用户名: 密码: 验证码:
桂林会仙喀斯特湿地水生植物叶绿素荧光特性的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水生植物是湿地生态系统中能量流动和物质循环的关键环节,研究会仙喀斯特湿地的水生植物光合作用特性,对掌握会仙湿地生态系统的运转情况和健康状态,及会仙湿地植物保护和植被恢复具有重要的意义。本文通过利用水下调制荧光仪(DIVING-PAM),从诱导特性、快速光曲线和叶绿素荧光参数日变化三个方面对会仙喀斯特湿地的密刺苦草(Vallisneria denseserrulata)、五刺金鱼藻(Ceratophyllum oryzetorum)、狐尾藻(Myriophyllum verticillatum)、黑藻(Hydrilla verticillata)、马来眼子菜(Potamogeton malaianus)、石龙尾(Limnophila sessiliflora)、芦苇(Phragmites australis)、卡开芦(Phramites karka)、华克拉莎(Cladium chinense)、长苞香蒲(Typha angustata)、菖蒲Acorus calamusL.、菰(Zizania latifolia)、水蓼(Polygonum hydropiper)、丁香蓼(Ludwigia prostrata)、莲(Nelumbo nucifera)、水蓑衣(Hygrophila salicifolia)、水龙(Ludwigia adscendens)、凤眼蓝(Eichhornia crassipes)、水花生(Alternanthera philoxeroides)等19种水生植物的叶绿素荧光特性进行测定和分析,结果如下:
     测量19种水生植物的诱导曲线,从PS II最大光化学量子产量Fv/Fm来看,密刺苦草、五刺金鱼藻、狐尾藻、黑藻、马来眼子菜和石龙尾6种沉水植物,以及菖蒲、菰和水蓑衣3种挺水植物的Fv/Fm值小于0.8,说明这几种水生植物潜在的最大光合能力较低,而芦苇、水蓼、丁香蓼、长苞香蒲、卡开芦、华克拉莎和莲7种挺水植物,以及水龙、风眼蓝和水花生3种浮水植物的Fv/Fm值大于0.8,说明这些种类潜在的最大光合能力较高。
     从测量的诱导曲线得到PS II实际量子产量Y、相对电子传递速率rETR、光化学淬灭系数qP、非光化学淬灭系数NPQ随诱导时间变化而变化的曲线来看,19种水生植物的Y、 rETR和qP值开始时比较低,随后逐渐升高,最后达到稳定状态;从非光化学淬灭系数NPQ的曲线变化来看,密刺苦草、五刺金鱼藻、狐尾藻、石龙尾、芦苇、卡开芦、菰、水蓼、丁香蓼、水蓑衣、风眼蓝、水花生等种类的NPQ值在开始时比较低,很快就迅速上升,最后也达到稳定状态,而黑藻、马来眼子菜、华克拉莎、长苞香蒲、菖蒲、莲和水龙的NPQ值逐渐上升之后仍然能够保持较大的值,没有下降到达稳定状态。
     测量19种水生植物在光适应和暗适应条件下的快速光曲线,对曲线进行拟合,得到最大相对电子传递速率rETRmax、初始斜率α以及半饱和光强EK三个拟合参数。就同一种水生植物而言,从rETRmax来看,19种水生植物光适应后的rETRmax值都高于暗适应后的rETRmax值,说明这些水生植物经过光适应后最大光合效率都有所增加;从α来看,五刺金鱼藻、黑藻在光适应后,它们的α值比暗适应下的α值低,说明经过光适应后它们的叶片光能利用效率有所降低,其余17种水生植物经过光适应后的初始斜率α比暗适应的α值高,说明这17个种类在光适应后,光能利用效率明显提高;从EK来看,莲的EK值比暗适应的EK值低,说明莲经过光适应后,其耐受强光能力有所减弱,在光适应后,其余18种水生植物的半饱和光强EK值比暗适应的EK值高,说明其耐受强光的能力有所增强。
     就相同的适应条件而言,从暗适应条件来看,沉水植物中马来眼子菜、五刺金鱼藻都有较高的rETRmax和EK值,说明这两个种类具有较强的耐受强光的能力以及较高的最大光合效率;挺水植物中莲、菖蒲有较大的EK值,也有较高的最大光合效率,华克拉莎的耐受强光能力和最大光合效率都比较低,但却有最高的光能利用效率;浮水植物凤眼蓝和水花生的rETRmax、α和EK值都比较高,水龙的这三个参数的值都是最低的。从光适应条件来看,沉水植物中马来眼子菜、五刺金鱼藻、密刺苦草的rETRmax、EK的值比较高,α的值比较低,说明这三个种类具有较高的耐强光能力和最大光和效率,但其光能利用效率较低,石龙尾的光能利用效率最高,耐强光能力和最大光合效率却比较低;在挺水植物中,EK值较高的种类,其rETRmax值也会比较高,但光能利用效率较高的水生植物,其rETRmax值就比较低;浮水植物中凤眼蓝的rETRmax、α和EK值都是最高的,水龙的rETRmax、EK值是最低的。
     在晴天测量的19种水生植物叶绿素荧光参数的日变化中,从光合有效辐射PAR来看,19种水生植物的PAR在均呈典型的单峰型变化,中午12:30或14:30时最高,早晚较低:从rETR来看,五刺金鱼藻、狐尾藻、石龙尾、华克拉莎、水蓼、丁香蓼、莲、凤眼蓝的rETR呈单峰型变化,而其余11种水生植物的rETR都呈双峰型变化;从Y来看,19种水生植物Y的日变化是中午最低,早晚较高;从qP来看,19种水生植物qP的变化是上午随PAR的升高而下降,中午12:30或14:30时达最低,之后随着PAR的下降而逐渐上升;从NPQ来看,19种水生植物NPQ的变化是上午随着PAR的增大而逐渐升高,PAR最大时,NPQ也到达最大,随后随着PAR的下降而下降。
Aquatic plant plays a significant role in energy flowing and nutrient cycling of wetland ecosystem. To study the photosynthetic characteristics of aquatic plants matters to the protection and restoration of ecosystem in Huixian karst wetland. In this thesis, we studied chlorophyll fluorescence characteristics of19species of aquatic plants in Huixian karst wetland by usingDIVING-PAM.19species of aquatic plants included6species of submerged plants: Vallisneria denseserrulata, Ceratophyllum oryzetorum, Myriophyllum verticillatum, Hydrilla verticillaia, Potamogeton malaianus, Limnophila sessiliflora,10species of emergent plants: Phragmites australis, Phramites karka, Cladium chinense, Typha angustata, Acorus calamus, Zizania latifolia, Polygonum hydropiper, Ludwigia prostrate, Nelumbo nucifera, Hygrophila salicifolia, and3species of floating plants:Ludwigia adscendens, Eichhornia crassipes, Alternanthera philoxeroides. The results were as follows.
     First, we measured the chlorophyll fluorescence induction curves of19species of aquatic plants in situ and found the Fv/Fm(maximal quantum yield of PS Ⅱ in the dark) showed significant differences. The Fv/Fm of6spices of submerged plants, and A. calamus, Z. latifolia, H. salicifolia were lower than0.8. The rest aquatic plants'Fv/Fm were larger than0.8, so they shall be in good physical status, and had obvious potential photosynthetic capacity.
     The Y (effective quantum yield), the rETR (relative electronic transfer rate) and the qP (photochemical quenching) of the19species of aquatic plants from the induction curves showed the same variation trend, rising and then to keep steady state as the time changed. And the NPQ (non-photochemical quenching) of H. verticillata, P. malaianus, C. chinense, T. angustata, A. calamus, N. nucifera and L. adscendens kept the high quantities after rising and did not dropt, while the rest aquatic plants'NPQ were rising and then downing to the steady state.
     Secondly, we compared the fitting parameters, rETRmax (maximal relative electron transport rate), a (initial slop of RLC) and EK(half-saturation light intensity) by fitting the rapid light curves of the aquatic plants under the condition of light adaptation and dark adaptation in situ. The results showed that rETRmaxof19species of aquatic plants under the condition of light adaptation were larger than under the condition of dark adaptation, this illustrated the increasing of the maximum photosynthesis rate after light adaptation. The a of C. oryzetorum and H. verticillata under the condition of light adaptation were lower than under the condition of dark adaptation, this illustrated the decreasing of the light use efficiency after light adaptation, while the rest17species of aquatic plants'light use efficiency increased, because their a were larger under the condition of light adaptation. The EK of N. nucifera under the condition of light adaptation was lower than under the condition of dark adaptation, this illustrated the decreasing of intensive-light tolerant capacity after light adaptation, and the rest18species of aquatic plants' EK were larger under the condition of light adaptation, therefore their intensive-light tolerant capacity increased after light adaptation.
     Under the condition of dark adaptation, Potamogeton malaianus and Ceratophyllum oryzetorum had stronger intensive-light tolerant capacity and higher maximum photosynthesis rates than other stutied submerged plants. N. nucifera and A. calamus had larger EK and maximum photosynthesis rate, and C. chinense had lower EK and potential maximum photosynthetic raie but highest light use efficiency, compared with other studied emergent plants. E. crassipes and A. philoxeroides had larger rETRmax、a and EK, among the3species of floating plants, so they had stronger photosynthetic capacity than L. adscendens.
     Under the condition of light adaptation, P. malaianus and C. oryzetorum had stronger intensive-light tolerant capacity and higher potential maximum photosynthetic rate but lower light use efficiency than Vallisneria denseserrulata, M. verticillatum, H. verticillata and L. sessiliflora. L. sessiliflora had higher light use efficiency but lower intensive-light tolerant capacity and maximum photosynthesis rate than other stutied submerged plants. The species of emergent plants, which had larger EK, had larger rETRmax, while the species had higher light use efficiency, it would have lower rETRmax. E. crassipes had the largest rETRmax、a and EK among the3species of floating plants, and L. adscendens had the lowest rETRmax and EK.
     Thirdly, we studied the diurnal variations of chlorophyll fluorescence of the19species of aquatic plants in sunny days. The results showed that the diurnal variation process of PAR (photosynthetic active radiation) was fit to the single peak curve, being largest at12:30or14:30and much lower in the morning and evening. As the PAR changed, the diurnal variations of NPQ showed the same performance with PAR. The diurnal variations of rETR of C. oryzetorum, M. verticillatum, L. sessiliflora, C. chinense, P. hydropiper, L. prostrate, N. nucifera and E. crassipes were fit to single peak curves, and the rest11species of aquatic plants' were fit to the twin peaks curves. The Y and qP of19species of aquatic plants were lowest at12:30or14:30and much larger in morning and evening, while the NPQ of the studied aquatic plants were largest at noon and lower at moring and evening.
引文
[1]何池全.湿地植物生态过程理论及其应用——三江平原典型湿地研究[M].上海:上海科学技术出版社,2003.
    [2]李晓,冯伟,曾晓春.叶绿素荧光分析技术及应用进展rJ].西北植物学报,2006,26(10):2186-2196.
    [3]Schreiber U. Detection of rapid induction kinetics with a new type of high-frequency modulated chlorophyll fluorometer[J].Photosynthesis Research.1986,9:261-272.
    [4]王沙生,沈应柏.活体叶绿素荧光诱导曲线的原理和应用[J].植物生理学通讯,1989(1):54-58.
    [5]赵会杰,邹琦,于振文.叶绿素荧光分析技术及其在植物光合机理研究中的应用[J].河南农业大学学报,2000,34(3):248-251.
    [6]Hans Lambers, F Stuart Chapin Ⅲ & Thijs L.Pons著,张国平,周伟军译Plants Physiological Ecology植物生理生态学[M].杭州:浙江大学出版社,2003:8-9.
    [7]Krause G H, Weis F. Chlorophyll fluorescence and photosynthesis:The basics[J].Ann Rev Plant Physiol Plant Mol Biol,1991 (42):313-349.
    [8]Kate Maxwell & Giles N Johnson. Chlorophyll Fluorescence—a practical Guide[J].Journal of Experimental Botany,2000,51(345):659-668.
    [9]张阿宏,齐孟文,张晔晖.调制叶绿素荧光动力学参数及其计量关系的意义和公理化讨论[J].核农学报,2008,22(6):909-912.
    [10]Krause GH.Photoinhibition of Photosynthesis:an evaluation of damaging and Protective mechanisms[J]. Physiologia Plantarum.1988,74:566-574.
    [12]韩志国.20种湿地植物的叶绿素荧光特性[D].广州:暨南大学,2006.
    [13]陈建明,俞晓平,程家安.叶绿素荧光动力学及其在植物抗逆生理研究中的应用[J].浙江农业学报,2006,18(1):51-55.
    [14]韩博平,韩志国,付翔.藻类光合作用机理与模型[M].北京:科学出版社,2003.
    [15]郎惠卿,赵魁义,陈克林.中国湿地植被[M].北京:科学出版社,1999.
    [16]梁士楚.广西湿地植物[M].北京:科学出版社,2011.
    [17]郭雪莲,吕宪国,郗敏.植物在湿地养分循环中的作用[J].生态学杂志,2007,26(10):1628-1633.
    [18]周炜,谢爱军,年跃刚,等.人工湿地净化富营养化河水实验研究(1)——植物对氮磷污染物的净化作用[J].净水技术,2006,25(3):35-39.
    [19]欧阳坤.沉水植物逆境生理及其净化作用研究[D].长沙:中南科技大学,2007.
    [20]李妙,龙岳林,刘雪松.水生植物对污水净化功能的研究进展[J].山东林业科技,2007(5):78-81.
    [21]迟橙,龙岳林.水生植物修复城市富营养化污水的研究进展[J].湖南农业大学学报(白然科学版),2009,35(1):51-55.
    [22]王雪芬,李志炎.水生植物对景观水体的生态修复研究进展[J].山东林业科技,2011(2):97-101.
    [23]詹金星,支崇远.夏品华,等.水生植物净化污水的机理及研究进展[J].西南农业学报,2911,24(1):352- 355.
    [24]徐洪文,卢妍.水生植物在水生态修复中的研究进展[J].中国农学通报.,2011,27(03):413-416.
    [25]张宇,王圣瑞,李重祥,等.沉水植物对富营养化水体的修复作用及其研究展望[J].内蒙古草业.2009.21(4):17-21.
    [26]马剑敏,靳萍,吴振斌.沉水植物对重金属的吸收净化和受害机理研究进展[J].植物学通报,2007,24(2):252-239.
    [27]陈洪达.11种沉水植物的生产力[J].海洋与湖沼,1988,19(6):525-531.
    [28]谈锋,刁正俗.黑藻的光合特性及其影响因素[J].西南师范大学学报(自然科学版),1992.17(3):372-375.
    [29]金送笛,李永函,王永利.几种生态因子对菹草光合作用的影响[J].水生生物学报,1995,15(4):295-302.
    [30]周红,任久长,蔡晓明.沉水植物昼夜光补偿点及其测定[J].环境科学学报,1997,17(2):256-258.
    [31]苏文华,张光飞,张云孙,种沉水植物的光合特征[J].水生生物学报,2004,28(4):391-395.
    [32]苏睿丽,李伟.沉水植物光合作用的特点与研究进展[J].植物学通报2005,.22(增刊):128-138.
    [33]陈开宁,强胜,李文朝.蓖齿眼子菜的光合速率及影响因素[J].湖泊科学,2002,14(4):357-362.
    [34]苏胜齐,沈盎绿,唐洪玉,等.温度光照和pH对菹草光合作用的影响[J].西南农业大学学报,2001,23(6):532-537.
    [35]李强,王国祥,潘国权,等.水体浊度对菹草萌发及萌发苗光合荧光特性的影响[J].生态学报,2006,26(11):3594-3601.
    [36]朱光敏.水体浊度和低光条件对沉水植物生长的影响[D].南京:南京林业大学,2009.
    [37]许秋瑾,金相灿,王兴民,等.氨氮与镉单一和复合作用对沉水植物穗花狐尾藻和轮叶黑藻光合能力的影响[J].环境科学,2006,27(10):1974-1978.
    [38]陈灿,张浏,赵兴,皮斌,等.不同营养状态下附生藻类对菹草叶片光合机能的影响[J].湖泊科学,2007,19(4):485-491.
    [39]金相灿,楚建周,王圣瑞.水体氮浓度形态对黑藻和狐尾藻光合特征的影响[J].应用与环境生物学报,2007,13(2):200-204.
    [40]李运祥,肖军.不同磷营养水平下金鱼藻的生理响应[J].泰山学院学报,2009,31(3):86-90.
    [41]黎慧娟,倪乐意.浮游绿藻对沉水植物草生长的抑制作用[J].湖泊科学,2007,19(2):111-1]7.
    [42]宋玉芝,秦伯强,高光,等.附着生物对沉水植物伊乐藻生长的研究[J].生态环境.,2007,16(6):1643-1647.
    [43]张彦辉,安彦杰,朱迟,等.水体无机碳条件对常见沉水植物生长和生理的影响[J].水生生物学报,.2009.33(6):1020-1030.
    [44]何伟,王国祥,杨文斌,等.水深梯度对菹草生长的影响.生态学杂志,2009,28(7):1224-1228.
    [45]肖月娥,陈开宁,戴新宾,等.太湖中2种大型沉水被子植物适应低光能力的比较[j].植物生理学通讯,2006,42(3):421-425.
    [46]孙刚,祝廷成.芦苇光合作用与蒸腾作用的日进程[J].生物学杂志,2006,26(11):3594-3601.
    [47]李林锋.4种湿地植物光合作用特性的比较研究[J].西北植物学报,2008,28(10):2094-2102.
    [48]李林锋.湿地植物香蒲光合特性及其影响因素分析[J].广东海洋大学学报,2009,29(1):77-82.
    [49]吴统贵,吴明,萧江华.杭州湾湿地不同演替阶段优势物种光合生理生态特性[J].西北植物学报,2008,28(8):1683-1688.
    [50]包先明,范成新,史刚荣.不同底质改良处理对三种挺水植物光合特性的影响[J].胡泊科学,2011,23(4):541-548.
    [51]张利静,黎明,杨东,等.水龙在不同富营养水体中光合特性的变化[J].华中农业大学学报,2006,25(5):4913-497.
    [52]刘少华,陈国祥,杨艳华,等.菱异形叶光合特性的比较[J].南京师大学报(自然科学版),2002.25(1):78-82.
    [53]耿显华.大气CO2飞浓度升高对不同生活型水生植物的影响[D].武汉:武汉大学,2003.
    [54]朱慧,马瑞君.2种水生入侵植物光合特性的比较[J].西北农林科技大学学报(自然科学版),2010.38(5):193-198.
    [55]马婷,于国祥,李强,等.宦营养化水体中菹草光合荧光特性研究[J].生态环境,,2007,16(3):758-761.
    [56]李强,王国祥,王文林,等.悬浮泥沙水体对穗花狐尾藻光合荧光特性的影响[J].湖泊科学.,2007,.1(2):197-203.
    [57]徐瑶,王国祥,李强.水体浊度对苦草光合荧光特性的影响[J].武汉植物学研究,2007,25(1):70-74.
    [58]李强,王国祥.冬季降温对菹草叶片光合荧光特性的影响[J].生态环境,2008,17(5):1754-1758.
    [59]李伶,袁琳,宋丽娜,等.镉对浮萍叶绿素荧光参数的影响[J].环境科学学报,2010,30(5):1062-1068.
    [60]宋玉芝,蔡炜,秦伯强.太湖常见浮叶植物和沉水植物的光合荧光特性比较[J].应用生态学报,2009,20(3):569-573.
    [61]韦锋.桂林会仙喀斯特湿地生物多样性及保护研究[D].广西师范大学,2010.
    [62]李世杰,蔡德所,张宏亮,等.桂林会仙岩溶湿地环境变化沉积记录的初步研究[J].广西师范大学学报(自然科学版),2009,27(2):94-100.
    [63]马祖陆,蔡德所,蒋忠诚.岩溶湿地分类系统研究[J].广西师范大学学报(自然科学版).2009,27(2):101.107.
    [64]李晖,王月,王艳分.桂林会仙喀斯特湿地生态环境调查及生态旅游开发[J].安徽农业科学,2010,38(27):15286-15289.
    [65]吴应科,莫源富,邹胜章.桂林会仙岩溶湿地的生态问题及其保护对策[J].中国岩溶,,2006.,25(1):85-88.
    [66]李鹏民,高辉远.快速叶绿素荧光诱导动力学分析在光合作用研究中的应用[J].植物生理与分子生物学学报.2005,31(6):559-566.
    [67]张守仁.叶绿素荧光动力学参数的意义及讨论[J].植物学通报,1999,16(4):444-448.
    [68]刘忠荣,樊钦平,李祥,等.叶绿素荧光动力学参数对亚硫酸氢钠生理响应研究进展[J].广东农业科学.2001(9):117-121.
    [69]Peter J Ralph, Rolf Gademann. Rapid light curves:A powerful tool to assess photosynthetic activity[J].Aquatic Botany,2005,82:222-237.
    [70]宋玉芝,黄瑾,秦伯强.附着生物对太湖常见的两种沉水植物快速光曲线的影响[J].湖泊科学,2010,22(6):935-940.
    [71]Anderson J M, Park Y I & Chow W S. Photoinactivation and photoprotection of photosystem Ⅱ in nature[J].Physiologia Plantarum,1997,100:214-223.
    [72]Muraoka H, Tang Y, Terashimal, Koizumi H & Washitanil. Contributions of diffusional limitation, photoinhibition and photorespiration to midday depression of photosynthesis in Arisaema heterophyllum in natural high light[J].Plant Cell and Environment.2000,23(3):235-250.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700