用户名: 密码: 验证码:
鱼腥蓝细菌异形细胞分化调控关键蛋白质的结构与调节机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
蓝细菌,又称蓝绿藻,是一种可以进行光合作用的原核生物。一些蓝细菌,如丝状蓝细菌鱼腥蓝细菌,还可以进行固氮作用。鱼腥蓝细菌生长在淡水环境中,在营养丰盛的条件下,藻丝中细胞以营养细胞形式存在。当环境中的化合态氮源缺乏时,会沿藻丝以每10个营养细胞为间隔分裂出可以进行固氮作用的异形细胞,将氮气固定为化合态的氮源,并传输给临近的营养细胞,从而帮助整个藻丝渡过氮源匮乏的时期。因此,鱼腥蓝细菌是作为研究细胞分化良好的模式生物。
     2-酮戊二酸(2-oxogluatarate, 2-OG),来自高度保守的三羧酸循环途径,不仅是一个关键的代谢产物,同时也在许多细菌、植物甚至高等动物中,作为一种信号分子。在蓝细菌中,2-OG被证明是蓝细菌氮源缺乏的信号分子。而全局转录因子NtcA与信号传导蛋白被认为是2-OG的感应蛋白。NtcA属于Crp-Fnr转录因子家族,其典型的成员是结合cAMP的CAP蛋白。我们解析了鱼腥蓝细菌PCC 7120中NtcA的apo-form(1.90 (A|°))、结合2-OG(2.60 (A|°))和结合2-OG的不可代谢类似物—2,2-二氟代戊二酸(2.40 (A|°))的三个结构。三个结构都是同源二体的形式,每个亚基上有一个N端的效应分子结合结构域和一个C端的DNA结合结构域,两个结构域之间由一个长的螺旋(C螺旋)连接。2-OG结合在效应分子结合结构域的口袋中,这与CAP蛋白的cAMP结合位点相似,但是结合的具体方式不同。通过结构比较分析可以推导出2-OG结合引起NtcA可能的信号传递路径:2-OG的结合导致C螺旋之间形成更紧密的coiled-coil构象,从而使两个DNA结合螺旋(F螺旋)间的距离拉近以更适合DNA识别。cAMP的结合使CAP蛋白的激活状态发生从无到有的改变,而我们解析的结构则解释了为何NtcA在apo的状态也有DNA的结合能力,而2-OG的结合只是进一步提高这一结合能力。这些结果为2-OG调控的全局转录因子的功能提供了结构生物学的依据。
     PII是细菌、古细菌和植物中高度保守的信号传导蛋白。有一个大的柔性环状结构(T-loop),通过发生共价修饰或者结合不同的效应分子采取不同的构象以调节不同靶蛋白的功能。PipX是最早在单细胞蓝细菌Synechococcus PCC 7942中鉴定出的PII的一种结合蛋白,仅存在于蓝细菌中,并且PipX与NtcA也存在相互作用。PipX与PII和NtcA的结合是受2-OG浓度调节的,这使得PII间接调节了NtcA的转录活性。我们解析了PII–PipX复合物1.90 (A|°)的结构。PII同源三体通过三个T-loop与三个PipX结合。PII与之前报导的Synechococcus中的同源结构类似,由反向平行四个β折叠片的核心结构和侧面两个α螺旋组成。PipX则是一个新的结构,由五个扭曲的反向平行β折叠片和两个α螺旋组成,这与P_Ⅱ的结构很相似。每个P_Ⅱ亚基的T-loop像天线一样从核心结构伸出,以氢键介导与两个PipX分子之间的结合。此外,PipX的β片与的P_Ⅱ核心结构间的相互作用也为复合物的形成提供了一部分帮助。结构比较分析结果显示,PipX与2-OG在上的结合位点是重合的,并且与蓝细菌中P_Ⅱ的14个特征残基有交集。我们利用该复合物中PipX的结构与前面解析NtcA结合2-OG的结构模拟出NtcA–PipX复合物的结构,模型显示PipX利用相近的区域与P_Ⅱ和NtcA产生相互作用。这些结果为P_Ⅱ是如何通过PipX在2-OG的浓度依赖下调节NtcA的活性提供了结构生物学依据。
     本文的工作围绕鱼腥蓝细菌异形细胞分化早期调控蛋白的结构进行研究,为异形胞分化的调节机制提供了新的结构基础。
Cyanobacteria are prokaryotes, also known as“blue-green algae”, which can execute photosynthesis. Some cyanobacteria can also fix nitrogen, such as the filamental cyanobacterium Anabaena, which live in the fresh water. When the nutrition is abundant, there are vegetative cells along the filament. While the envoriment is short of combined nitrogen, some vegetative cells will develop into heterocysts, usually every other 10 vegetative cells. These heterocysts can fix nitrogen, by transforming it into a combined form and transporting the fixed nitrogen to the neighbor vegetative cells, so that the whole filament can survive from the nitrogen starvation. These characteristics make Anabaena an excellent model for studying the cell differentiation.
     2-oxogluatarate (2-OG), a metabolite of the highly conserved Krebs cycle, not only plays a critical role in metabolism, but also constitutes a signaling molecule in a variety of organisms ranging from bacteria to plants and animals. In cyanobacteria, accumulation of 2-OG constitutes the signal of nitrogen starvation and NtcA, a global transcription factor, has been proposed to be a putative receptor of 2-OG. NtcA belongs to the Crp-Fnr family, which is featured by CAP (cAMP-activated catabolite activator protein). Here we present three crystal structures of NtcA from the cyanobacterium Anabaena sp. strain PCC 7120: the apo-form (1.90 (A|°)), and two ligand-bound forms in complex with either 2-OG (2.60 (A|°)) or its analogue 2,2-difluoropentanedioic acid (2.40 (A|°)). All structures assemble as homodimers, with each subunit composed of an N-terminal effector binding domain (EBD) and a C-terminal DNA binding domain (DBD) connected by a long helix (C-helix). The 2-OG binds to the EBD at a pocket similar to that used by cAMP in CAP (cAMP-activated catabolite activator protein), but with a different pattern. Comparative structural analysis reveals a putative signal transmission route upon 2-OG binding. A tighter coiled-coil conformation of the two C-helices induced by 2-OG is crucial to maintain the proper distance between the two F-helices for DNA recognition. While CAP adopts a transition from off to on state upon cAMP binding, our structural analysis explains well why NtcA can bind to DNA even in its apo form, how 2-OG just enhances the DNA-binding activity of NtcA. These findings provided the structural insights into the function of a global transcription factor regulated by 2-OG, a metabolite standing at a crossroad between carbon and nitrogen metabolisms. P_Ⅱproteins are highly conserved signal transducers in bacteria, archaea and plants. They have a large flexible loop (T-loop) that adopts different conformations after covalent modification or binding to different effectors, to regulate the functions of diverse protein partners. The P_Ⅱpartner PipX, first identified from Synechococcus sp. PCC 7942, exists uniquely in cyanobacteria. PipX also interacts with the cyanobacterial global nitrogen regulator NtcA. The mutually exclusive binding of P_Ⅱand NtcA by PipX in a 2-OG-dependent manner enables P_Ⅱto indirectly regulate the transcriptional activity of NtcA. We solved the crystal structure of the P_Ⅱ–PipX complex from the filamentous cyanobacterium Anabaena sp. PCC 7120 at 1.90 (A|°) resolution. A homotrimeric P_Ⅱcaptures three subunits of PipX through the T-loops. Similar to P_Ⅱfrom Synechococcus, the core structure consists of an antiparallelβ-sheet with fourβ-strands and twoα-helices at the lateral surface. PipX adopts a novel structure composed of five twisted antiparallelβ-strands and twoα-helices, which is reminiscent of the P_Ⅱstructure. The T-loop of each P_Ⅱsubunit extends from the core structure as an antenna that is stabilized at the cleft between two PipX monomers via hydrogen bonds. In addition, the interfaces between theβ-sheets of PipX and P_Ⅱcore structures partially contribute to complex formation. Comparative structural analysis indicated that PipX and 2-OG share a common binding site that overlaps with the 14 signature residues of cyanobacterial P_Ⅱproteins. Our structure of PipX and the recently solved NtcA structure enabled us to propose a putative model for the NtcA–PipX complex. Taken together, these findings provide structural insights into how P_Ⅱregulates the transcriptional activity of NtcA via PipX upon accumulation of the metabolite 2-OG.
     This study fucosed on the proteins involved in the early stage of heterocyst development and these output results provided structural insights for the regulatory mechanism of heterocyst development.
引文
Adams PD, Grosse-Kunstleve RW, Hung LW, Ioerger TR, McCoy AJ, Moriarty NW, Read RJ, Sacchettini JC, Sauter NK, Terwilliger TC (2002) PHENIX: building new software for automated crystallographic structure determination. Acta crystallographica 58(Pt 11): 1948-1954
    Aldehni MF, Forchhammer K (2006) Analysis of a non-canonical NtcA-dependent promoter in Synechococcus elongatus and its regulation by NtcA and P-II. Archives of Microbiology 184(6): 378-386
    Aldehni MF, Sauer J, Spielhaupter C, Schmid R, Forchhammer K (2003) Signal transduction protein P(II) is required for NtcA-regulated gene expression during nitrogen deprivation in the cyanobacterium Synechococcus elongatus strain PCC 7942. J Bacteriol 185(8): 2582-2591
    Atkinson M, Blauwkamp T, Ninfa AJ (2002) Context-dependant functions of the PII signal transduction protein of Escherichia coli. J Bacteriol
    Battye TG, Kontogiannis L, Johnson O, Powell HR, Leslie AG iMOSFLM: a new graphical interface for diffraction-image processing with MOSFLM. Acta crystallographica 67(Pt 4): 271-281
    Benz R, Bohme H (1985) Pore formation by an outer membrane protein of the cyanobacterium Anabaena variabilis. Biochim Biophys 812: 286-292
    Black TA, Cai Y, Wolk CP (1993) Spatial expression and autoregulation of hetR, a gene involved in the control of heterocyst development in Anabaena. Mol Microbiol 9(1): 77-84
    Blauwkamp TA, Ninfa AJ (2002) Physiological role of the GlnK signal transduction protein of Escherichia coli: survival of nitrogen starvation. Mol Microbiol 46(1): 203-214
    Buikema WJ, Haselkorn R (1991) Characterization of a gene controlling heterocyst differentiation in the cyanobacterium Anabaena 7120. Genes Dev 5(2): 321-330
    Buikema WJ, Haselkorn R (2001) Expression of the Anabaena hetR gene from a copper-regulated promoter leads to heterocyst differentiation under repressing conditions. Proc Natl Acad Sci U S A 98(5): 2729-2734
    Cai Y, Wolk CP (1997) Nitrogen deprivation of Anabaena sp. strain PCC 7120 elicits rapid activation of a gene cluster that is essential for uptake and utilization of nitrate. J Bacteriol 179(1): 258-266
    Chavez S, Lucena J, Reyes J, Florencio F, Candau P (1999) The presence of glutamatedehydrogenase is a selective advantage for the cyanobacterium Synechocystis sp. strain PCC 6803 under nonexponential growth conditions. J Bacteriol 181(808-813)
    Cheng Y, Li JH, Shi L, Wang L, Latifi A, Zhang C-C (2006) A pair of iron-responsive genes encoding protein kinases with a Ser/Thr kinase domain and a His kinase domain are regulated by NtcA in the Cyanobacterium Anabaena sp. strain PCC 7120. J Bacteriol 188(13): 4822-4829
    Collaborative Computational Project N (1994) The CCP4 suite: programs for protein crystallography. Acta crystallographica 50(5): 760-763
    Conroy MJ, Durand A, Lupo D, Li XD, Bullough PA, Winkler FK, Merrick M (2007) The crystal structure of the Escherichia coli AmtB-GlnK complex reveals how GlnK regulates the ammonia channel. Proc Natl Acad Sci USA 104(4): 1213-1218
    Dai J, Lin SH, Kemmis C, Chin AJ, Lee JC (2004) Interplay between site-specific mutations and cyclic nucleotides in modulating DNA recognition by Escherichia coli cyclic AMP receptor protein. Biochemistry 43(28): 8901-8910
    Davis I, Leaver-Fay A, Chen V, Block J, Kapral G, Wang X, Murray L, Arendall W (2007) MolProbity: all-atom contacts and structure validation for proteins and nucleic acids. Nucleic Acids Res 35(Web Server issue): W375-383
    de Vries SJ, van Dijk AD, Bonvin AM (2006) WHISCY: what information does surface conservation yield? Application to data-driven docking. Proteins 63(3): 479-489
    Deaconescu AM, Chambers AL, Smith AJ, Nickels BE, Hochschild A, Savery NJ, Darst SA (2006) Structural basis for bacterial transcription-coupled DNA repair. Cell 124(3): 507-520
    Dominguez C, Boelens R, Bonvin AM (2003) HADDOCK: a protein-protein docking approach based on biochemical or biophysical information. J Am Chem Soc 125(7): 1731-1737
    Emsley P, Cowtan K (2004) Coot: model-building tools for molecular graphics. Acta crystallographica 60: 2126-2132
    Espinosa J, Forchhammer K, Burillo S, Contreras A (2006) Interaction network in cyanobacterial nitrogen regulation: PipX, a protein that interacts in a 2-oxoglutarate dependent manner with PII and NtcA. Mol Microbiol 61(2): 457-469
    Espinosa J, Forchhammer K, Contreras A (2007) Role of the Synechococcus PCC 7942 nitrogen regulator protein PipX in NtcA-controlled processes. Microbiology 153: 711-718
    Feldkamp T, Kribben A, Roeser NF, Senter RA, Kemner S, Venkatachalam MA, Nissim I, Weinberg JM (2004) Preservation of complex I function during hypoxia-reoxygenation-induced mitochondrial injury in proximal tubules. Am J Physiol Renal Physiol 286(4): F749-759
    Feria Bourrellier AB, Valot B, Guillot A, Ambard-Bretteville F, Vidal J, Hodges M (2010) Chloroplast acetyl-CoA carboxylase activity is 2-oxoglutarate-regulated by interaction of PII with the biotin carboxyl carrier subunit. Proc Natl Acad Sci U S A 107(1): 502-507
    Fischer HM (1994) Genetic regulation of nitrogen fixation in rhizobia. Microbiological reviews 58(3): 352-386
    Flores E, Herrero A (1994) Assimilatory Nitrogen Metabolism and Its Regulation. The Molecular Biology of Cyanobacteria: 487–517
    Forchhammer K (2004) Global carbon/nitrogen control by PII signal transduction in cyanobacteria: from signals to targets. FEMS Microbiol Rev 28(3): 319-333
    Forchhammer K, Hedler A (1997) Phosphoprotein PII from cyanobacteria--analysis of functional conservation with the PII signal-transduction protein from Escherichia coli. Eur J Biochem 244(3): 869-875
    Frias JE, Flores E, Herrero A (1997) Nitrate assimilation gene cluster from the heterocyst-forming cyanobacterium Anabaena sp. strain PCC 7120. J Bacteriol 179(2): 477-486
    Golden JW, Yoon HS (2003) Heterocyst development in Anabaena. Curr Opin Microbiol 6(6): 557-563
    Gruswitz F, O'Connell J, 3rd, Stroud RM (2007) Inhibitory complex of the transmembrane ammonia channel, AmtB, and the cytosolic regulatory protein, GlnK, at 1.96 A. Proc Natl Acad Sci USA 104(1): 42-47
    He W, Miao FJ, Lin DC, Schwandner RT, Wang Z, Gao J, Chen JL, Tian H, Ling L (2004) Citric acid cycle intermediates as ligands for orphan G-protein-coupled receptors. Nature 429(6988): 188-193
    Hebert SC (2004) Physiology: orphan detectors of metabolism. Nature 429(6988): 143-145
    Helling R (1994) Why does Escherichia coli have two primary pathways for synthesis of glutamate? J Bacteriol 194: 4664-4668
    Helling R (1998) Pathway choice in glutamate synthesis in Escherichia coli. J Bacteriol 180: 4571-4575
    Herrero A, Muro-Pastor AM, Valladares A, Flores E (2004) Cellular differentiation and the NtcA transcription factor in filamentous cyanobacteria. FEMS Microbiol Rev 28(4): 469-487
    Holm L, Sander C (1998) Touring protein fold space with Dali/FSSP. Nucleic Acids Res 26(1): 316-319
    Huang X, Dong Y, Zhao J (2004) HetR homodimer is a DNA-binding protein required for heterocyst differentiation, and the DNA-binding activity is inhibited by PatS. Proc Natl Acad Sci U S A 101(14): 4848-4853Huth J, Liebs P (1988) Nitrogen regulation in microorganisms. Zentralbl Mikrobiol 143: 179-194
    Jaggi R, van Heeswijk WC, Westerhoff HV, Ollis DL, Vasudevan SG (1997) The two opposing activities of adenylyl transferase reside in distinct homologous domains, with intramolecular signal transduction. EMBO J 16(18): 5562-5571
    Jiang F, Hellman U, Sroga GE, Bergman B, Mannervik B (1995) Cloning, sequencing, and regulation of the glutathione reductase gene from the cyanobacterium Anabaena PCC 7120. J Biol Chem 270(39): 22882-22889
    Jiang F, Mannervik B, Bergman B (1997) Evidence for redox regulation of the transcription factor NtcA, acting both as an activator and a repressor, in the cyanobacterium Anabaena PCC 7120. Biochem J 327 ( Pt 2): 513-517
    Jiang F, Wisen S, Widersten M, Bergman B, Mannervik B (2000) Examination of the transcription factor NtcA-binding motif by in vitro selection of DNA sequences from a random library. J Mol Biol 301(4): 783-793
    Jiang P, Ninfa AJ (1999) Regulation of the autophosphorylation of Escherichia coli NRII by the PII signal transduction protein. J Bacteriol 181: 1906-1911
    Jiang P, Peliska JA, Ninfa AJ (1998a) Enzymological characterization of the signal-transducing uridylyltransferase/uridylyl-removing enzyme (EC 2.7.7.59) of Escherichia coli and its interaction with the PII protein. Biochemistry 37(37): 12782-12794
    Jiang P, Peliska JA, Ninfa AJ (1998b) Reconstitution of the signal-transduction bicyclic cascade responsible for the regulation of Ntr gene transcription in Escherichia coli. Biochemistry 37(37): 12795-12801
    Jiang P, Peliska JA, Ninfa AJ (1998c) The regulation of Escherichia coli glutamine synthetase revisited: role of 2-ketoglutarate in the regulation of glutamine synthetase adenylylation state. Biochemistry 37(37): 12802-12810
    Jiang P, Pioszak AA, Ninfa AJ (2007) Structure-function analysis of glutamine synthetase adenylyltransferase (ATase, EC 2.7.7.49) of Escherichia coli. Biochemistry 46(13): 4117-4132
    Kamberov ES, Atkinson MR, Ninfa AJ (1995) The Escherichia coli PII signal transduction protein is activated upon binding 2-ketoglutarate and ATP. J Biol Chem 270(30): 17797-17807
    Kaneko T, Nakamura Y, Wolk CP, Kuritz T, Sasamoto S, Watanabe A, Iriguchi M, Ishikawa A, Kawashima K, Kimura T, Kishida Y, Kohara M, Matsumoto M, Matsuno A, Muraki A, Nakazaki N, Shimpo S, Sugimoto M, Takazawa M, Yamada M, Yasuda M, Tabata S (2001) Complete genomic sequence of the filamentous nitrogen-fixing cyanobacterium Anabaena sp. strain PCC 7120. DNA Res 8(5): 205-213; 227-253
    Khudyakov I, Wolk CP (1997) hetC, a gene coding for a protein similar to bacterial ABC protein exporters, is involved in early regulation of heterocyst differentiation in Anabaena sp. strain PCC 7120. J Bacteriol 179(22): 6971-6978
    Khudyakov IY, Golden JW (2004) Different functions of HetR, a master regulator of heterocyst differentiation in Anabaena sp. PCC 7120, can be separated by mutation. Proc Natl Acad Sci U S A 101(45): 16040-16045
    Korner H, Sofia HJ, Zumft WG (2003) Phylogeny of the bacterial superfamily of Crp-Fnr transcription regulators: exploiting the metabolic spectrum by controlling alternative gene programs. FEMS Microbiol Rev 27(5): 559-592
    Krebs HA (1970) The history of the tricarboxylic acid cycle. Perspect Biol Med 14(1): 154-170
    Kumar K, Mella-Herrera RA, Golden JW (2010) Cyanobacterial heterocysts. Cold Spring Harb Perspect Biol 2(4): a000315
    Laskowski R, Macarthur M, Moss D, Thornton J (1993) Procheck - a Program to Check the Stereochemical Quality of Protein Structures. J Appl Crystallogr 26: 283-291
    Laurent S, Chen H, Bedu S, Ziarelli F, Peng L, Zhang C-C (2005) Nonmetabolizable analogue of 2-oxoglutarate elicits heterocyst differentiation under repressive conditions in Anabaena sp. PCC 7120. Proc Natl Acad Sci U S A 102(28): 9907-9912
    Laurent S, Forchhammer K, Gonzalez L, Heulin T, Zhang CC, Bedu S (2004) Cell-type specific modification of PII is involved in the regulation of nitrogen metabolism in the cyanobacterium Anabaena PCC 7120. Febs Letters 576(1-2): 261-265
    Lea P, Blackwell R, Joy K (1992) Ammonia assimilation in higher plants. Clarendon Press, Oxford: 153-186
    Lea PJ, Miflin BJ (1975) Glutamate synthase in blue-green algae. Biochem Soc Trans 3(3): 381-384
    Lee HM, Vazquez-Bermudez MF, de Marsac NT (1999) The global nitrogen regulator NtcA regulates transcription of the signal transducer PII (GlnB) and influences its phosphorylation level in response to nitrogen and carbon supplies in the Cyanobacterium Synechococcus sp. strain PCC 7942. J Bacteriol 181(9): 2697-2702
    Li JH, Laurent S, Konde V, Bedu S, Zhang C-C (2003) An increase in the level of 2-oxoglutarate promotes heterocyst development in the cyanobacterium Anabaena sp. strain PCC 7120. Microbiology 149(Pt 11): 3257-3263
    Llacer JL, Contreras A, Forchhammer K, Marco-Marin C, Gil-Ortiz F, Maldonado R, Fita I, Rubio V (2007) The crystal structure of the complex of P-II and acetylglutamate kinase reveals how P-II controls the storage of nitrogen as arginine. Proc Natl Acad Sci USA 104(45):17644-17649
    Llacer JL, Espinosa J, Castells MA, Contreras A, Forchhammer K, Rubio V (2010) Structural basis for the regulation of NtcA-dependent transcription by proteins PipX and PII. Proc Natl Acad Sci U S A 107(35): 15397-15402
    Lopez-Gomollon S, Hernandez JA, Pellicer S, Angarica VE, Peleato ML, Fillat MF (2007) Cross-talk between iron and nitrogen regulatory networks in Anabaena (Nostoc) sp. PCC 7120: identification of overlapping genes in FurA and NtcA regulons. J Mol Biol 374(1): 267-281
    Luque I, Flores E, Herrero A (1994) Molecular mechanism for the operation of nitrogen control in cyanobacteria. EMBO J 13(12): 2862-2869
    Maurer-Stroh S, Dickens NJ, Hughes-Davies L, Kouzarides T, Eisenhaber F, Ponting CP (2003) The Tudor domain 'Royal Family': Tudor, plant Agenet, Chromo, PWWP and MBT domains. Trends Biochem Sci 28(2): 69-74
    McKay DB, Steitz TA (1981) Structure of catabolite gene activator protein at 2.9 ? resolution suggests binding to left-handed B-DNA. Nature 290(5809): 744-749
    Meeks JC, Elhai J (2002) Regulation of cellular differentiation in filamentous cyanobacteria in free-living and plant-associated symbiotic growth states. Microbiol Mol Biol Rev 66(1): 94-121; table of contents
    Muro-Pastor AM, Valladares A, Flores E, Herrero A (1999) The hetC gene is a direct target of the NtcA transcriptional regulator in cyanobacterial heterocyst development. J Bacteriol 181(21): 6664-6669
    Muro-Pastor AM, Valladares A, Flores E, Herrero A (2002) Mutual dependence of the expression of the cell differentiation regulatory protein HetR and the global nitrogen regulator NtcA during heterocyst development. Mol Microbiol 44(5): 1377-1385
    Muro-Pastor MI, Reyes JC, Florencio FJ (2001) Cyanobacteria perceive nitrogen status by sensing intracellular 2-oxoglutarate levels. J Biol Chem 276(41): 38320-38328
    Murshudov. GN, Vagin. AA, Dodson. EJ (1997) Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr D Biol Crystallogr 53: 240-255
    Ninfa AJ, Jiang P (2005) PII signal transduction proteins: sensors of alpha-ketoglutarate that regulate nitrogen metabolism. Curr Opin Microbiol 8(2): 168-173
    Otwinowski Z, Minor W (1997) Processing of X-ray Diffraction Data Collected in Oscillation Mode Macromolecular Crystallography 276: 307-326
    Palinska KA, Laloui W, Bedu S, Loiseaux-de Goer S, Castets AM, Rippka R, de Marsac NT (2002) The signal transducer P-II and bicarbonate acquisition in Prochlorococcus marinus PCC 9511,a marine cyanobacterium naturally deficient in nitrate and nitrite assimilation. Microbiology 148: 2405-2412
    Passner JM, Schultz SC, Steitz TA (2000) Modeling the cAMP-induced allosteric transition using the crystal structure of CAP-cAMP at 2.1 ? resolution. Journal of molecular biology 304(5): 847-859
    Pioszak AA, Jiang P, Ninfa AJ (2000) The Escherichia coli PII signal transduction protein regulates the activities of the two-component system transmitter protein NRII by direct interaction with the kinase domain of the transmitter module. Biochemistry 39(44): 13450-13461
    Popovych N, Tzeng SR, Tonelli M, Ebright RH, Kalodimos CG (2009) Structural basis for cAMP-mediated allosteric control of the catabolite activator protein. Proc Natl Acad Sci U S A 106(17): 6927-6932
    Ramasubramanian TS, Wei TF, Golden JW (1994) Two Anabaena sp. strain PCC 7120 DNA-binding factors interact with vegetative cell- and heterocyst-specific genes. J Bacteriol 176(5): 1214-1223
    Ramasubramanian TS, Wei TF, Oldham AK, Golden JW (1996) Transcription of the Anabaena sp. strain PCC 7120 ntcA gene: multiple transcripts and NtcA binding. J Bacteriol 178(3): 922-926
    Resch C, Gibson J (1983) Isolation of the carotenoid-containing cell wall of three unicellular cyanobacteria. J Bacteriol 155: 345–350
    Rhodes D, Sims A, Folkes B (1980) Pathway of ammonia assimilation in illuminated Lemna minor. Phytochem 19: 357-365
    Schneider TR, GM. S (2002) Substructure solution with SHELXD. Acta crystallographica 58: 1772-1779
    Sharma H, Yu S, Kong J, Wang J, Steitz TA (2009) Structure of apo-CAP reveals that large conformational changes are necessary for DNA binding. Proc Natl Acad Sci U S A 106(39): 16604-16609
    Shaw G, Gan J, Zhou YN, Zhi H, Subburaman P, Zhang R, Joachimiak A, Jin DJ, Ji X (2008) Structure of RapA, a Swi2/Snf2 protein that recycles RNA polymerase during transcription. Structure 16(9): 1417-1427
    St Peter SD, Imber CJ, Friend PJ (2002) Liver and kidney preservation by perfusion. Lancet 359(9306): 604-613
    Stanier RY, Cohen-Bazire G (1977) Phototrophic prokaryotes: the cyanobacteria. Annual review of microbiology 31: 225-274
    Steiner T, Kaiser JT, Marinkovic S, Huber R, Wahl MC (2002) Crystal structures of transcription factor NusG in light of its nucleic acid- and protein-binding activities. EMBO J 21(17): 4641-4653
    Su Z, Olman V, Mao F, Xu Y (2005) Comparative genomics analysis of NtcA regulons in cyanobacteria: regulation of nitrogen assimilation and its coupling to photosynthesis. Nucleic Acids Res 33(16): 5156-5171
    Tanigawa R, Shirokane M, Maeda Si S, Omata T, Tanaka K, Takahashi H (2002) Transcriptional activation of NtcA-dependent promoters of Synechococcus sp. PCC 7942 by 2-oxoglutarate in vitro. Proc Natl Acad Sci U S A 99(7): 4251-4255
    Taylor, Thomas N.; Edith L. Taylor (1993). The Biology and Evolution of Fossil Plants. Prentice Hall, New Jersey, ISBN 978-0-12-373972-8
    Tempest DW, Meers JL, Brown CM (1970) Synthesis of glutamate in Aerobacter aerogenes by a hitherto unknown route. Biochem J 117(2): 405-407
    Vagin A, Teplyakov A (1997) MOLREP: an automated program for molecular replacement. . J Appl Crystallogr 30: 1022-1025
    Valladares A, Flores E, Herrero A (2008) Transcription activation by NtcA and 2-oxoglutarate of three genes involved in heterocyst differentiation in the cyanobacterium Anabaena sp. strain
    PCC 7120. J Bacteriol 190(18): 6126-6133 Vazquez-Bermudez MF, Herrero A, Flores E (2002) 2-Oxoglutarate increases the binding affinity of the NtcA (nitrogen control) transcription factor for the Synechococcus glnA promoter.
    FEBS Lett 512(1-3): 71-74 Vazquez-Bermudez MF, Herrero A, Flores E (2003) Carbon supply and 2-oxoglutarate effects on expression of nitrate reductase and nitrogen-regulated genes in Synechococcus sp. strain PCC
    7942. FEMS Microbiol Lett 221(2): 155-159 Wisen S, Sjogren T, Olin B, Mannervik B (2004) Purification, crystallization and preliminary X-ray data of the transcription factor NtcA from the cyanobacterium Anabaena PCC 7120.
    Acta crystallographica 60(Pt 5): 923-925 Wittenberger T, Hellebrand S, Munck A, Kreienkamp HJ, Schaller HC, Hampe W (2002) GPR99, a new G protein-coupled receptor with homology to a new subgroup of nucleotide receptors. BMC Genomics 3: 17
    Wittenberger T, Schaller HC, Hellebrand S (2001) An expressed sequence tag (EST) data mining strategy succeeding in the discovery of new G-protein coupled receptors. J Mol Biol 307(3): 799-813
    Wolk C (1973) Physiology and cytological chemistry of bluegreen algae. Bacteriol Rev 37:32–101
    Xu X, Wolk CP (2001) Role for hetC in the transition to a nondividing state during heterocyst differentiation in Anabaena sp. J Bacteriol 183(1): 393-396
    Xu Y, Carr PD, Clancy P, Garcia-Dominguez M, Forchhammer K, Florencio F, Vasudevan SG, Tandeau de Marsac N, Ollis DL (2003) The structures of the PII proteins from the cyanobacteria Synechococcus sp. PCC 7942 and Synechocystis sp. PCC 6803. Acta crystallographica 59(Pt 12): 2183-2190
    Xu Y, Cheah E, Carr PD, van Heeswijk WC, Westerhoff HV, Vasudevan SG, Ollis DL (1998) GlnK, a PII-homologue: structure reveals ATP binding site and indicates how the T-loops may be involved in molecular recognition. J Mol Biol 282(1): 149-165
    Yildiz O, Kalthoff C, Raunser S, Kuhlbrandt W (2007) Structure of GlnK1 with bound effectors indicates regulatory mechanism for ammonia uptake. EMBO J 26(2): 589-599
    Yoon HS, Golden JW (1998) Heterocyst pattern formation controlled by a diffusible peptide. Science 282(5390): 935-938
    Yoon HS, Golden JW (2001) PatS and products of nitrogen fixation control heterocyst pattern. J Bacteriol 183(8): 2605-2613
    Zhang C-C, Laurent S, Sakr S, Peng L, Bedu S (2006) Heterocyst differentiation and pattern formation in cyanobacteria: a chorus of signals. Mol Microbiol 59(2): 367-375
    Zhao Y, Shi Y, Zhao W, Huang X, Wang D, Brown N, Brand J, Zhao J (2005) CcbP, a calcium-binding protein from Anabaena sp. PCC 7120, provides evidence that calcium ions regulate heterocyst differentiation. Proc Natl Acad Sci U S A 102(16): 5744-5748
    Zubay G, Schwartz D, Beckwith J (1970) Mechanism of activation of catabolite-sensitive genes: a positive control system. Proc Natl Acad Sci U S A 66(1): 104-110

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700