R B, Hess J F, Simon M I. Conserved aspartate residues and phosphorylation in signal transduction by the chemotaxis protein Che Y. Proc Natl Acad Sci USA, 1990, 87: 41-45
    11. Brissette R E, Tsung K L, Inouye M. Suppression of a mutation in OmpR at the putative phosphorylation center by a mutant EnvZ protein in Escherichia coli. J. Bacteriol, 1991, 173: 601-608
    12. Brusca, J S, Chastain C J, Golden J W. Expression of the Anabaena sp. strain PCC 7120 xisA gene from a heterologous promoter results in excision of the nifD element. J. Bacteriol, 1990, 172: 3925-3931.
    13. Buikema W J, Haselkorn R. Molecular genetics of cyanobacterial development. Annu Rev Plant Physiol Plant Mol Biol, 1993, 44: 33-52
    14. Buikema W J, Haselkorn R. Expression of the Anabaena hetR gene from a copper-regulated
    
    promoter leads to heterocyst differentiation under repressing conditions. Proc Natl Acad Sci USA, 2001, 98: 2729-2734.
    15. Callahan S M, Buikema W J. The role of HetN in maintenance of the heterocyst pattern in Anabaena sp. PCC 7120. Mol Microbiol, 2001, 40: 941-950.
    16. Carrasco C D, Buettner J A, Golden J W. Programmed DNA rearrangement of a cyanobacterial hupL gene in heterocysts. Proc Natl Acad Sci U S A, 1995, 31; 92(3): 791-5.
    17. Carrasco C D, Golden J W. Two heterocyst-specific DNA rearrangements of nif operons in Anabaena cylindrica and Nostoc sp. strain Mac. Microbiology, 1995, Oct; 141 (Pt 10): 2479-87.
    18. Carrasco C D, Ramaswamy K S, Ramasubramanian T S, Golden J W. Anabaena xisF gene encodes a developmentally regulated site-specific recombinase. Genes Dev, 1994 , Jan; 8(1): 74-83.
    19. Chang C, Kwok S F, Bleecker A B, Meyerowitz E M. Arabidopsis ethylene-response gene ETR1: similarity of product to two-component reguIators. Science, 1993, 262: 539-544.
    20. Cho H S, Pelton J G, Yan D, Kustu S, Wemmer D E. Phosphoaspartates in bacterial signal transduction. Curr Opin Struct Bio, . 2001, 11 (6): 679-84.
    21. Cozzone A J. Diversity and specificity of protein-phosphorylating systems in bacteria. Folia Microbiol, 1997, 42(3): 165-70.
    22. Curatti L, Flores E, Salerno G. Sucrose is involved in the diazotrophic metabolism of the heterocyst- forming cyanobacterium Anabaena sp. FEBS Lett, 2002, 513: 175-178.
    23. Dong Y Q, Xu H, Wu X Y, Zhao J D. Identification of the Active Site of HetR Protease and Its Requirement for Heterocyst Differentiation in the Cyanobacterium Anabaena sp. Strain PCC 7120. J Bacteriol, Mar. 2000, Vol. 182: 1575-1579.
    24. Drobak B K. Phosphoinositides and protein phosphorylation in plant signal transduction. Semin Cell Biol, 1993, 4(2): 123-30.
    25. Elhai J, Wolk CP. Developmental regulation and spatial pattern of expression of the structural genes for nitrogenase in the cyanobaeterium Anabaena. EMBO J, 1990, 9: 3379-3388.
    26. Fauman E B, Saper M A. Structure and function of the protein tyrosinephosphatases. Trends in Biochem Sci, 1996, 21: 413-417.
    27. Fiedler G, Muro-Pastor AM, Flores E, Maldener I. NtcA-dependent expression of the devBCA operon, encoding a heterocystspecific ATP-binding cassette transporter in Anabaena spp. J Bacteriol, 2001, 183: 3795-3799.
    
    
    28. Galyov E E, Hankansson S, Forsberg A, Wolf-Watz H. A secreted protein kinase of Yersinia pseudotuberculosis is an indispensable virulence determinant. Nature, 1993, 361: 730-732
    29. Golden J W, Ho-Sung Y. Heterocyst development in Anabaena. Current Opinion in Microbiology, 2003, 6: 557-563
    30. Golden J W, Mulligan M E, Haselkorn R. Different recombination site specificity of two developmentally regulated genome rearrangements. Nature, 1987, 327(6122): 526-9.
    31. Golden J W, Whorff L L, Wiest D R. Independent regulation of nifHDK operon transcription and DNA rearrangement during heterocyst differentiation in the cyanobacterium Anabaena sp. strain PCC 7120. J Bacteriol, 1991, Nov; 173(22): 7098-105.
    32. Golden J W, Wiest D R. Genome rearrangement and nitrogen fixation in Anabaena blocked by inactivation of xisA gene. Science, 1988, Dec 9; 242(4884): 1421-3.
    33. Golden, J W, Carrasco C D, Mulligan M E, Schneider G J, Haselkom R. Deletion of a 55-kilobase-pair DNA element from the chromosome during heterocyst differentiation of Anabaena sp. strain PCC 7120. J. Bacteriol, 1988, 170: 5034-5041.
    34. Golden J W, Robinson S J, Haselkorn R. Rearrangement of nitrogen fixation genes during heterocyst differentiation in the cyanobacterium Anabaena. Nature, 1985, 314: 419-423.
    35. Hagen K D, Meeks J C. Biochemical and genetic evidence for participation of DevR in a phosphorelay signal transduction pathway essential for heterocyst maturation in Nostoc punctiforme ATCC 29133. J Bacteriol, 1999, 181: 4430-4434.
    36. Hakansson S E, Galyov E E, Rosqvist R, Wolf-Watz H. The Yersinia YpkA Ser/Thr kinaseis translocated and subsequently targeted to the inner suuface of the HeLa cell plasma membrane. Mol Microbiol, 1996, 20: 593-603
    37. Hanks S K, Quinn A M and Hunter T. The protein kinase family: conserved features and deduced phylogeny of the catalytic domains. Science, 1985, 241: 42-52.
    38. Hanlon W A, Inouye M, Inouye S. Pkn9, a Ser/Thr protein kinase involved in the development of Myxococcus xantbus. Mol Micobiol, 1997, 23: 459-471
    39. Haselkorn, R., Golden J W, Lammers P J, Mulligan M E. Developmental rearrangement of cyanobacterial nitrogen-fixation genes. Trends Genet, 1986, 2: 255-259.
    40. Herrero A, Muro-Pastor A M, Flores E. Nitrogen control in cyanobaeteria. J Bacteriol, 2001, 183: 411-425.
    
    
    41. Hoch J A. Two-component and phosphorelay signal transduction. Curr Opin Microbiol, 2000, 3: 165-170.
    42. Hunter T. Protein kinases and phosphatases: the yin and yang of proteinphosphorylation and signalling. Cell, 1995, 80: 225-236.
    43. Inouye S, Jain R, Ueki T, Nariya H, Xu C Y, Hsu M Y, Fernandez-Luque B A, Munoz-Dorado J, Farez-Vidal E, Inouye M. A large family of eukaryotic-like protein Ser/Thr kinases of Myxococcus xanthus, a developmental bacterium. Microb Comp Genomic, 2000, 5(2): 103-20.
    44. Jones K M, Haselkorn R. Newly identified eytochrome c oxidase operon in the nitrogen-fixing cyanobacterium Anabaena sp. strain PCC 7120 specifically induced in heterocysts. J Baeteriol, 2002, 184: 2491-2499.
    45. Kennelly P J , Potts M. Fancy meeting you here: a fresh look at 'prokaryotic' protein phosphorylation. J. Bacteriol, 1996, 178: 4759-4764
    46. Khudyakov I, Wolk C P. hetC, a gene coding for a protein similar to bacterial ABC protein exporters, is involved in early regulation of heterocyst differentiation in Anabaena sp. strain PCC 7120. J Bacteriol, 1997, 179: 6971-6978.
    47. Kieber J J, Rothenberg M, Roman G, Feldmann K A, Eeker J R. CTRI, a negative regulator of the ethylene response pathway in Arabidopsis, encodes a member of the Raf family of protein kinase. Cell, 1993, 72: 427-441
    48. Koksharova O A, Wolk C P, Novel DNA-binding proteins in the cyanobacterium Anabaena sp. strain PCC 7120. J Bacteriol, 2002, 184: 3931-3940.
    49. Lammers, P J, Golden J W, Haselkorn R. Identification and sequence of a gene required for a developmentally regulated DNA excision in Anabaena. Cell, 1986, 44: 905-911.
    50. Li B, Huang X, Zhao J. Expression of hetN during heterocyst differentiation and its inhibition of hetR up-regulation in the cyanobacterium Anabaena sp. PCC 7120. FEBS Lett, 2002, 517: 87-91.
    51. Li J H, Laurent S, Konde V, Bedu S, Zhang C C. An increase in the level of 2-oxoglut- arate promotes heterocyst development in the cyanobacterium Anabaena sp, strain PCC 7120. Microbiology, 2003, Nov; 149(Pt 11): 3257-63.
    52. Liang J, Scappino L, Haselkorn, R, The patB gene product, required for growth of the cyanobacterium Anabaena sp. strain PCC 7120 under nitrogen-limiting conditions, contains ferredoxin and helixturn- helix domains. J Bacteriol, 1993, 175: 1697-1704.
    
    
    53. Liu D, Golden J W, hetL overexpression stimulates heterocyst formation in Anabaena sp. strain PCC 7120. J Bacteriol, 2002, 184: 6873-6881.
    54. Lukat G S, McCleary W R, Stock A M, Stock J B. Proc. Natl. Acad Sci. USA, 1992, 89: 718-22
    55. Maeda T, Wurgler-Murphy S M, Saito H. A two-component system that regulates an osmosensing MAP kinase cascade in yeast. Nature, 1994, 369: 242-245
    56. Matsurnoto A, Hong S K, lshizuka H, Horinouchi S, Beppu T. Phosphorylation of the AfsR protein involved in secondary metabolism in Streptomyces species by a eukaryotic-type protein kinase. Gene, 1994, 146: 47-56
    57. Mulligan, M E, Haselkorn R. Ntrogen-fixation(nif)genes of the cyanobacterium Anabaena sp.strain PCC 7120 : the nifB-fdxN-nifS-nifU operon. J. Biol. Chem, 1989, 264: 19200-19207
    58. Munoz-Dorado J, Inouye M , lnouye S. A gene encoding protein serine/threonine kinase is required for normal development of M. xanthus, a gram-negative bacterium. Cell, 1991, 67: 995-569
    59. Muro-Pastor A M, Valladares A, Flores E, Herrero A. Mutual dependence of the expression of the cell differentiation regulatory protein HetR and the global nitrogen regulator NteA during heterocyst development. Mol Microbiol, 2002, 44: 1377-1385.
    60. Muro-Pastor A M, Valladares A, Flores E, Herrero A. The hetC gene is a direct target of the NtcA transcriptional regulator in cyanobacterial heterocyst development, J Bacteriol, 1999, 181: 6664-6669.
    61. Muro-Pastor M I, Reyes J C, Florencio F J. Cyanobacteria perceive nitrogen status by sensing intracellular 2-oxoglutarate levels. J Biol Chem, 2001, 276: 38320-38328.
    62. Murry, M A, Wolk CP. Evidence that the barrier to the penetration of oxygen into heterocysts depends upon two layers of the cell envelope. Arch. Microbiol, 1989, 151: 469-474.
    63. Nadvornik R, Vomastek T, Janecek J, Technikova Z, Branny P. Pkg2, a novel transmembrane protein Ser/Thr kinase of Streptomyces granaticolor. J Bactriol, 1999, 181 : 15-23
    64. Packinson J S, Kofoid E C. Communication modules in bacterial signaling proteins, Anna Rev Genet, 1992, 26: 71 112.
    65. Pannifer A D B, Flint A J, Tonks N K, Barford D. Visualization of the cysteinyl-phosphate intermediate of a protein-tyrosine phosphatase by X-ray crystallography. J Biol Chem, 1998, 273: 10454-10462.
    
    
    66. Parkison J S. Signal transduction schems of bacteria, Cell, 1993, 73: 857-871
    67. Phalip V, Li J H , Zhang C C. HstK, a cyanobacterial protein with both a Ser/Thr kinase domain and a His-kinase domain: implication for the mechanism of signal transduction. Biochem. J, 2001, 360: 639-644.
    68. Potts M H, Sun H, Mockaitis K, Kennelly P J, Reed D , Tonks N K. A protein-tyrosine/serine phosphatase encoded by the genome of the cyanobacterium Nostoc. J Biol Chem, 1993, 268: 7632-7635
    69. Ramaswamy K S, Carrasco C D, Fatma T, Golden J W. Cell-type specificity of the Anabaena fdxN-element rearrangement requires xisH and xisI. Mol Microbiol, 1997, Mar; 23(6): 1241-9.
    70. Saier M H Jr. Introduction: protein phosphorylation and signal transduetion in bacteria, J Cell Biochem, 1993, 51(1): 1-6.
    71. Schwartz S H, Black T A, Jager K, Panoff J M, Wolk C P. Regulation of an osmoticum-responsive gene in Anabaena sp. strain PCC 7120. J Bacteriol, 1998, 180(23): 6332-7.
    72. Shi L, Potts M, Kennelly P J. The serine, threonine, and/or tyrosine-specifie protein kinases and protein phosphatases of prokaryotic organisms: a family portrait. FEMS Microbiol Rev, 1998, 22: 229-253
    73. Stock A M, Robinson V L, Goudreau P N. Two-component signal transduction. Annu Rev Biochem, 2000, 69: 183-215.
    74. Stock J B, Ninfa A D, Stock A M. Protein phospborylatian and regulation of adaptive responses in bacteria. Microbiol Rev, 1989, 53: 450-490.
    75. Stock J B, Stock A M , Mottonen J M. Signal transduction in bacteria, Nature, 1990, 344: 395-400.
    76. Stock J B, Surette M G, Levit M, Stock A M. Two-component signal transduction systems: structure-function relationships and mechanisms of catalysis. Two-component signal transduction. Washingtion DC, American Society for Microbiology, 1995, pp. 25-51
    77. Tanigawa R, Shirokane M, Maeda Si S, Omata T, Tanaka K, Takahashi H. Transcriptional activation of NtcA-dependent promoters of Synechococcus sp. PCC 7942 by 2-oxoglutarate in vitro. Proc Natl Acad Sci USA, 2002, 99: 4251-4255.
    78. Thiel T, Lyons E M, Erker J C, Ernst A. A second nitrogenase in vegetative cells of a heterocyst-forming cyanobacterium. Proc Natl Acad Sci USA, 1995, 92: 9358-9362.
    
    
    79. Udo H, Munoz-Dorado J, Inouye M, Inouye S. Myxococcus xanthus, a gram-negative bacterium, contains a transmembrane protein serime/threonine kinase that blocks the secretion of beta-lactamase by phosphorylation. Genes Dev, 1995, 9(8): 972-83.
    80. Urabe H, Ogewara H. Cloning, Sequencing and expression of Serine/threonine kinase-encoding genes from Streptomyces coehcolor A3 (2). Gene, 1995, 153: 99-104
    81. Valladares A, Herrero A, Pils D, Schmetterer G, Flores E. Cytochrome c oxidase genes required for nitrogenase activity and diazotrophic growth in Anabaena sp. PCC 7120. Mol Microbiol, 2003, 47: 1239-1249.
    82. Valladares A, Montesinos M L, Herrero A, Flores E. An ABC-type, high-affinity urea permease identified in cyanobacteria. Mol Microbiol, 2002, 43: 703-715.
    83. Vazquez-Bermudez M F, Herrero A, Flores E. 2-Oxoglutarate increases the binding affinity of the NtcA (nitrogen control) transcription factor for the Synechococcus glnA promoter. FEBS Lett, 2002, 512: 71-74.
    84. Volz K, Matsumura P. crystal structure of Escherichia coli CheY refined at 1.7-A resolution. J Biol Chem, 1991, 266: 15511-15519
    85. Wang L, Sun Y P, Chen W L, Li J H, Zhang C C. Genomic analysis of protein kinases, protein phosphatases and two-component regulatory systems of the cyanobacterium Anabaena sp. strain PCC 7120. FEMS Microbiol Let, 2002, 217(2): 155-65.
    86. West A H, Stock A M. Histidine kinases and response regulator proteins in two-component signaling systems. Trends Biochem Sci, 2001, 26(6): 369-76
    87. Wolk C P, Ernst A, Elhai J. Heterocyst metabolism and development. The Molecular Biology of Cyanobacteria, 1994, 769-823.
    88. Wolk C P, Vonshak A, Kehoe P and Elha J. Construction of shuttle vectors capable of conjugative transfer from Escherichia coli to nitrogen-fixing filamentous cyanobacteria. Prce Natl Acad Sci USA, 1984, 81: 1561-1565
    89. Wolk C P. Heterocyst formation in Anabaena. Prokaryotic Development, Washington DC. ASM Press, 2000, 83-104
    90. Wolk C P. Heterocyst formation. Ann Rev. Genet, 1996, 30: 59-78.
    91. Wong FC, Meeks JC. The hetF gene product is essential to heterocyst differentiation and affects HetR function in the cyanobacterium Nostoc punctiforme. J Bacteriol, 2001, 183: 2654-2661.
    
    
    92. Wurgler-Murphy S M, Saito H. Two-component signal transducers and MAPK cascade. Trends in Biochem. Sci, 1997, 22: 172-176
    93. Xu X D, Wolk CP. Role for hetC in the transition to a nonclividing state during heterocyst differentiation in Anabaena sp. J Bacteriol, 2001, 183: 393-396.
    94. Yoon H S, Golden J W. heterocyst Pattern Formation Controlled by a Diffusible Peptide. Science, 1998, Vol. 282: 935-938
    95. Yoon H S, Golden J W. PatS and Products of Nitrogen Fixation Control Heterocyst Pattern., J Bacteriol, Apr. 2001, p. 2605-2613
    96. Zhang C C. Libs L. Cloning and characterisation of the pknD gene encoding an eukaryotic-type protein kinase in the cyanobacterium Anabaena sp. PCC 7120. Mol. Gen. Genet, 1998, 258: 26-33.
    97. Zhang C C, Friry A, Peng L. Molecular and genetic analysis of two closely linked genes that encode, respectively, a protein phosphatase 1/2A/2B homolog and a protein kinasehomolog in the cyanobacterium Anabaena sp. strain PCC 7120. J. Bacteriol, 1998, 180: 2616-2622.
    98. Zhang C C. A gene encoding a protein related to eukaryotic protein kinase from the filamentous heterocystous cyanobacterium Anabaena PCC7120. Proc Natl Acad Sci USA, 1993, 90: 1840-11844.
    99. Zhang C C. Bacterial signalling involving eukaryotic-type protein kinases. Mol. Microbio, 1996, 20: 9-15.
    100. Zhang W, Inouye M, Inouye S. Reciprocal regulation of the differentiation of Myxococcus xanthus by Pkn5 and Pkn6, eukaryofic-like ser/Thr protein kinases. Mol. Microbiol, 1996, 20: 435-447
    101. Zhang W, Munoz-Dorado J, Inouye M , Inouye S. Identification of a putative eukaryotic-like protein kinase family in a developmental bacterium Myxococcus xanthus. J Bacteriol, 1992, 174: 5450-5453
    102. Zhou R, Cao Z, Zhao J. Characterization of HetR protein turnover in Anabaena sp. PCC 7120. Arch Microbiol, 1998, 169: 417-426.
    103. Zhou R, Wei X, Jiang N, Li H, Dong Y, Hsi K-L, Zhao J. Evidence that HetR protein is an unusual serine-type protease. Proc Natl Acad Sci USA, 1998, 95: 4959-4963.
    104. Zhou R, Wolk C P. A two-component system mediates developmental regulation of biosynthesis
    
    of a heterocyst polysaccharide. J Biol Chem, 2003, 278: 19939-19946.
    105. Zhu J, Kong R, Wolk C P. Regulation of hepA of Anabaena sp. strain PCC 7120 by elements 5' from the gene and by hepK. J Bacteriol, 1998, 180: 4233-4242.
    106. Ziegler K, Stephan D P, Pistorius E K, Ruppel H G, Lockau W. A mutant of the cyanobacterium Anabaena variabilis ATCC 29413 lacking cyanophycin synthetase: growth properties and ultrastructural aspects. FEMS Microbiol Lett, 2001, 196: 13-18.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700