用户名: 密码: 验证码:
半互穿型有机/无机纳米复合水凝胶的合成及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
聚合物/粘土纳米复合材料因具有优异的力学性能及较低廉的生产成本,已成为近二十年来功能材料领域中基础研究和应用开发的热点。其中聚合物/膨润土复合水凝胶的研究备受关注,它利用膨润土的天然活性和价廉的特性,将其引入有机三维网络中制备复合水凝胶,可提高凝胶的吸水倍率和吸水速度、改善耐盐性能、凝胶强度及热稳定性。
     本文采用阳离子聚电解质取代传统的表面活性剂为插层剂,对钠基膨润土进行插层改性,制备聚阳离子/钠基膨润土纳米复合物。X射线粉末衍射(XRD)和透射电子显微镜(TEM)结果表明:阳离子聚电解质插入到膨润土的片层间,层间距扩大,片层结构被破坏,得到了剥离型的聚阳离子/钠基膨润土纳米复合物。不同分子量的聚阳离子对插层效果有很大的影响,可以通过控制聚阳离子分子量的大小,得到插层型或者剥离型的复合结构。
     将合成的聚合物/钠基膨润土纳米复合物与淀粉接枝丙烯酸网络互穿得到具有特殊半互穿结构的淀粉接枝丙烯酸/聚二甲基二烯丙基氯化铵/钠基膨润土两性半互穿纳米复合水凝胶。考察了合成条件对纳米复合水凝胶吸液性能的影响。结果表明:凝胶在去离子水中的最大吸水倍率为858g/g;在pH值为4~13较宽广的范围内,可保持较高的吸液倍率,在pH值13的溶液中,其吸液倍率为72 g/g;在浓度为0.1 mol/L的NaCl溶液中,吸液倍率可达81 g/g,呈现出一定的耐盐性;此外,在99%以上的含水量的条件下,纳米复合水凝胶的凝胶强度达到了28 kPa。
     为了提高水凝胶的吸液速度,以聚乙二醇(PEG)为生孔剂,通过生孔剂法制备了淀粉接枝丙烯酸/聚二甲基二烯丙基氯化铵/钠基膨润土多孔两性半互穿复合水凝胶。考察了PEG的分子量的、不同PEG的加入量及合成条件对凝胶孔的数目及孔径大小的影响。同时考察了多孔水凝胶的吸液动力学。由于孔状结构的存在,多孔水凝胶的吸水速度有了极大的提高,其达到饱和吸水量仅需10 min。
     以小分子单体甲醛和尿素通过单体插层缩聚法对膨润土进行插层处理,取得了良好的插层效果,之后将其与聚丙烯酸凝胶网络互穿制备了聚丙烯酸/脲醛树脂/钠基膨润土半互穿纳米复合水凝胶,并考察了膨润土的含量对凝胶吸液性能的影响。当膨润土的加入量为5 wt.%时,凝胶吸去离子水量为983 g/g。性能测试表明:在pH值为4~13较宽广的范围内,凝胶可保持较高的吸液倍率,在pH=13时,其吸液倍率为126 g/g;当NaCl的浓度为0.1 mol/L时,吸液倍率为113 g/g,呈现一定的耐盐性。
In the last two decades, polymer/clay nanocomposites have been extensively investigated as advanced composite materials because these nanocomposites exhibit markedly improved mechanical property and reduce the cost of the manufacture. Among all the polymer/clay nanocomposites, the nanocomposite hydrogels based on bentonite have been more widely investigated. The properties of the hydrogels, e.g. salt-resistance, swelling capacity, absorbency rate, mechanical strength and thermal stability can be significantly enhanced by incorporation of bentonite into the polymer network, due to the natural activity and the low cost of the bentonite.
     Na-bentonite was modified by cationic polyelectrolyte though solution intercalation. The XRD pattern and TEM image indicated that the cationic polyelectrolyte was intercalated into the interlayer space of the Na-bentonite, the interlayer distance was enlarged, no basal reflection was observed in the XRD pattern and an exfoliated nanocomposite was obtained. The molecular weight of the cationic polyelectrolyte has a significant effect on the interlayer space of the nanocomposites. An exfoliated or intercalated structure can be obtained by controlling the molecular weight of the cationic polyelectrolyte.
     In order to improve the hydrogel strength and salt resistance, we prepared a novel amphoteric nanocomposite hydrogel with semi-interpenetrating polymer network (semi-IPN) which is composed of starch-g-acrylic acid (AA) and Na-BENT modified with linear polycations poly(dimethyldiallylammonium chloride )(PDMDAAC). The influences of the synthesis conditions on the swelling capacity of amphoteric superabsorbent composites were investigated in details. The results showed that the nanocomposite hydrogel has the swelling capacity of 858 g/g in deionized water. The hydrogel kept a high swelling in a wide pH range range of 4 to 13, and good salt tolerance. Swelling capacity was 72 g/g at the pH 13 and 81 g/g in 0.1 mol/L NaCl solution. Besides, the compressive strength of the hydrogel reached 28 kPa even under a more than 99% of water content.
     Amphoteric semi-IPN nanocomposite hydrogels with define porous structure composites of starch-g-acrylic acid/PDMDAAC/Na-bentonite were prepared in the presence of poly(ethylene glycol) (PEG) as the pore-forming agent. The influences of the PEG molecular weight, the amount of the PEG and the synthesis condition on porous structure are investigated. The PEG-modified hydrogels are characterized by swelling rate and swelling kinetics. The porous hydrogels reached its equilibrium swelling within 10 min.
     The urea and formaldehyde were used to modify Na-BENT by intercalative condensation, as the results of XRD and TEM showed an exfoliated nanocomposite FU/BENT was obtained. Then semi-IPN nanocomposite hydrogels prepared by interpenetrating with poly(acrylic acid) (PAA). The influences of the amount of Na-BENT on the swelling behavior of nanocomposite hydrogels were studied in details. When the amount of Na-BENT was 5 wt.%, the hydrogel has the swelling capacity of 983 g/g in deionized water. The nanocomposite hydrogel kept a high swelling in a wide pH range of 4 to 13 and good salt tolerance. Swelling capacity kept 126 g/g at the pH 131 g/g and in 0.1 mol/L saline solutions, respectively.
引文
[1] Roy, R.; Komarneni, S.; M.Roy, D., MultiPhase Ceramic Composites Made by Sol-Gel Technique [J]. Materials Research Society Symposium - Proceedings. 1984, 32:347-359.
    [2]张留成;瞿雄伟;丁会利.高分子材料基础[M].第二版.北京:化学工业出版社, 2002.
    [3]张立德.纳米材料[M].北京:化学工业出版社, 2000.
    [4]王立新;袁金凤;任丽,聚合物基纳米复合材料的研究进展[J].塑料工业. 2000, 28:1-3.
    [5]张立德;牟季美.纳米材料和纳米结构[M].北京:科学出版社, 2001.
    [6] Alexandre, M.; Dubois, P., Polymer-layered silicate nanocomposites:preparation, properties and uses of a new class of materials [J]. Matericals Science and Engineering. 2000, 28:1-63.
    [7] Vaia, R. A.; Jandt, K. D.; Kramer, E. J.,插层聚合物动力学[J].高分子材料科学. 1995, 28:8080-8085.
    [8] Giannelis, E. P., Polymer layered nanocomposites[J]. Advanced Materials. 1996, 8:29.
    [9]武保华;王一中;余鼎声,有机蒙脱土的制备与表征[J].石油化工. 1999, 2:153-156.
    [10]沈家骢.超分子层状结构-组装与功能[M].北京:科学出版社, 2004.
    [11] Xu, W.; Ge, M.; He, P., Nonisothermal crystallization kinetics of polyoxymethylene/ montmorillonite nanocomposite [J]. Journal of Applied Polymer Science. 2001, 28:2281-2289.
    [12] Yano, K.; Usuki, A.; Okada, A., Synthesis and properties of polyimide-clay hybrid films[J]. Journal of Applied Polymer Science. 1997, 35:2289-2489.
    [13] Vaia, R. A.; Jandt, K.; Kramer, E., Microstructural evolutionof melt intercalated polymer2lrganically modified layered silicatesnanocomposites[J]. Chemistry of Materials. 1996, 8:2628-2635.
    [14] Xu W. B.; Ge M. L. ; S, H. P., Nonisothermal crystallization kinetics of polypropylene/ montmorillonite nanocomposites[J]. Journal of Polymer Science Part A: Polymer Chemistry. 2002, 40:408-414.
    [15] Lan T; TJ, P., Clay reinforced epoxy nanocomposites[J]. Chemistry of Materials. 1994, 6:2216-2219.
    [16] Messersmith, P. B.; PGiannelis, E., Synthesis and characterizationof silicate2epoxy nanocomposites[J]. Chemistry of Materials. 1994, 6:1719-1725.
    [17]戈明亮;徐卫兵,插层法制备聚合物/蒙脱土纳米复合材料的研究进展[J].工程塑料应用. 2002, 30:58-61.
    [18] Medellin-Rodriguez, F. J.; Burger, C.; Hsiao, B. S.; Chu, B.; Vaia, R.; Phillips, S., Time-resolved shear behavior of end-tethered Nylon 6-clay nanocomposites followed by non-isothermal crystallization[J]. Polymer. 2001, 42:9015-9023.
    [19] Yang, Y.; Zhu, Z.-k.; Yin, J.; Wang, X.-y.; Qi, Z.-e., Preparation and properties of hybrids of organo-soluble polyimide and montmorillonite with various chemical surface modification methods[J]. Polymer. 1999, 40:4407-4414.
    [20] Wang Z; ., P. T. J., Hybrid organic/inorganic nanocomposites[J]. Chemistry of Materials. 1998, 10:1820-1826.
    [21] Kojima, Y.; Fukumor, K.; Usuki, A., Gas permeabilities inrubber/clay hybrid[J]. Journal of Materials Science Letters. 1993, 12:889-890.
    [22] Ma, J. H.; Xu, Y. J.; Zhang, Q. S.; Zha, L. S.; Liang, B. R., Preparation and characterizationof pH- and temperature-responsive semi-IPN hydrogels of carboxymethyl chitosan with poly (N-isopropyl acrylamide) crosslinked by clay[J]. Colloid and Polymer Science. 2007, 285:479-484.
    [23] Beake, B. D.; Chen, S.; Hull, J. B.; FGao, Nanoindentation behavior of clay/ poly(ethylene oxide) nanocomposites[J]. Journal of Nanoscience and Nanotechnology. 2002, 2:79-79.
    [24] Yeh, J. M.; Liou, S. J.; Lin, C. Y., Anticorrosively enhanced PMMA/clay nanocomposite materials with quaternary alkylphosphonium salt as an intercalating agent[J]. Chemistry of Materials. 2002, 14:154-161.
    [25]舒中俊.,聚合物/蒙脱土纳米复合材料的研究[J].中国塑料. 2000, 14:12.
    [26]陈光明;李强;漆宗能,聚合物层状硅酸盐纳米复合材料进展[J].高分子通报. 1999, 12:48.
    [27]顾群;吴大诚;易国桢,聚醚酯/蒙脱土复合材料的结晶动力学和结晶形态[J].高等学校化学学报. 1999, 20:324-326.
    [28] Okamoto, M.; Morita, S.; Taguchi, H.; Kim, Y. H.; Kotaka, T.; Tateyama, H., Synthesis and structure of smectic clay/poly(methyl methacrylate) and clay/polystyrene nanocomposites via in situ intercalative polymerization[J]. Polymer. 2000, 41:3887-3890.
    [29]漆宗能;李强;赵竹第.一种聚酰胺/粘土纳米复合材料及其制备方法[P].中国发明专利, 1138593A. 1996.
    [30]陈国华;李明春;姚康德,聚合物/粘土纳米复合体系[J].高分子材料科学与工程. 1999, 15:9-12.
    [31] Tyan, H. L.; Liu, Y. C.; Wei, K. H., Thermally and Mechanically Enhanced Clay/Polyimide Nanocomposite via Reactive Organoclay[J]. 1999, 11:1942-1947.
    [32] Hoffman, B.; Thomann, R., Crystal Lattice Transition of Poly(butenediol Terephthalate)[J]. Macromolecular Rapid Communications. 2000, 21:57.
    [33]许晓秋;刘延栋.高吸水性树脂的工艺与配方[M].第一版.化学工业出版社, 2004.
    [34]季鸿渐;潘振远;张万喜,含膨润土的部分水解交联聚丙烯酞胺高吸水树脂的研究[J].高分子学报. 1995, 5:595-599.
    [35]邹新禧.高吸水性树脂[M].第二版.北京:化学工业出版社, 2002.
    [36]林建明;扬正方;普敏莉, .膨润土/丙烯酸钠盐高吸水性复合材料研究[J].矿物学报. 2001, 21:427-430.
    [37]周正刚;李芮丽;张世超,膨润土-SAR复合材料的研究[J].高分子材料科学与工程. 2002, 48:151-153.
    [38] Zheng, Y.; Li, P.; Zhang, J.; Wang, A., Study on superabsorbent composite XVI. Synthesis, characterization and swelling behaviors of poly(sodium acrylate)/vermiculite superabsorbent composites[J]. European Polymer Journal. 2007, 43:1691-1698.
    [39] Can, V.; Abdurrahmanoglu, S.; Okay, O., Unusual swelling behavior of polymer-clay nanocomposite hydrogels[J]. Polymer. 2007, 48:5016-5023.
    [40] Miyazaki, S.; Karino, T.; Endo, H.; Haraguchi, K.; Shibayama, M., Clay Concentration Dependence of Microstructure in Deformed Poly(N-isopropylacrylamide)-Clay Nanocomposite Gels[J]. 2006, 39:8112-8120.
    [41] Hao, Z. X.; Guo, B.; Liu, H.; Gan, L. H.; Xu, Z. X.; Chen, L. W., Synthesis of mesoporous silica using urea-formaldehyde resin as an active template[J]. Microporous and Mesoporous Materials. 2006, 95:350-359.
    [42]魏月琳;吴季怀;林建明,粘土/丙烯酰胺系高吸水复合材料的研究[J].化工新型材料.2002, 30:40-43.
    [43]林松柏;林建明;施荣玺,聚丙烯酸/高岭土杂化高吸水材料的合成与性能[J].华侨大学学报(自然科学版). 2000, 21:246-251.
    [44]周锰;林建明;许承晃,粘土-有机树脂超吸水复合材料的制备及性能研究[J].矿物岩石地质化学通报. 1999, 18:247-250.
    [45]万涛;朱忠伟;扬帆,水溶液聚合高岭土复合聚丙烯酸钠-丙烯酰胺高吸水性树脂的研究[J].现代化工. 2003, 23:35-38.
    [46]朱秀林;顾梅;赵峰,高岭土-聚丙烯酸钠高吸水性复合树脂的合成及性能研究[J].高分子材料科学与工程. 1994, 5: 46-49
    [47]张英武;吴季怀;林建明,膨润土/聚乙烯醇高吸水性树脂的合成及性能研究[J].集美大学学报(自然科学版). 2002, 7:204-207.
    [48]刘宇光;李晓冰;侯静,辐射制备高分子复合吸水材料[J].化学工程师. 2003, 2:1-3.
    [49] Starodoubtsev, S. G.; Lavrentyeva, E. K.; Khokhlov, A. R.; Allegra, G.; Famulari, A.; Meille, S. V., Mechanism of smectic arrangement of montmorillonite and bentonite clay platelets incorporated in gels of poly(acrylamide) induced by the interaction with cationic surfactants[J]. Langmuir. 2006, 22:369-374.
    [50] Zolfaghari, R.; Katbab, A. A.; Nabavizadeh, J.; Tabasi, R. Y.; Nejad, M. H., Preparation and characterization of nanocomposite hydrogels based on polyacrylamide for enhanced oil recovery applications[J]. Journal of Applied Polymer Science. 2006, 100:2096-2103.
    [51] Haraguchi, K.; Takehisa, T.; Ebato, M., Control of cell cultivation and cell sheet detachment on the surface of polymer/clay nanocomposite hydrogels[J]. Biomacromolecules. 2006, 7:3267-3275.
    [52] Xu, K.; Wang, J.; Xiang, S.; Chen, Q.; Zhang, W.; Wang, P., Study on the synthesis and performance of hydrogels with ionic monomers and montmorillonite[J]. Applied Clay Science. 2007, 38:139-145.
    [53]吴季怀;林建明;魏月琳.高吸水保水材料[M].北京:化学工业出版社, 2005.
    [54]谢亦明;吴季怀,反向悬浮法制备膨润土-聚丙烯酸那影响因素的研究[J].化工新型材料. 2004, 32:16-18.
    [55]唐蜀忠;鲁红升;余渝,两步法制备的AM-AA交联共聚物高吸水树脂的保水性能研究[J].精细石油化工进展. 2003, 4:4-7.
    [56]任强;史铁均;王华林;周亚斌;翟林峰,丙烯酸-丙烯酰胺原位插层共聚制备高吸水性蒙脱土纳米复合材料的研究[J].功能高分子学报. 2003, 16:469-474.
    [57] Gao, D.; Heimann, R. B.; Williams, M. C.; Wardhaugh, L. T., Rheological properties of poly(acrylamide)-bentonite composite hydrogels[J]. Journal of Materials Science. 1999, 34:1543-1552.
    [58]张小红;崔英德;张维刚,聚(丙烯酸钠/丙烯酰胺基/甲基丙磺酸)/蒙脱石三元复合高吸水树脂的合成与性能研究[J].精细石油化工. 2004, 4:32-36.
    [59]刘永兵;蒲万芬;杨小松,耐盐性AM/AA/MMT复合吸水材料合成条件改进研究[J].钻采工艺. 2004, 27:88-93.
    [60]龙飞;张兰;何顺爱,膨润土-高吸水性复合树脂的研究[J].桂林工学院学报. 2004, 24:211-214.
    [61] Wu, J.; Wei, Y.; Lin, J.; Lin, S., Study on starch-graft-acrylamide/mineral powder superabsorbent composite[J]. Polymer. 2003, 44:6513-6520.
    [62]余秀丽;张然;孙亚光,丙烯酸盐/膨润土/淀粉共聚复合高吸水材料制备研究[J].非金属矿. 2005, 28:18-20.
    [63]周锰;林建明;吴季怀,粘土-淀粉接枝共聚丙烯酰胺超吸水性复合材料的合成及性能研究[J].中国矿业. 2000, 9:72-74.
    [64]白渝平;杨荣杰;李建民, PVA-PAAIPN水凝胶的制备及其溶胀性质研究[J].高分子材料科学与工程. 2002, 18:98-101.
    [65] Yin, L.; Fei, L.; Cui, F.; Tang, C.; Yin, C., Superporous hydrogels containing poly(acrylic acid-co-acrylamide)/O-carboxymethyl chitosan interpenetrating polymer networks[J]. Biomaterials. 2007, 28:1258-1266.
    [66] Nair, S. H.; Pawar, K. C.; Jog, J. P.; Badiger, M. V., Swelling and Mechanical Behavior of Modified Poly(vinyl alcohol)/Laponite Nanocomposite Membranes[J]. Journal of Applied Polymer Science. 2007, 103:2896-2930.
    [67]王爱勤;张俊平.有机-无机复合高吸水性树脂[M].北京:科学出版社, 2006.
    [68] Lee, W. F.; Chen, Y. C., Effect of bentonite on the physical properties and drug-release behavior of poly(AA-co-PEGMEA)/bentonite nanocomposite hydrogels for mucoadhesive[J]. Journal of Applied Polymer Science. 2004, 91:2934-2941.
    [69] Zhang, X. Z.; Yang, Y. Y.; Chung, T. S.; Ma, K. X., Preparation and Characterization of Fast Response Macroporous Poly(N-isopropylacrylamide) Hydrogels[J]. Langmuir. 2001, 17:6094-6099.
    [70]徐卫兵;戈明亮;何平笙,聚丙烯/蒙脱土纳米复合材料的制备与性能[J].中国塑料. 2000, 14:27-31.
    [71]陈密峰;杨健茂;张秀娟;石启增,二甲基二烯丙基氯化铵(DMDAAC)及其聚合物研究新进展[J].化学世界. 2003, 9:496-499.
    [72]罗娅君;张新申;王照丽;刘卉,阳离子型高分子絮凝剂P(DMC-AM)的合成[J].四川大学学报(工程科学版). 2003, 35:54-57.
    [73]彭晓宏;盘思伟;沈家瑞,氧化还原体系对DMC/AM/AA三元水溶液共聚合的影响[J].精细化工. 1999, 28:543-545.
    [74]赵华章;越钦艳;高宝玉;于慧;栾兆坤,阳离子型高分子絮凝剂PDMDAAC与P(DMDAAC-AM)的合成及分析[J].精细化工. 2001, 18:645-648.
    [75] Wandrey, J.; Reinisch, Zur Bestimmung der relativen Molmasse von Poly (dimethyl-diallyl-ammoniumchlorid) durch Losungsviskosimetrie[J]. Acta Polymerica. 1982, 33:156-158.
    [76]张学光;李绵贵,阳离子聚电解质(PDMC)的合成与表征[J].咸宁师专学报. 1999, 19:69-73.
    [77]曾清华;王栋知,聚合物-粘土矿物纳米复合物材料[J].化工进展. 1998, 2:13-16.
    [78] Herrera, N. N.; Letoffe, J. M.; Putaux, J. L.; David, L.; Bourgeat-Lami, E., Aqueous dispersions of silane-functionalized laponite clay platelets. A first step toward the elaboration of water-based polymer/clay nanocomposites[J]. Langmuir. 2004, 20:1564-1571.
    [79]荣庸;姜永禄;李寅;沈龙彩;孙公奇.辐射制备超级复合吸水材料的方法[P].中国发明专利, 85102156. 1987.
    [80] Lee, W. F.; Yang, L. G., Superabsorbent polymeric materials. XII. Effect of montmorillonite on water absorbency for poly(sodium acrylate) and montmorillonite nanocomposite superabsorbents[J]. Journal of Applied Polymer Science. 2004, 92:3422-3429.
    [81] Wu, J.; Lin, J.; Zhou, M.; Wei, C., Synthesis and properties of starch-graft-polyacrylamide/clay superabsorbent composite[J]. Macromolecular Rapid Communications. 2000, 21:1032-1034.
    [82] Lu, Y.; Meng, G. Z.; Zhang, F. Y.; Yang, M.; Shen, D., Hydrogen bonding in polyamide 66/clay nanocomposite[J]. Journal of Polymer Science: Part B: Polymer Physics. 2003, 41:2313–2321.
    [83] Chisholm, B. J.; Moore, R. B.; Barber, G.; Khouri, F.; Hempstead, A.; Larsen, M.; Olson, E.; Kelley, J.; Balch, G.; Caraher, J., Nanocomposites derived from sulfonated poly(butylene terephthalate)[J]. Macromolecules. 2002, 35:5508–5516.
    [84] Shalaby, W. S. W.; Park, K., Biochemical and mechanical characterization of enzyme-digestible hydrogels[J]. Pharmaceutical Research. 1990, 7:816–822.
    [85]张翠荣,丙烯酰胺类共聚物水凝胶的合成及性能研究[J].化学工程师. 2005, 5:9-10.
    [86] Usuki, A.; Kawasumi, M.; Okada, A.; Kojima, Y.; Kurauchi, T.; O, K., Synthesis of Nylon 6-Clay Hybrid[J]. Journal of Materials Research. 1993, 8:1179-1184.
    [87] Weimer, M. W.; Chen, H.; Giannelis, E. P.; Sogah, D. Y., Direct synthesis of dispersed nanocomposites by in situ living free radical polymerization using a silicate-anchored initiator[J]. Journal of the American Chemical Society. 1999, 121:1615-1616.
    [88] Zeng, C. C.; Lee, L. J., Poly(methyl methacrylate) and polystyrene/clay nanocomposites prepared by in-situ polymerization[J]. Macromolecules. 2001, 34:4098-4103.
    [89]马继盛;漆宗能;张树范;王新;陈士娟;胡友良,插层聚合制备聚丙烯/蒙脱土纳米复合材料及其结构性能表征[J].高等学校化学学报. 2001, 22:1767-1770.
    [90]屈撑囤;王跃武;樊西惊,聚二甲基二烯丙基氯化铵与粘土间的作用[J].油田化学. 1996, 13:7-10.
    [91] Wang, K.; Wang, L.; Wu, J.; Chen, L.; He, C., Preparation of Highly Exfoliated Epoxy/Clay Nanocomposites by "Slurry Compounding": Process and Mechanisms[J]. Langumir. 2005, 21:3613-3618.
    [92] Kang, H. W.; Tabata, Y.; Ikada, Y., Fabrication of porous gelatin scaffolds for tissue engineering[J]. Biomaterials. 1999, 20:1339-1344.
    [93] Zheng, Z. X.; Tao, Z. J.; Xi, Z. R.; Chang, C. C., Synthesis and properties of thermosensitive, crown ether incorporated poly(N-isopropylacrylamide) hydrogel[J]. Polymer. 2002, 43:4823-4827.
    [94] Butler, R.; Davies, C. M.; Cooper, A. I., Emulsion Templating Using High Internal Phase Supercritical Fluid Emulsions[J]. Advanced Materials. 2001, 13:1459-1463.
    [95] Kabiri, K.; Omidian, H.; Hashemi, S. A.; Zohuriaan-Mehr, M. J., Synthesis of fast-swelling superabsorbent hydrogels: effect of crosslinker type and concentration on porosity and absorption rate[J]. European Polymer Journal. 2003, 39:1341-1348.
    [96] Kim, D.; Park, K., Swelling and mechanical properties of superporous hydrogels of poly(acrylamide-co-acrylic acid)/polyethylenimine interpenetrating polymer networks[J]. Polymer. 2004, 45:189-196.
    [97] Xue, S. W.; Hoffman, A. S.; Yager, P., Synthesis and characterization of thermally reversible macroporous poly(N-isopropylacrylamide) hydrogels[J]. Journal of polymer science. Part A. Polymer chemistry. 1992, 30:2121-2129.
    [98] Zheng, Z. X.; Xi, Z. R., Preparation of fast responsive, thermally sensitive poly(N-isopropylacrylamide) gel[J]. European Polymer Journal. 2000, 36:2301-2303.
    [99]刘晓华;王晓工;刘德山,快速响应的温敏性聚(N-异丙基丙烯酰胺)水凝胶Ⅱ.热力学行为及水的状态研究[J].高分子学报. 2002, 3:354-357.
    [100]Serizawa, T.; Wakita, K.; Akashi, M., Rapid Deswelling of Porous Poly(N-isopropylacrylamide) Hydrogels Prepared by Incorporation of Silica Particles[J]. 2002, 35:10-12.
    [101]Strachotova, B.; Strachota, A.; Uchman, M.; Slouf, M.; Brus, J.; Plestil, J.; Matejka, L., Super porous organic-inorganic poly(N-isopropylacrylamide)-based hydrogel with a very fast temperature response[J] Polymer. 2007, 48:1471-1482.
    [102]Chen, Z. B.; Liu, M. Z.; Ma, S. M., Synthesis and modification of salt-resistant superabsorbent polymers[J]. Reactive & Functional Polymers. 2005, 62:85-92.
    [103]Bajpai, S. K.; Johnson, S., Superabsorbent hydrogels for removal of divalent toxic ions. Part I: Synthesis and swelling characterization[J]. Reactive and Functional Polymers. 2005, 62:271-283.
    [104]Ray, S.; Bhowmick, A. K., Synthesis,characterization and properties of montmorillonite clay-polyacrylate hybrid material and its effect on the properities of engage clay composite [J]. Rubber Chemistry and Technology. 2001, 74:835-845.
    [105]王一中;武保华;余鼎声,聚氧化乙烯/蒙脱土纳米嵌入化合物的制备与表征[J].高等学校化学学报. 1999, 20:1143-1147.
    [106]Dunky, M., Urea-formaldehyde (UF) adhesive resins for wood[J]. International Journal of Adhesion & Adhesives. 1998, 18:95-107.
    [107]李爱萍;阚成友;杜奕;刘德山,脲醛树脂合成反应过程的FTIR研究[J].物理化学学报. 2006, 22:873-877.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700