用户名: 密码: 验证码:
环境响应性聚合物超分子组装体的构筑和结构调控
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
通过非共价键相互作用而自发进行的小分子以及大分子的超分子自组装对材料科学、生命科学、信息科学以及纳米科学与技术等众多的科学领域的发展都产生了重大的影响,已经成为21世纪最重要的科学问题之一。本论文,主要集中在环境响应性超分子聚合物组装体的构筑和结构调控。在论文的前半部分,基于环境敏感水溶性高分子设计合成了一系列具有不同结构(AB,AB_4及A_4BA_4型杂臂星形聚合物,树枝形/线性嵌段共共聚聚合物,环形)的两亲和全亲水性嵌段聚合物。在水溶液中,研究了聚合物链构造以及不同的条件(温度、pH)对超分子组装体的影响,另外,对AB两嵌段在可控催化和可视化靶向治疗上的应用进行了初步的探索。论文的后半部分,主要基于冠醚和环糊精的主客体相互作用以及三联吡啶的金属配体络合作用构筑了不同结构的环境响应性高分子,并且在不同的条件下研究了它们的组装行为以及可逆超分子凝胶的形成。具体来说,本论文的工作包括以下几个方面:
     1.通过可逆加成-断裂链转移/黄酸盐交换的大分子设计(RAFT/MADIX)技术在可控条件下成功制备了全亲水性两嵌段聚合物聚(N-异丙基丙烯酰胺)-b-聚(N-乙烯基咪唑)(PNIPAM-b-PVim)。这也是首次得到基于PVim的嵌段聚合物。PVim是常用的酯水解反应的催化剂。含咪唑基团的嵌段聚合物,PNIPAM-b-PVim,在低温下可以分子溶解于水。但是在高于嵌段聚合物最低临界溶解温度(LCST)下或者适当的甲醇/水混合溶液中,PNIAPM嵌段变得不溶于水,嵌段聚合物形成以PNIPAM为核PVim为壳的胶束。在不同的温度以及不同比例甲醇/水的混合溶剂中,PNIPAM-b-PVim以及相应的PVim均聚物对乙酸对硝基苯酚酯(NPA)水解的催化活性进行了比较。在Arrhenius坐标中,对均聚物来说,log(V)~T~1(V为催化反应速率)呈直线关系;然而对含咪唑基团的嵌段聚合物来说,在温度高于PNIPAM嵌段的临界胶束化温度(CMT),嵌段聚合物发生胶束化,催化反应的log(V)~T~1曲线的曲率增加。在不同比例甲醇/水的混合溶剂中,PVim均聚物催化反应的速率保持恒定。然而对于嵌段聚合物PNIPAM-b-PVim,催化活性在甲醇体积分数为0.3-0.5的范围内,催化反应的速率有明显提高,表现出了最大值。我们第一次观察了全亲水性嵌段聚合物胶束作为自催化的纳米反应器,更重要的是,催化反应的活性可以通过外界温度和溶剂成分来调控。然后,结合原子转移自由基聚合物(ATRP)、开环聚合(ROP)、click反应成功地合成了生物相容的两亲性嵌段聚合物聚(ε-己内酯)-b-聚(寡聚环氧乙烷甲基丙烯酸酯-co-叠氮丙基甲基丙烯酸酯)(PCL-b-P(OEGMA-co-AzPMA))。通过点击化学反应,将含炔基的具有肿瘤靶向功能的叶酸以及含炔基的MRI增强对比剂(DOTA)Gd分别接到聚合物链上制备得到PCL-b-P(OEGMA-co-folate)以及PCL-b-P(OEGMA-co-(DOTA)Gd)。在水溶液中,通过自组装的方法制备了同时含有肿瘤靶向分子叶酸以及MRI增强对比试剂(DOTA)Gd的PCL-b-P(OEGMA-co-folate)和PCL-b-P(OEGMA-co-(DOTA)Gd)(1:1,w/w)混合胶束。在初步的大白兔的体内MRI增强对比实验中,以混合胶束作为增强对比剂,对肝脏显示了良好的对比增强效果;同时混合胶束对疏水性抗癌药物紫杉醇的负载能力和释放情况与具有类似组成的的聚合物PCL-b-POEGMA相似。这些都表明我们得到的多功能化生物相容的混合胶束在肿瘤靶向以及可视化治疗上有着很大潜在应用价值。
     2.基于第二代或者第三代Fr(?)chet型树枝形聚合物聚苄基醚[G-2]或[G-3],设计制备了RAFT试剂,以此进行NIPAM的RAFT聚合,分别制备了树枝形/线性两亲性两嵌段共聚物[G-2]-PNIPAM或者[G-3]-PNIPAM。在水溶液中,两亲性嵌段聚合物可以自组装形成含有疏水的致密聚苄基醚核和亲水的具有温度敏感性的PNIPAM壳的胶束。研究证明了胶束壳上的PNIPAM随着温度的升高呈二阶塌缩行为。第一个阶段的塌缩发生在20-29℃的温度范围内,第二个阶段的塌缩发生在29-31℃很窄的温度范围内。然后,基于[G-3]合成了结构新颖的两端分别含有[G-3]的三硫代碳酸酯,以此为RAFT试剂,RAFT聚得到了两端含有[G-3]的树枝形/线性/树枝形三嵌段聚合物[G-3]-PNIPAM-[G-3]。同样地,在水溶液中,该三嵌段聚合物也可以自组装形成以[G-3]为核,温敏的PNIPAM为壳的球形胶束。
     3.对于星形聚合物的合成,基于四官能团PNIPAM大分子ATRP引发剂引发聚合N,N-二乙基胺乙基甲基丙烯酸酯(DEA)得到了AB_4型杂臂星形聚合物,PNIPAM-b-(PDEA)_4。为了比较聚合物链结构对其胶束化行为的影响,与以上聚合物具有可比的链长度和组成的线性两嵌段聚合物,PNIPAM-b-PDEA通过RAFT聚合得到。在水溶液中,PNIPAM_(65)-b-(PDEA_(63))_4和PNIPAM_(65)-b-PDEA_(260)表现出了pH和温度响应多重胶束化行为。在酸性溶液中和较高的温度下,得到了以PNIPAM为核,PDEA为壳的胶束;在碱性以及室温下,可以得到以PDEA为核的胶束。其中,PNIPAM_(65)-b-(PDEA_(63))_4以PDEA为核的胶束远小于PNIPAM_(65)-b-PDEA_(260)。以上两个嵌段聚合物在pH值从4跃迁到10的过程中的胶束化动力学,它们的胶束化动力学曲线都可以通过二次拟合得到一个快的(τ_1)和一个慢的(τ_2)弛豫过程。对两个聚合物来说,得到的τ_1值都随着聚合物浓度的增加而增加。由PNIPAM_(65)-b-(PDEA_(63))_4得到的τ_2几乎没有浓度依赖性,表明慢过程主要通过单分子链的插入/解离机理完成的;由PNIPAM_(70)-b-PDEA_(260)得到的τ_2随聚合物浓度增加而降低,表明慢过程主要通过胶束融合/分裂机理完成的。基于相似的方法,我们合成了H-型A_2BA_2以及星形/线性/星形A_4BA_4杂臂星形聚合物,观察了它们在水溶液中的多重响应性自组装行为。然后,通过ATRP使用“in-out”方法合成了以聚(二乙烯基苯)微凝胶核为交联点,以聚甲基丙烯酸(PMAA)和聚环氧乙烷(PEO)的为臂的全亲水性杂臂星形聚合物(PEO)_n-PDVB-(PMAA)_n。所得全亲水性杂臂星形聚合物表现出了pH依赖的水溶性。在高pH值下,(PEO)_n-PDVB-(PMAA)_n在水中可溶;在低pH值下,由于PEO和PMAA的氢键络合作用,该星形聚合物不溶于水。然而,随着两嵌段聚合物PEO_(113)-b-PQDMA_(48)(PQDMA为碘甲烷季铵化的聚(N,N-二甲基胺乙基甲基丙烯酸酯)的加入,混合溶液在整个pH值范围内稳定存在。在高pH值下,PQDMA嵌段和离子化的PMAA形成不溶性的静电络合物,此时的胶体粒子是由(PEO)_n-PDVB-(PMAA)_n和PEO_(113)-b-PQDMA_(48)上的PEO链段稳定的。在低pH值下,质子化的PMAA和PEO之间形成氢键络合物,此时形成的稳定的胶体粒子含有疏水的PDVB核,内层PMAA/PEO氢键络合物以及起稳定作用的PQDMA外壳。
     4.以含有炔基的ATRP引发剂进行ATRP聚合以及亲核取代反应得到了α-炔,ω-叠氮且在水溶液中温度敏感的两嵌段聚合物linear-PMEO_2MA-b-POEGMA-N_3(MEO_2MA为甲基丙烯酸2-(2-甲基氧乙基)氧乙基酯)。首先,通过在相同的聚合条件下,以2-溴异丁酸苄酯为ATRP引发剂进行ATRP聚合以及与叠氮化钠亲核取代反应后与1-(2-炔丙基氧基)苯进行click反应,通过~1H NMR谱图,证明了linear-PMEO_2MA-b-POEGMA-N_3含有较高的端基叠氮官能化率(>90%)。在40℃水中时,linear-PMEO_2MA-b-POEGMA-N_3超分子自组装成胶束,炔基和叠氮会分别置于胶束的表面和内核,而同时体系中存在浓度极低的单链分子,通过click反应成功实现了在较高浓度下进行线型前体聚合物的分子内关环反应,同时抑制前体分子间的偶合反应,从而达到了在高浓度下制备环型嵌段聚合物的目的。另外,环形嵌段聚合物在水溶液中自组装所得的胶束与其对应的线性聚合物前体相比较有很大的不同,有着更高的临界胶束化浓度(CMC),较小的流体力学半径()以及较低的平均聚集数(N_(agg))。
     5.结合ROP和click反应,制备出结构明确的端基二苯并24-冠-8(DB24C8)官能化的四臂星形PCL(4-arm star PCL-DB24C8)以及两端二苄胺离子(DBAS)官能化的PCL(2-arm PCL-DBAS)。基于这些结构清晰的高分子前体并利用它们链端的冠醚基团和胺基之间的准轮烷连接作用,在非极性溶剂中较高的浓度下,环境响应性的超分子凝胶被成功构建。这些超分子凝胶表现出完全可逆的温度和pH响应的凝胶-溶液相变行为。然后,通过ATRP以及click化学反应制备了端基DB24C8功能化的聚苯乙烯(PS-DB24C8),结合以上的2-arm PCL-DBAS,通过DB24C8和DBAS之间的主客体相互作用在非极性溶剂中构筑了超分子ABA三嵌段聚合物。通过改变PCL链的长度可以得到具有不同络合常数的三嵌段聚合物,基本的规律是随着PCL链的不断增长,空间位阻增大导致超分子自组装得到三嵌段超分子聚合物的络合常数逐渐降低。另外,所得到的超分子ABA三嵌段在选择性溶剂(40℃,环己烷)中可以自组装得到以PCL为核,PS为壳的核壳结构超分子胶束。胶束的核和壳之间通过冠醚和铵离子的主客体相互作用连接。
     6.通过以含金刚烷基团(AD)的ATRP引发剂引发聚合NIPAM,再通过端基叠氮化以及与大大过量的含三炔基团的小分子点击化学反应后,得到端基双炔官能化的AD-PNIPAM-(Alkynyl)_2。再与单叠氮基团官能化的β-环糊精(β-CD)进行点击化学反应成功制备了一端含一个AD和另一端两β-CD的聚合物,AD-PNIPAM-(β-CD)_2。在水溶液中,相对较高的浓度下,该AB_2型聚合物可以形成高分子量的超分子高分子超支化聚合物在,这可以通过二维NOESY谱图和粘度测试得到证明。
     7.通过RAFT聚合以基于PMEO_2MA的大分子RAFT试剂,成功合成了其中一个嵌段含三联吡啶基团的全亲水性两嵌段聚合物PMEO_2MA-b-P(DEA-co-TpyMA)。在合适的条件(较高的反应聚合物浓度,较高的反应温度,通过N-乙基吗啉还原Ru~(3+))下,该嵌段聚合物可以通过自交联得到金属络合超分子核交联(CCL)胶束。该CCL胶束的内核在水溶液中表现出了pH值敏感性,外壳表现出了温度敏感性,并且随着与Ru~(2+)有着更高络合常数的配体羟乙基乙二胺三乙酸(HEEDTA)的加入,胶束可以成功解离得到单分子的嵌段聚合物。然后,基于两端三联吡啶功能化的PPO-PEO-PPO(tpy-PPO-PEO-PPO-tpy,PPO为聚环氧丙烷),分别在较高(1g/mL)和较低(0.46 mg/mL)的络合反应浓度下,通过三联吡啶和Ru~(2+)的金属配体络合作用构筑了金属超分子多嵌段聚合物以及环形聚合物。其中金属超分子多嵌段含有~6个重复单元。
The supramolecular self-assembly of small molecular and polymeric building blocks via noncovalent interactions have exhibited important roles in developing novel biomaterials,smart devices,information science,and nanotechnology,which renders this interdiscipilary research subject as one of the key scientific issues in the 21st century.This dissertation mainly focuses on the fabrication and structural tuning of stimuli-responsive supramolecular polymeric assemblies.A series of amphiphilic and double hydrophilic block copolymers with varying chain topologies including AB diblock,AB_4 and A_4BA_4-type miktoarm star copolymers,dendritic-linear and macrocyclic block copolymers were synthesized.In aqueous solution, chain architectural effects on thier self-assembling properties under varying solution conditions were investigated.Moreover,their relevant applications in the field of catalysis,drug delivery,and clinical diaglosis(MRI) have ben explored. Stimuli-responsive supramolecular polymers with varying chain architectures were constructed via crown ether and cyclodextrin-based molecular recognition or terpyridine-based metal-ligand complexation,and their self-assembling properties in dilute solution and reversible gel formation at high concentrations were investigated. This dissertation can be further categorized into seven main parts as described below:
     1.Double hydrophilic block copolymers,poly(N-isopropylacrylamide)-b-poly(N-vinylimidazole )(PNIPAM-b-PVim),were successfully prepared with good control via reversible addition-fragmentation chain transfer(RAFT) using PNIPAM-based macromolecular xanthate agents(i.e.,MADIX,macromolecular design via the interchange of xanthates).This represents the first preparation of well-defined block copolymers based on N-vinylimidazole,which has been well-known to be able to catalyze esterolysis reactions.The imidazole-containing diblock copolymers molecularly dissolve at low temperatures in water.Above the phase transition temperatures of PNIPAM or in a proper mixture of methanol/water(cononsolvency),the PNIPAM block becomes hydrophobic and stable micelles form with a dense core consisting of a hydrophobic PNIPAM block and a polar PVim shell.The catalytic activities of PNIPAM-b-PVim toward the hydrolysis of p-nitrophenyl acetate(NPA) at different temperatures or methanol/water compositions were then determined and compared to that of PVim homopolymer.The Arrhenius plot for the PVim-based diblock copolymers exhibited a pronounced upward curvature above the critical micellization temperature(CMT).Moreover,in the methanol/water mixture,the catalytic activities of PNIPAM-b-PVim diblock copolymers evolved discontinuously as a function of solvent composition and exhibited a maximum in the range of volume fraction of methanol,φ_(methanol),between 0.3 and 0.5,corresponding to the solvent composition range where cononsolvency-induced micellization took place.For the first time,double hydrophilic block copolymer micelles of PNIPAM-b-PVim can serve as self-catalyzing nanoreactors.Most importantly, the catalytic activities can be well-tuned with external temperature or solvent compositions.In terms of potential applications of polymeric assemblies in clinical diagnosis(magnetic resonance imaging,MRI),amphiphilic block copolymers,poly(ε-caprolactone)-b-poly(oligo(ethylene glycol) methacrylate -co-3-azidopropyl methacrylate),PCL-b-P(OEGMA-co-AzPMA),were synthesized via a combination of atom transfer radical polymerization(ATRP) and ring-open polymerization(ROP).The subsequent click conjugation of PCL-b-P(OEGMA-co-AzPMA) with alkynyl-containing targeting moieties, alkynyl-folate,and MRI contrast agent,alkynyl-(DOTA)Gd afforded amphiphilic block copolymers,PCL-b-P(OEGMA-co-DOTA)Gd and PCL-b-P(OEGMA-co-folate ).In aqueous solution,mixed micelles of PCL-b-P(OEGMA-co-DOTA)Gd and PCL-b-P(OEGMA-co-folate)(1:1 w/w) were obtained via self-assembly using ethanol as the cosolvent.In vivo MRI experiments in rabbits revealed mixed micelles can serve as excellent contrast agents to the liver organs. Moreover,the dug-loading capacity and controlled release profiles were also investigated.All the results augur well for potential applications of this novel type of biocompatible hybrid micelles beating targeting and MRI contrasting moieties for combined anti-cancer treatment and in-situ therapeutic monitoring.
     2.Amphiphilic dendritic-linear diblock copolymers,[G-2]-PNIPAM and [G-3]-PNIPAM,were prepared by reversible addition-fragmentation transfer (RAFT) polymerizations of N-isopropylacrylamide(NIPAM) by employing [G-2]- and[G-3]-based RAFT agents,respectively.Transmission electron microscopy results indicate the presence of spherical micelles in aqueous solutions.The thermo-responsive conformational changes of PNIPAM chains located at the micellar coronas have been thoroughly investigated with a combination of laser light scattering and excimer fluorescence of pyrene.The thermo-responsive collapse of the PNIPAM shell is a two-stage process;the first one occurs gradually in the temperature range of 20-29℃,which is much lower than the lower critical solution temperature(LCST) of linear PNIPAM homopolymer,followed by the second process,in which the main collapse of PNIPAM chains takes place in the narrow temperature range of 29-31℃.In terms of dumbbell-shaped dendritic-linear-dendritic triblock copolymers, [G-3]-PNIPAM-[G-3]was facilely synthesized via RAFT polymerization for the first time using novel[G-3]-based trithiocarbonate-containing RAFT agent, [G-3]-CH_2SCSSCH_2-[G-3],which was prepared from third-generation dendritic poly(benzyl ether) bromide,[G-3]-CH_2Br.The amphiphilic dumbbell-shaped triblock copolymer contains a thermo-responsive PNIPAM middle block.In aqueous solution,it self-assembles into spherical nanoparticles with the core consisting of hydrophobic[G-3]dendritic block and coronas of PNIPAM central blocks,which form loops surrounding the insoluble core.
     3.Well-defined double hydrophilic miktoarm AB_4 star copolymer, PNIPAM-b-(PDEA)_4,was synthesized by polymerizing 2-(diethylamino) ethyl methacrylate(DEA) via ATRP using PNIPAM-based tetrafunctional ATRP macroinitiator.For comparison,PNIPAM-b-PDEA linear diblock copolymer with comparable molecular weight and composition to that of PNIPAM-b-(PDEA)_4 was also prepared via RAFT polymerization.The chain architectural effects on pH- and thermo-responsive 'schizophrenic' micellization behavior of the obtained PNIPAM_(65)-b-(PDEA_(63))_4 and PNIPAM_(70)-b-PDEA_(260) were investigated.In acidic solution and elevated temperatures,PNIPAM-core micelles were formed;whereas at slightly alkaline conditions and room temperature,structurally inverted PDEA-core micelles were formed.The size of the PDEA-core micelles of PNIPAM_(65)-b-(PDEA_(63))_4 is much smaller than that of PNIPAM_(70)-b-PDEA_(260).Furthermore,the pH-induced micellization kinetics of the AB_4 miktoarm star and AB block copolymers were investigated upon a pH jump from 4 to 10.Typical kinetic traces for the micellization of both types of copolymers can be well fitted with double-exponential functions,yielding a fast (τ_1) and a slow(τ_2) relaxation processes.τ_1 for both copolymers decreased with increasing polymer concentration.τ_2 was independent of polymer concentration for PNIPAM_(65)-b-(PDEA_(63))_4,whereas it decreased with increasing polymer concentration for PNIPAM_(70)-b-PDEA_(260).Following similar protocols,H-shaped A_2BA_2-type and A_4BA_4-type star copolymers possessing pH-responsive and thermoresponsive arms,(PDEA)_2-PNIPAM-b-(PDEA)_2 and(PDEA)_4-PNIPAM -b-(PDEA)_4,were also synthesized and their multi-responsive supramolecular self-assembly in aqueous solution were investigated.In another example,double hydrophilic heteroarm star copolymers of poly(methacrylic acid) (PMAA) and poly(ethylene oxide)(PEO) possessing a cross-linked microgel core of poly(divinylbenzene)(PDVB) were synthesized via ATRP using the "in-out" method.This novel type of double hydrophilic heteroarm star copolymer can be considered as unimolecular micelles with hybrid coronas.The star copolymers exhibited pH-dependent solubility in water,being soluble at high pH and insoluble at low pH,due to the formation of hydrogen-bonded complexes between the PEO and PMAA arms.A mixed solution of the heteroarm star copolymer and a PEO-b-PQDMA diblock copolymer,where PQDMA is poly(2-(dimethylamino) ethyl methacrylate) fully quatemized with methyl iodide, remained stable in the whole pH range,and exhibited an intriguing pH-switchable complexation behavior accompanied with structural rearrangement.At high pH,the PQDMA block and ionized PMAA arms formed insoluble polyelectrolyte complexes,which were co-stabilized by PEO chains from both the PEO-b-PQDMA and the(PEO)_n-PDVB-(PMAA)_n.At low pH,the neutral PMAA arms and PEO formed hydrogen-bonded complexes,and the colloidal particles again possessed a hydrophobic PDVB core,an inner layer of PMAA/PEO hydrogen-bonded complexes,and a stabilizing PQDMA outer corona.
     4.α-Alkynyl-ω-azidoheterodifunctional linear-PMEO_2MA-b-POEGMA-N_3 was synthesized via the azidation of alkynyl-terminated PMEO_2MA-b-POEGMA-Br prepared via successive ATRP,where PMEO_2M was poly(2-(2-methoxy-ethoxy)-ethylmethacrylate ).High end group functionality of linear precursors is crucial to achieve successful cyclization reaction and confirming the strategy of high-efficiency cyclization under micellar conditions.Firstly,the evolution of chain-end functionality during the preparation of heterodifunctional linear diblock copolymer was determined by ATRP of MEO_2MA using benzyl 2-bromoisobutyrate(BBIB) as the initiator under the same conditions,after its transformation into benzyl-PMEO_2MA-N_3 and the subsequent click reaction with an excess of 1-(2-propynyloxy)benzene,the end group functionality of benzyl-PMEO_2MAA -N_3 was determined to be 96%.Following similar procedures,the end group functionality of benzyl-PMEO_2MA-b-POEGMA-N_3 was also determined to be very high(>90%).Thus,the end functionality of linear-PMEO_2MA-b-POEGMA-N_3 can be determined to be>90%.Then,the high-efficiency synthesis of water-soluble cyclic diblock copolymers, cyclic-PMEO_2MA-b-POEGMA,was achieved via "selective" click reaction in aqueous micellar solutions ofα,ω-heterodifunctional linear precursors at a relatively high concentration(10 g/L),which relies on controlling the spatial accessibility between terminal reactive groups within micellar entities and the "tadpole" conformation of unimers.Moreover,it was found that macrocyclic diblock copolymers,possess higher CMC values,smaller ,and lower average aggregation numbers(N_(agg)) in self-assembled micelles,as compared to their linear precursors
     5.DB24C8-terminated four-arm star PCL(4-arm star PCL-DB24C8) and DBAS-terminated two-arm PCL(2-arm PCL-DBAS) were synthesized by a combination of ROP and click reaction.Based on these well-defined precursors, stimuli-responsive supramolecular gels were constructed,taking advantage of the formation of pseudorotaxane linkages between terminal crown ether and ammonium moieties.The resultant supramolecular gels underwent thermo- and pH-induced reversible gel-sol transitions.Moreover,the obtained multiresponsive supramolecular networks contain cavities,the size of which are expected to be facilely adjusted by changes in the arm lengths of 4-arm star PCL-DB24C8 and 2-arm PCL-DBAS.This augurs well for their applications as smart nanocarriers for guest molecules and complicated molecular devices. Supramolecular ABA triblock copolymers based on crown ether-based molecular recognition were also fabricated.DB24C8-terminated polystyrene(PS-DB24C8) was synthesized via the ATRP of styrene and subsequent click reaction.The mixed solution of PS_(24)-DB24C8 and DBAS-PCL-DBAS form reversible supramolecular ABA triblock copolymers via peseudorotaxane formation.With the increase of molecular weights of DBAS-PCL-DBAS,the average association constants between PS_(24)-DB24C8 and DBAS-PCL-DBAS decreased rapidly due to the steric effect of the PCL coils with higher molecular weights.Supramolecular ABA triblock copolymer,PS_(24)-PCL_(36)-PS_(24),self-assembles into micelles in the selective solvent of PS outer blocks(cyclohexane,40℃).
     6.Supramolecular hybranched polymers were constructed via cyclodextrin (CD)-based molecular recognition.AB_2 type macromonomer containing one adamantyl(AD) and twoβ-CD moieties,AD-PNIPAM_(11)-(β-CD)_2,was synthesized via atom transfer radical polymerization(ATRP) and consecutive "click" reactions.General synthetic routes employed for the preparation of AD-PNIPAM_(11)-(β-CD)_2 are as follows.AD-PNIPAM_(11)-N_3 was prepared via ATRP using AD-Cl as the initiator and the subsequent nucleophilic substitution reaction with NaN_3.The 'click' reaction between AD-PNIPAM_(11)-N_3 and an excess of trialkynyl-containing small molecule afforded dialkynyl-terminated polymer,AD-PNIPAM_(11)-(Alkynyl)_2.The target product,AD-PNIPAM_(11)-(β-CD)_2, was prepared via click coupling reaction between AD-PNIPAM_(11)-(Alkynyl)_2 andβ-CD-N_3.In aqueous solution,AD-PNIPAM_(11)-(β-CD)_2 can self-organize into supramolecular hyperbranched polymer at relatively higher concentrations, which have been evidenced by 2D NOESY spectrum and viscosity measurements.
     7.Terpyridine-containing double hydrophilic diblock copolymer,PMEO_2MA-b-P (DEA-co-TpyMA),was successfully prepared with good control via RAFT polymerization by employing PMEO_2MA-based macromolecular RAFT agent. Structurally stable core cross-linked(CCL) nanoparticles were prepared in ethanol upon addition of ruthenium(Ⅲ) and N-ethylmorpholine via the formation of bis(2,2':6',2"-terpyridine) ruthenium(Ⅱ) complexes.In aqueous solution,the nanoparticles exhibit pH-responsive core swelling/collapse and thermoresponsive corona swelling/collapse.Interestingly,the obtained metallo-supramolecular CCL nanoparticles can be disintegrated into unimers upon addition of N-(2-hydroxyethyl)ethylenediaminetriacetic acid(HEEDTA). Furthermore,metallo-supramolecular multiblock and cyclic block copolymers were fabricated from terpyridine-terminated PPO-PEO-PPO(tpy-PPO-PEO-PPO -tpy) via the formation of bis(2,2':6',2"-terpyridine)-ruthenium(Ⅱ) complexes at relatively high concentration(1 g/mL) and low concentration(0.46 mg/mL),where PPO is polyprpylene oxide.The number of repeating sequences of metallo- supramolecular multiblock copolymer was estimated to be~6 from GPC results.
引文
(1) C.J.Pedersen.1967.Cyclic Polyethers and Their Complexes with Metal Salts[J].J.Am.Chem.Soc.,89:7017-7036.
    (2) E.P.Kyba;R.C.Helgeson;K.Madan,et al.1977.Host-guest complexation.1.Concept and illustration[J].J.Am.Chem.Soc.,99:2564-2571.
    (3) J.M.Timko;S.S.Moore;D.M.Walba,et al.1977.Host-guest complexation.2.Structural units that control association constants between polyethers and tert-butylammonium salts[J].J.Am.Chem.Soc.,99:4207-4219.
    (4) M.W.Hosseini;A.J.Blacker;J.M.Lehn.1988.Multiple Molecular Recognition and Catalysis-Nucleotide Binding and Atp Hydrolysis by a Receptor Molecule Beating an Anion Binding-Site,an Intercalator Group,and a Catalytic Site[J].J.Chem.Soc.-Chem.Commun.,596-598.
    (5) J.M.Lehn.1990.Perspectives in Supramolecular Chemistry-from Molecular Recognition Towards Molecular Information-Processing and Self-Organization[J].Angew.Chem.Int.Ed.Engl.,29:1304-1319.
    (6) J.M.Lehn.1993.Supramolecular Chemistry[J].Science,260:1762-1763.
    (7) J.M.Lehn.2001.超分子化学概念和展望[M].沈兴海等,译.第一版.北京:北京大学出版社.
    (8) F.W.Zeng;S.C.Zimmerman.1997.Dendrimers in supramolecular chemistry:From molecular recognition to self-assembly[J].Chem.Rev.,97:1681-1712.
    (9) J.M.Lehn.2002.Toward complex matter:Supramolecular chemistry and self-organization[J].Proc.Natl.Acad.Sci.U.S.A.,99:4763-4768.
    (10) J.M.Lehn.2002.Toward self-organization and complex matter[J].Science,295:2400-2403.
    (11) 沈家骢.2004.超分子层状结构(组装与功能)[M].第一版北京:科学出版社.
    (12) S.Forster;T.Plantenberg.2002.From self-organizing polymers to nanohybrid and biomaterials[J].Angew.Chem.,Int.Ed.,41:689-714.
    (13) J.M.Lehn.2005.Dynamers:dynamic molecular and supramolecular polymers[J].Prog.Polym.Sci.,30:814-831.
    (14) G.M.Whitesides;J.P.Mathias;C.T.Seto.1991.Molecular Self-Assembly and Nanochemistry-a Chemical Strategy for the Synthesis of Nanostructures[J].Science,254:1312-1319.
    (15) D.Philp;J.F.Stoddart.1996.Self-assembly in natural and unnatural systems[J].Angew.Chem.Int.Ed.Engl.,35:1155-1196.
    (16) D.B.Amabilino;J.F.Stoddart.1993.Self-Assembly and Macromolecular Design[J].Pure Appl.Chem.,65:2351-2359.
    (17) 江明;艾森伯格;刘国军,et al.2006.大分子自组装[M].第一版北京:科学出版社.
    (18) J.F.Lutz.2006.Solution self-assembly of tailor-made macromolecular building blocks prepared by controlled radical polymerization techniques[J].Polym.Int.,55:979-993.
    (19) K.V.Gothelf;R.S.Brown.2005.A modular approach to DNA-programmed self-assembly of macromolecular nanostructures[J].Chem.-Eur.J.,11:1062-1069.
    (20) D.Y.Chen;M.Jiang.2005.Strategies for constructing polymeric micelles and hollow spheres in solution via specific intermolecular interactions[J].Ace.Chem.Res.,38:494-502.
    (21) N.Hadjichristidis;M.Pitsikalis;S.Pispas,et al.2001.Polymers with complex architecture by living anionic polymerization[J].Chem.Rev.,101:3747-3792.
    (22) N.Hadjichristidis;H.Iatrou;M.Pitsikalis,et al.2006.Macromolecular architectures by living and controlled/living polymerizations[J].Prog.Polym.Sci.,31:1068-1132.
    (23) N.Hadjichristidis;H.Iatrou;M.Pitsikalis,et al.2005.Linear and non-linear triblock terpolymers.Synthesis,self-assembly in selective solvents and in bulk[J].Prog.Polym.Sci.,30:725-782.
    (24) C.J.Hawker;A.W.Bosman;E.Harth.2001.New polymer synthesis by nitroxide mediated living radical polymerizations[J].Chem.Rev.,101:3661-3688.
    (25) Z.B.Li;M.A.Hilimyer;T.P.Lodge.2006.Laterally nanostructured vesicles,polygonal bilayer sheets,and segmented wormlike micelles [J].Nano Lett.,6:1245-1249.
    (26)K.Matyjaszewski;J.H.Xia.2001.Atom transfer radical polymerization [J].Chem.Rev.,101:2921-2990.
    (27)N.V.Tsarevsky;K.Matyjaszewski.2007.“Green”atom transfer radical polymerization:From process design to preparation of well-defined environmentally friendly polymeric materials [J].Chem.Rev.,107:2270-2299.
    (28)S.Perrier;P.Takolpuckdee.2005.Macromolecular design via reversible addition-fragmentation chain transfer (RAFT)/Xanthates (MADIX)polymerization [J].J.Polym.Sci.,Part A:Polym.Chem.,43:5347-5393.
    (29)L.Barner;T.P.Davis;M.H.Stenzel,et al.2007.Complex macromolecular architectures by reversible addition fragmentation chain transfer chemistry:Theory and practice [J].Macromol.Rapid Commun.,28:539-559.
    (30)M.Kato;M.Kamigaito;M.Sawamoto,et al.1995.Polymerization of Methyl-Methacrylate with the Carbon-Tetrachloride Dichlorotris(Triphenylphosphine)Ruthenium(Ii)Methylaluminum Bis(2,6-Di-Tert-Butylphenoxide)Initiating System-Possibility of Living Radical Polymerization[J].Macromolecules,28:1721-1723.
    (31)J.S.Wang;K.Matyjaszewski.1995.Controlled Living Radical Polymerization-Halogen Atom-Transfer Radical Polymerization Promoted by a Cu(I)Cu(Ii)Redox Process [J].Macromolecules,28:7901-7910.
    (32)J.S.Wang;K.Matyjaszewski.1995.Controlled Living Radical Polymerization-Atom-Transfer Radical Polymerization in the Presence of Transition-Metal Complexes [J].J.Am.Chem.Soc.,117:5614-5615.
    (33)M.Teodorescu;K.Matyjaszewski.1999.Atom transfer radical polymerization of (meth)acrylamides [J].Macromolecules,32:4826-4831.
    (34)J.Rademacher;R.Baum;M.Pallack,et al.2000.Atom transfer radical polymerization of N,N-dimethylacrylamide [J].Macromolecules,33:284-288.
    (35)H.F.Gao;K.Matyjaszewski.2008.Synthesis of low-polydispersity miktoarm star copolymers via a simple“Arm-First”method:Macromonomers as arm precursors [J].Macromolecules,41:4250-4257.
    (36)S.Y.Liu;S.P.Armes.2003.Synthesis and aqueous solution behavior of a pH-responsive schizophrenic diblock copolymer [J].Langmuir,19:4432-4438.
    (37)X.Z.Jiang;S.Z.Luo;S.P.Armes,et al.2006.UV irradiation-induced shell cross-linked micelles with pH-responsive cores using ABC triblock copolymers [J].Macromolecules,39:5987-5994.
    (38)H.Liu;X.Z.Jiang;J.Fan,et al.2007.Aldehyde surface-functionalized shell cross-linked micelles with pH-tunable core swellability and their bioconjugation with lysozyme [J].Macromolecules,40:9074-9083.
    (39)J.Xu;Z.S.Ge;Z.Y.Zhu,et al.2006.Synthesis and micellization properties of double hydrophilic A(2)BA(2)and A(4)BA(4)non-linear block copolymers [J].Macromolecules,39:8178-8185.
    (40)K.Matyjaszewski;P.J.Miller;J.Pyun,et al.1999.Synthesis and characterization of star polymers with varying arm number,length,and composition from organic and hybrid inorganic/organic multifunctional initiators [J].Macromolecules,32:6526-6535.
    (41)H.F.Gao;K.Matyjaszewski.2006.Structural control in ATRP synthesis of star polymers using the arm-first method [J].Macromolecules,39:3154-3160.
    (42)H.F.Gao;N.V.Tsarevsky;K.Matyjaszewski.2005.Synthesis of degradable miktoarm star copolymers via atom transfer radical polymerization [J].Macromolecules,38:5995-6004.
    (43)H.F.Gao;K.Matyjaszewski.2007.Low-polydispersity star polymers with core functionality by cross-linking macromonomers using functional ATRP initiators [J].Macromolecules,40:399-401.
    (44)H.F.Gao;K.Matyjaszewski.2006.Synthesis of miktoarm star polymers via ATRP using the“in-out”method:Determination of initiation efficiency of star macroinitiators [J].Macromolecules,39:7216-7223.
    (45)H.Gao;K.Matyjaszewski.2007.Arm-first method as a simple and general method for synthesis of miktoarm star copolymers [J].J.Am.Chem.Soc,129:11828-11834.
    (46)J.Chiefari;Y.K.Chong;F.Ercole,et al.1998.Living free-radical polymerization by reversible addition-fragmentation chain transfer:The RAFT process [J].Macromolecules,31:5559-5562.
    (47)G.Moad;J.Chiefari;Y.K.Chong,et al.2000.Living free radical polymerization with reversible addition-fragmentation chain transfer (the life of RAFT)[J].Polym.Int.,49:993-1001.
    (48)Y.Mitsukami;M.S.Donovan;A.B.Lowe,et al.2001.Water-soluble polymers.81.Direct synthesis of hydrophilic styrenic-based homopolymers and block copolymers in aqueous solution via RAFT [J].Macromolecules,34:2248-2256.
    (49)C.W.Scales;A.J.Convertine;C.L.McCormick.2006.Fluorescent labeling of RAFT-generated poly(N-isopropylacrylamide)via a facile maleimide-thiol coupling reaction [J].Biomacromolecules,7:1389-1392.
    (50)A.J.Convertine;B.S.Lokitz;Y.Vasileva,et al.2006.Direct synthesis of thermally responsive DMA/NIPAM diblock and DMA/NIPAM/DMA triblock copolymers via aqueous, room temperature RAFT polymerization [J].Macromolecules,39:1724-1730.
    (51)Y.A.Vasilieva;C.W.Scales;D.B.Thomas,et al.2005.Controlled/living polymerization of methacrylamide in aqueous media via the RAFT process [J].J.Polym.Sci.,Part A:Polym.Chem.,43:3141-3152.
    (52)A.J.Convertine;B.S.Lokitz;A.B.Lowe,et al.2005.Aqueous RAFT polymerization of acrylamide and N,N-dimethylacrylamide at room temperature [J].Macromol.Rapid Commun.,26:791-795.
    (53)A.J.Convertine;N.Ayres;C.W.Scales,et al.2004.Facile,controlled,room-temperature RAFT polymerization of N-isopropylacrylamide [J].Biomacromolecules,5:1177-1180.
    (54)D.B.Thomas;B.S.Sumerlin;A.B.Lowe,et al.2003.Conditions for facile,controlled RAFT polymerization of acrylamide in water [J].Macromolecules,36:1436-1439.
    (55)M.S.Donovan;A.B.Lowe;B.S.Sumerlin,et al.2002.Water-soluble polymers part 85-Raft polymerization of N,N-dimethylacrylamide utilizing novel chain transfer agents tailored for high reinitiation efficiency and structural control [J].Macromolecules,35:4123-4132.
    (56)B.S.Sumerlin;M.S.Donovan;Y.Mitsukami,et al.2001.Water-soluble polymers.84.Controlled polymerization in aqueous media of anionic acrylamido monomers via RAFT [J].Macromolecules,34:6561-6564.
    (57)C.L.McCormick;B.S.Sumerlin;B.S.Lokitz,et al.2008.RAFT-synthesized diblock and triblock copolymers:thermally-induced supramolecular assembly in aqueous media [J].Soft Matter,4:1760-1773.
    (58)A.B.Lowe;C.L.McCormick.2007.Reversible addition-fragmentation chain transfer (RAFT)radical polymerization and the synthesis of water-soluble (co)polymers under homogeneous conditions in organic and aqueous media [J].Prog.Polym.Sci.,32:283-351.
    (59)Y.K.Chong;T.P.T.Le;G Moad,et al.1999.A more versatile route to block copolymers and other polymers of complex architecture by living radical polymerization:The RAFT process [J].Macromolecules,32:2071-2074.
    (60)A.B.Lowe;R.Wang;V.Tiriveedhi,et al.2007.RAFT synthesis and solution properties of pH-responsive styrenic-based AB diblock copolymers of 4-vinylbenzyltrimethylphosphonium chloride with N,N-dimethylbenzylvinylamine [J].Macromol.Chem.Phys.,208:2339-2347.
    (61)A.J.Convertine;C.L.McCormick.2005.Synthesis of temperature responsive block copolymers via aqueous room temperature RAFT polymerization [J].Abstracts of Papers of the American Chemical Society,230:U4124-U4125.
    (62)M.S.Donovan;B.S.Sumerlin;A.B.Lowe,et al.2002.Controlled/“living”polymerization of sulfobetaine monomers directly in aqueous media via RAFT [J].Macromolecules, 35:8663-8666.
    (63)Y.F.Zhang;S.Z.Luo;S.Y.Liu.2005.Fabrication of hybrid nanoparticles with thermoresponsive coronas via a self-assembling approach [J].Macromolecules,38:9813-9820.
    (64)S.Yusa;Y.Shimada;Y.Mitsukami,et al.2004.Heat-induced association and dissociation behavior of amphiphilic diblock copolymers synthesized via reversible addition-fragmentation chain transfer radical polymerization [J].Macromolecules,37:7507-7513.
    (65)C.M.Schilli;M.F.Zhang;E.Rizzardo,et al.2004.A new double-responsive block copolymer synthesized via RAFT polymerization:Poly(N-isopropylacrylamide)-block-poly(acrylic acid)[J].Macromolecules,37:7861-7866.
    (66)Y.Z.You;C.Y.Hong;W.P.Wang,et al.2004.Preparation and characterization of thermally responsive and biodegradable block copolymer comprised of PNIPAAM and PLA by combination of ROP and RAFT methods [J].Macromolecules,37:9761-9767.
    (67)T.M.Legge;A.T.Slark;S.Perrier.2007.Novel difunctional reversible addition fragmentation chain transfer (RAFT)agent for the synthesis of telechelic and ABA triblock methacrylate and acrylate copolymers [J].Macromolecules,40:2318-2326.
    (68)R.Bussels;C.Bergman-Gottgens;J.Meuldijk,et al.2005.Multiblock copolymers synthesized in aqueous dispersions using multifunctional RAFT agents [J].Polymer,46:8546-8554.
    (69)R.Bussels;C.Bergman-Gottgens;J.Meuldijk,et al.2004.Multiblock copolymers synthesized by miniemialsion polymerization using multifunctional RAFT agents [J].Macromolecules,37:9299-9301.
    (70)Q.Zhang;J.Ye;Y.Lu,et al.2008.Synthesis,folding,and association of long multiblock (PEO23-b-PNIPAM(124))(750)chains in aqueous solutions [J].Macromolecules,41:2228-2234.
    (71)Y.Z.You;Q.H.Zhou;D.S.Manickam,et al.2007.Dually responsive multiblock copolymers via reversible addition-fragmentation chain transfer polymerization:Synthesis of temperature-and redox-responsive copolymers of poly(N-isopropylacrylamide)and poly(2-(dimethylamino)ethyl methacrylate)[J].Macromolecules,40:8617-8624.
    (72)M.K.Mahanthappa;F.S.Bates;M.A.Hillmyer.2005.Synthesis of ABA triblock copolymers by a tandem ROMP-RAFT strategy [J].Macromolecules,38:7890-7894.
    (73)Y.M.Zhou;K.Q.Jiang;Q.L.Song,et al.2007.Thermo-induced formation of unimolecular and multimolecular micelles from novel double hydrophilic multiblock copolymers of N,N-dimethylacrylamide and N-isopropylacrylamide [J].Langmuir,23:13076-13084.
    (74)D.L.Patton;M.Mullings;T.Fulghum,et al.2005.A facile synthesis route to thiol-functionalized alpha,w-telechelic polymers via reversible addition fragmentation chain transfer polymerization [J].Macromolecules,38:8597-8602.
    (75)X.P.Qiu;F.M.Winnik.2006.Facile and efficient one-pot transformation of RAFT polymer end groups via a mild aminolysis/Michael addition sequence [J].Macromol.Rapid Commun.,27:1648-1653.
    (76)R.T.A.Mayadunne;E.Rizzardo;J.Chiefari,et al.2000.Living polymers by the use of trithiocarbonates as reversible addition-fragmentation chain transfer (RAFT)agents:ABA triblock copolymers by radical polymerization in two steps [J].Macromolecules,33:243-245.
    (77)M.G Finn;H.C.Kolb;V.V.Fokin,et al.2008.Click chemistry-Definition and aims [J].Prog.Chem.,20:1-4.
    (78)H.C.Kolb;M.G Finn;K.B.Sharpless.2001.Click chemistry:Diverse chemical function from a few good reactions [J].Angew.Chem.,Int.Ed.,40:2004-+.
    (79)D.A.Ossipov;J.Hilborn.2006.Poly(vinyl alcohol)-based hydrogels formed by “click chemistry” [J].Macromolecules,39:1709-1718.
    (80)J.Xu;S.Y.Liu.2009.Synthesis of Well-Defined 7-Arm and 21-Arm Poly (N-isopropylacrylamide)Star Polymers with beta-Cyclodextrin Cores via Click Chemistry and Their Thermal Phase Transition Behavior in Aqueous Solution [J].J.Polym.Sci.,Part A:Polym.Chem.,47:404-419.
    (81)H.F.Gao;K.Matyjaszewski.2006.Synthesis of star polymers by a combination of ATRP and the“click”coupling method [J].Macromolecules,39:4960-4965.
    (82)G Y.Shi;X.Z.Tang;C.Y.Pan.2008.Tadpole-shaped amphiphilic copolymers prepared via RAFT polymerization and click reaction [J].J.Polym.Sci.,Part A:Polym.Chem.,46:2390-2401.
    (83)B.A.Laurent;S.M.Grayson.2006.An efficient route to well-defined macrocyclic polymers via“Click”cyclization [J].J.Am.Chem.Soc,128:4238-4239.
    (84)J.Xu;J.Ye;S.Y.Liu.2007.Synthesis of well-defined cyclic poly(N-isopropylacrylamide)via click chemistry and its unique thermal phase transition behavior [J].Macromolecules,40:9103-9110.
    (85)S.R.Gondi;A.P.Vogt;B.S.Sumerlin.2007.Versatile pathway to functional telechelics via RAFT polymerization and click chemistry [J].Macromolecules,40:474-481.
    (86)D.Quemener;T.P.Davis;C.Barner-Kowollik,et al.2006.RAFT and click chemistry:A versatile approach to well-defined block copolymers [J].Chem.Commun.,5051-5053.
    (87)X.P.Qiu;F.Tanaka;F.M.Winnik.2007.Temperature-induced phase transition of well-defined cyclic poly(N-isopropylacrylamide)s in aqueous solution [J].Macromolecules,40:7069-7071.
    (88)W.H.Binder;R.Sachsenhofer.2008.‘Click’chemistry in polymer and material science:An update[J].Macromol.Rapid Commun.,29:952-981.
    (89) J.A.Johnson;M.G.Finn;J.T.Koberstein,et al.2008.Construction of linear polymers,dendrimers,networks,and other polymeric architectures by copper-catalyzed azide-alkyne cycloaddition "Click" chemistry[J].Macromol.Rapid Commun.,29:1052-1072.
    (90) I.Piirma.1992.polymeric Surfactants:Sufanctant Science 42[M].New York:Marcel Dekker.
    (91) P.Alexandridis;B.lindman.2000.Amphiphilic Block Copolymers:Self-assembly and Application[M].Amsterdam:Elsevier.
    (92) Z.H.Gan;T.F.Jim;M.Li,et al.1999.Enzymatic biodegradation of poly(ethylene oxide-b-epsilon-caprolactone) diblock copolymer and its potential biomedical applications[J].Macromolecules,32:590-594.
    (93) S.Y.Kim;Y.M.Lee.2001.Taxol-loaded block copolymer nanospheres composed of methoxy poly(ethylene glycol) and poly(epsilon-caprolactone) as novel anticancer drug carriers [J].Biomaterials,22:1697-1704.
    (94) K.Kataoka;A.Harada;Y.Nagasaki.2001.Block copolymer micelles for drug delivery:design,characterization and biological significance[J].Adv.Drug Delivery Rev.,47:113-131.
    (95) 何天白;胡汉杰.1997.海外高分子科学的新进展[M].北京:化学工业出版社.
    (96) M.Antonietti;S.Forster;J.Hartmann,et al.1996.Novel amphiphilic block copolymers by polymer reactions and their use for solubilization of metal salts and metal colloids[J].Macromolecules,29:3800-3806.
    (97) M.Moffitt;A.Eisenberg.1997.Scaling relations and size control of block ionomer microreactors containing different metal ions[J].Macromolecules,30:4363-4373.
    (98) A.Halperin;M.Tirrell;T.P.Lodge.1992.Tethered Chains in Polymer Microstructures[J].Adv.Polym.Sci.,100:31-71.
    (99) L.F.Zhang;K.Yu;A.Eisenberg.1996.Ion-induced morphological changes in "crew-cut"aggregates of amphiphilic block copolymers[J].Science,272:1777-1779.
    (100) L.F.Zhang;A.Eisenberg.1995.Multiple Morphologies of Crew-Cut Aggregates of Polystyrene-B-Poly(Acrylic Acid) Block-Copolymers[J].Science,268:1728-1731.
    (101) L.F.Zhang;A.Eisenberg.1999.Crew-cut aggregates from self-assembly of blends of polystyrene-b-poly(acrylic acid) block copolymers and homopolystyrene in solution[J].J.Polym.Sci.,Part B:Polym.Phys.,37:1469-1484.
    (102) L.F.Zhang;A.Eisenberg.1998.Formation of crew-cut aggregates of various morphologies from amphiphilic block copolymers in solution[J].Polym.Adv.Technol.,9:677-699.
    (103) L.F.Zhang;A.Eisenberg.1996.Morphogenic effect of added ions on crew-cut aggregates of polystyrene-b-poly(acrylic acid) block copolymers in solutions[J].Macromolecules,29:8805-8815.
    (104) K.B.Thurmond;T.Kowalewski;K.L.Wooley.1996.Water-soluble knedel-like structures:The preparation of shell-cross-linked small particles[J].J.Am.Chem.Soc.,118:7239-7240.
    (105) J.Z.Du;Y.M.Chen.2004.Organic-inorganic hybrid nanopartieles with a complex hollow structure[J].Angew.Chem.,Int.Ed.,43:5084-5087.
    (106) J.Z.Du;Y.M.Chen.2004.Preparation of organic/inorganic hybrid hollow particles based on gelation of polymer vesicles[J].Macromolecules,37:5710-5716.
    (107) J.Z.Du;Y.M.Chen;Y.H.Zhang,et al.2003.Organic/inorganic hybrid vesicles based on a reactive block eopolymer[J].J.Am.Chem.Soc.,125:14710-14711.
    (108) H.Colfen.2001.Double-hydrophilic block copolymers:Synthesis and application as novel surfactants and crystal growth modifiers[J].Macromol.Rapid Commun.,22:219-252.
    (109) E.S.Gil;S.A.Hudson.2004.Stimuli-reponsive polymers and their bioconjugates[J].Prog.Polym.Sci.,29:1173-1222.
    (110) D.Wang;T.Wu;X.J.Wan,et al.2007.Purely salt-responsive mieelle formation and inversion based on a novel schizophrenic sulfobetaine block eopolymer:Structure and kinetics of micellization[J].Langmuir,23:11866-11874.
    (111) V.Buttun;N.C.Billingham;S.P.Armes.1998.Unusual aggregation behavior of a novel tertiary amine methacrylate-based diblock copolymer:Formation of micelles and reverse micelles in aqueous solution[J].J.Am.Chem.Soc.,120:11818-11819.
    (112) Y.Zhao.2007.Rational design of light-controllable polymer micelles[J].Chem.Rec.,7:286-294.
    (113) H.I.Lee;W.Wu;J.K.Oh,et al.2007.Light-induced reversible formation of polymeric micelles[J].Angew.Chem.,Int.Ed.,46:2453-2457.
    (114) C.Wu;S.Q.Zhou.1995.Thermodynamically Stable Globule State of a Single Poly(N-Isopropylacrylamide) Chain in Water[J].Macromolecules,28:5388-5390.
    (115) G.H.Chen;A.S.Hoffman.1995.Graft-Copolymers That Exhibit Temperature-Induced Phase-Transitions over a Wide-Range of Ph[J].Nature,373:49-52.
    (116) 徐建.2008.基于聚(N-异丙基丙烯酰胺)的多种拓扑结构水溶性高分子制备及其溶液性质研究[D]:博士.合肥:中国科学技术大学.
    (117) H.G.Schild.1992.Poly(N-Isopropylacrylamide)-Experiment,Theory and Application[J].Prog.Polym.Sci.,17:163-249.
    (118) F.M.Winnik;M.F.Ottaviani;S.H.Bossmann,et al.1992.Consoivency of poly(N-isopropylacrylamide) in mixed water-methanol solutions:a look at spin-labeled polymers [J].Macromolecules,25:6007-6017.
    (119) F.M.Winnik;H.Ringsdorf;J.Venzmer.1990.Methanol-water as a co-nonsolvent system for poly(N-isopropylacrylamide)[J].Macromolecules,23:2415-2416.
    (120) J.F.Lutz.2008.Polymerization of oligo(ethylene glycol)(meth)acrylates:Toward new generations of smart biocompatible materials[J].J.Polym.Sci.,Part A:Polym.Chem.,46:3459-3470.
    (121) J.F.Lutz;K.Weichenhan;O.Akdemir,et al.2007.About the phase transitions in aqueous solutions of thermoresponsive copolymers and hydrogels based on 2-(2-methoxyethoxy)ethyl methacrylate and oligo(ethylene glycol) methacrylate[J].Macromolecules,40:2503-2508.
    (122) J.F.Lutz;O.Akdemir;A.Hoth.2006.Point by point comparison of two thermosensitive polymers exhibiting a similar LCST:Is the age of poly(NIPAM) over?[J].J.Am.Chem.Soc.,128:13046-13047.
    (123) J.F.Lutz;S.Stiller;A.Hoth,et al.2006.One-pot synthesis of PEGylated ultrasmall iron-oxide nanoparticles and their in vivo evaluation as magnetic resonance imaging contrast agents[J].Biomacromolecules,7:3132-3138.
    (124) G.Pasut;F.M.Veronese.2007.Polymer-drug conjugation,recent achievements and general strategies[J].Prog.Polym.Sci.,32:933-961.
    (125) M.Arotcarena;B.Heise;S.Ishaya,et al.2002.Switching the inside and the outside of aggregates of water-soluble block copolymers with double thermoresponsivity[J].J.Am.Chem.Soc.,124:3787-3793.
    (126) J.V.M.Weaver;S.P.Armes;V.Butun.2002.Synthesis and aqueous solution properties of a well-defined thermo-responsive schizophrenic dibloek copolymer[J].Chem.Commun.,2122-2123.
    (127) T.J.Martin;K.Prochazka;P.Munk,et al.1996.pH-dependent micellization of poly(2-vinylpyridine)-block-poly(ethylene oxide)[J].Macromoleeules,29:6071-6073.
    (128) V.Butun;C.E.Bennett;M.Vamvakaki,et al.1997.Selective betainisation of tertiary amine methacrylate block copolymers[J].J.Mater.Chem.,7:1693-1695.
    (129) S.Y.Liu;S.P.Armes.2002.Polymeric surfactants for the new millennium:A pH-responsive,zwitterionic,schizophrenic diblock copolymer[J].Angew.Chem.,Int.Ed.,41:1413-1416.
    (130) 刘育;尤长城;张衡益.2001.超分子化学-合成受体的分子识别与组装[M].第一版.天津:南开大学出版社.
    (131) C.J.Pedersen.1970.Crystalline Salt Complexes of Macrocyclic Polyethers[J].J.Am.Chem.Soc.,92:386-391.
    (132)C.J.Pedersen.1970.New Macrocyclic Polyethers [J].J.Am.Chem.Soc,92:391-34.
    (133)G W.Gokel;W.M.Leevy;M.E.Weber.2004.Crown ethers:Sensors for ions and molecular scaffolds for materials and biological models [J].Chem.Rev.,104:2723-2750.
    (134)L.Kovbasyuk;R.Kramer.2004.Allosteric supramolecular receptors and catalysts [J].Chem.Rev.,104:3161-3187.
    (135)H.Tsukube;S.Shinoda.2002.Lanthanide complexes in molecular recognition and chirality sensing of biological substrates [J].Chem.Rev.,102:2389-2403.
    (136)M.Takeuchi;M.Ikeda;A.Sugasaki,et al.2001.Molecular design of artificial molecular and ion recognition systems with allosteric guest responses [J].Acc.Chem.Res.,34:865-873.
    (137)T.Nakamura;T.Akutagawa;K.Honda,et al.1998.A molecular metal with ion-conducting channels [J].Nature,394:159-162.
    (138)S.Leininger;B.Olenyuk;P.J.Stang.2000.Self-assembly of discrete cyclic nanostructures mediated by transition metals [J].Chem.Rev.,100:853-907.
    (139)F.C.J.M.Vanveggel;W.Verboom;D.N.Reinhoudt.1994.Metallomacrocycles-Supramolecular Chemistry with Hard and Soft Metal-Cations in Action [J].Chem.Rev.,94:279-299.
    (140)P.R.Ashton;A.M.Z.Slawin;N.Spencer,et al.1987.Complex formation between bisparaphenylene-(3n+4)-crown-n ethers and the paraquat and diquat dications [J].J.Chem.Soc.,Chem.Commun.,1066-1069.
    (141)A.M.Z.Slawin;N.Spencer;J.F.Stoddart,et al.1987.The dependence of the solid state structures of bisparaphenylene-(3n+4)-crown-n ethers upon macrocyclic ring size.[J].J.Chem.Soc.,Chem.Commun.,1070-1072.
    (142)E.Alcalde;L.Perez-Garcia;S.Ramos,et al.2007.Nondegenerate pi-donor/pi-acceptor [2]catenanes containing proton-ionizable lH-l,2,4-triazole subunits:Synthesis and spontaneous resolution [J].Chem.-Eur.J.,13:3964-3979.
    (143)T.Ikeda;S.Saha;1.Aprahamian,et al.2007.Toward electrochemically controllable tristable three-station [2]catenanes [J].Chem.-Asi.J.,2:76-93.
    (144)T.Ikeda;I.Aprahamian;J.F.Stoddart.2007.Blue-colored donor-acceptor [2]rotaxane [J].Org.Lett.,9:1481-1484.
    (145)W.R.Dichtel;O.S.Miljanic;J.M.Spruell,et al.2006.Efficient templated synthesis of donor-Acceptor rotaxanes using click chemistry [J].J.Am.Chem.Soc,128:10388-10390.
    (146)A.G Kolchinski;D.H.Busch;N.W.Alcock.1995.Gaining Control over Molecular Threading-Benefits of 2nd Coordination Sites and Aqueous-Organic Interfaces in Rotaxane Synthesis [J].J.Chem.Soc.-Chem.Commun.,1289-1291.
    (147) P.R.Ashton;P.J.Campbell;E.J.T.Chrystal,et al.1995.Dialkylammonium Ion Crown-Ether Complexes-the Forerunners of a New Family of Interlocked Molecules[J].Angew.Chem.Int.Ed.Engl.,34:1865-1869.
    (148) N.Yamaguchi;H.W.Gibson.1999.Stabilities of cooperatively formed cyclic pseudorotaxane dimers[J].Chem.Commun.,789-790.
    (149) N.Yamaguchi;H.W.Gibson.1999.Formation of supramolecular polymers from homoditopic molecules containing secondary ammonium ions and crown ether moieties[J].Angew.Chem.,Int.Ed.,38:143-147.
    (150) F.H.Huang;H.W.Gibson.2005.Polypseudorotaxanes and polyrotaxanes[J].Prog.Polym.Sci.,30:982-1018.
    (151) H.W.Gibson;Z.X.Ge;F.H.Huang,et al.2005.Syntheses and model complexation studies of well-defined crown terminated polymers[J].Macromolecules,38:2626-2637.
    (152) H.W.Gibson;H.Marand.1993.Polyrotaxanes-Molecular Composites Derived by Physical Linkage of Cyclic and Linear Species[J].Adv.Mater.,5:11-21.
    (153) F.Huang;D.S.Nagvekar;C.Slebodnick,et al.2005.A supramolecular triarm star polymer from a homotritopic tris(crown ether) host and a complementary monotopic paraquat-terminated polystyrene guest by a supramolecular coupling method[J].J.Am.Chem.Sot.,127:484-485.
    (154) K.C.F.Leung;P.M.Mendes;S.N.Magonov,et al.2006.Supramolecular self-assembly of dendronized polymers:Reversible control of the polymer architectures through acid-base reactions [J].J.Am.Chem.Sot.,128:10707-10715.
    (155) K.Morino;M.Oobo;E.Yashima.2005.Helicity induction in a poly(phenylacetylene)bearing aza-18-crown-6 ether pendants with optically active bis(amino acid)s and its chiral stimuli-responsive gelation[J].Macromolecules,38:3461-3468.
    (156) J.Szejtli.1998.Introduction and general overview of eyclodextrin chemistry[J].Chem.Rev.,98:1743-1753.
    (157) M.Y.Guo;M.Jiang.2007.Macromolecular self-assembly based on inclusion complexation of cyclodextrins[J].Prog.Chem.,19:557-566.
    (158) A.Harada.2001.Cyclodextrin-based molecular machines[J].Ace.Chem.Res.,34:456-464.
    (159) 童林荟.2001.环糊精化学—基础与应用[M].北京:科学出版社.
    (160) A.Harada;M.Kamachi.1990.Complex-Formation between Poly(Ethylene Glycol) and Alpha-Cyclodextrin[J].Macromolecules,23:2821-2823.
    (161) A.Harada;J.Li;M.Kamachi.1994.Double-Stranded Inclusion Complexes of Cyclodextrin Threaded on Poly(Ethylene Glycol)[J].Nature,370:126-128.
    (162) A.Harada;J.Li;M.Kamachi.1993.Synthesis of a Tubular Polymer from Threaded Cyclodextrins [J].Nature,364:516-518.
    (163)A.Harada;J.Li;M.Kamachi.1992.The Molecular Necklace-a Rotaxane Containing Many Threaded Alpha-Cyclodextrins [J].Nature,356:325-327.
    (164)A.Harada;A.Hashidzume;Y.Takashima.2006.Cyclodextrin-based supramolecular polymers [J].Adv.Polym.Sci.,201:1-43.
    (165)A.Harada.1997.Design and construction of supramolecular architectures consisting of cyclodextrins and polymers [J].Adv.Polym.Sci.,133:141-191.
    (166)T.Ooya;N.Yui.1999.Synthesis of theophylline-polyrotaxane conjugates and their drug release via supramolecular dissociation [J].J.Controlled Release,58:251-269.
    (167)W.Kamimura;T.Ooya;N.Yui.1997.Interaction of supramolecular assembly with hairless rat stratum corneum [J].J.Controlled Release,44:295-299.
    (168)T.Ooya;H.S.Choi;A.Yamashita,et al.2006.Biocleavable polyrotaxane-Plasmid DNA polyplex for enhanced gene delivery [J].J.Am.Chem.Soc.,128:3852-3853.
    (169)H.S.Choi;K.M.Huh;T.Ooya,et al.2003.pH-and thermosensitive supramolecular assembling system:Rapidly responsive properties of beta-cyclodextrin-conjugated poly(epsilon-lysine)[J].J.Am.Chem.Soc,125:6350-6351.
    (170)A.Nelson;J.M.Belitsky;S.Vidal,et al.2004.A self-assembled multivalent pseudopolyrotaxane for binding galectin-1 [J].J.Am.Chem.Soc.,126:11914-11922.
    (171)J.Li;X.Li;Z.H.Zhou,et al.2001.Formation of supramolecular hydrogels induced by inclusion complexation between pluronics and alpha-cyclodextrin [J].Macromolecules,34:7236-7237.
    (172)X.P.Ni;A.Cheng;J.Li.2009.Supramolecular hydrogels based on self-assembly between PEO-PPO-PEO triblock copolymers and alpha-cyclodextrin [J].J.Biomed.Mater.Res.Part A,88A:1031-1036.
    (173)M.Y.Guo;M.Jiang;S.Pispas,et al.2008.Supramolecular Hydrogels Made of End-Functionalized Low-Molecular-Weight PEG and alpha-Cyclodextrin and Their Hybridization with SiO2 Nanoparticles through Host-Guest Interaction [J].Macromolecules,41:9744-9749.
    (174)Y.Okumura;K.Ito.2001.The polyrotaxane gel:A topological gel by figure-of-eight cross-links [J].Adv.Mater.,13:485-+.
    (175)Y.-L.Wu;J.Li.2009.Synthesis of Supramolecular Nanocapsules Based on Threading of Multiple Cyclodextrins over Polymers on Gold Nanoparticles [J].Angew.Chem.Int.Ed.,DOI:10.1002/anie.200805341.
    (176)A.Sandier;W.Brown;H.Mays,et al.2000.Interaction between an adamantane end-capped poly(ethylene oxide)and a beta-cyclodextrin polymer [J].Langmuir,16:1634-1642.
    (177)Y.Hasegawa;M.Miyauchi;Y.Takashima,et al.2005.Supramolecular polymers formed from beta-cyclodextrms dimer linked by poly(ethylene glycol)and guest dimers [J].Macromolecules,38:3724-3730.
    (178)J.Wang;M.Jiang.2006.Polymeric self-assembly into micelles and hollow spheres with multiscale cavities driven by inclusion complexation [J].J.Am.Chem.Soc,128:3703-3708.
    (179)I.Tomatsu;A.Hashidzume;A.Harada.2005.Photoresponsive hydrogel system using molecular recognition of alpha-cyclodextrin [J].Macromolecules,38:5223-5227.
    (180)I.Tomatsu;A.Hashidzume;A.Harada.2006.Redox-responsive hydrogel system using the molecular recognition of beta-cyclodextrin [J].Macromol.Rapid Commun.,27:238-241.
    (181)T.Ogoshi;Y.Takashima;H.Yamaguchi,et al.2007.Chemically-responsive sol-gel transition of supramolecular single-walled carbon nanotubes (SWNTs)hydrogel made by hybrids of SWNTs and cyclodextrins [J].J.Am.Chem.Soc,129:4878-+.
    (182)V.Wintgens;M.Charles;F.Allouache,et al.2005.Triggering the thermosensitive properties of hydrophobically modified poly(N-isopropylacrylamide)by complexation with cyclodextrin polymers [J].Macromol.Chem.Phys.,206:1853-1861.
    (183)H.Ritter;O.Sadowski;E.Tepper.2003.Influence of cyclodextrin molecules on the synthesis and the thermoresponsive solution behavior of N-isopropylacrylamide copolymers with adamantyl groups in the side-chains [J].Angew.Chem.,Int.Ed.,42:3171-3173.
    (184)O.Kretschmann;S.W.Choi;M.Miyauchi,et al.2006.Switchable hydrogels obtained by supramolecular cross-linking of adamantyl-containing LCST copolymers with cyclodextrin dimers [J].Angew.Chem.,Int.Ed.,45:4361-4365.
    (185)B.G.G.Lohmeijer;U.S.Schubert.2003.Playing LEGO with macromolecules:Design,synthesis,and self-organization with metal complexes [J].J.Polym.Sci.,Part A:Polym.Chem.,41:1413-1427.
    (186)B.G G Lohmeijer;U.S.Schubert.2002.Supramolecular engineering with macromolecules:An alternative concept for block copolymers [J].Angew.Chem.,Int.Ed.,41:3825-3829.
    (187)J.F.Gohy;B.G G Lohmeijer;S.K.Varshney,et al.2002.Stimuli-responsive aqueous micelles from an ABC metallo-supramolecular triblock copolymer [J].Macromolecules,35:9748-9755.
    (188)M.Chiper;M.A.R.Meier;D.Wouters,et al.2008.Supramolecular self-assembled Ni(Ⅱ),Fe(Ⅱ),and Co(Ⅱ)ABA triblock copolymers [J].Macromolecules,41:2771-2777.
    (189)U.S.Schubert;H.Hofmeier.2002.Metallo-supramolecular graft copolymers:A novel approach toward polymer-analogous reactions [J].Macromol.Rapid Commun.,23:561-566.
    (190)P.Guillet;C.A.Fustin;D.Wouters,et al.2009.Amphiphilic brushes from metallo-supramolecular block copolymers [J].Soft Matter,5:1460-1465.
    (191)H.Hofmeier;U.S.Schubert.2003.Supramolecular branching and crosslinking of terpyridine-modified copolymers:Complexation and decomplexation studies in diluted solution [J].Macromol.Chem.Phys.,204:1391-1397.
    (192)M.Chiper;M.A.R.Meier;J.M.Kranenburg,et al.2007.New insights into nickel(Ⅱ),iron(Ⅱ),and cobalt(Ⅱ)bis-complex-based metallo-supramolecular polymers [J].Macromol.Chem.Phys.,208:679-689.
    (193)M.A.R.Meier;U.S.Schubert.2003.Terpyridine-modified poly(vinyl chloride):Possibilities for supramolecular grafting and crosslinking [J].J.Polym.Sci.,Part A:Polym.Chem.,41:2964-2973.
    (194)J.F.Gohy;B.G G Lohmeijer;S.K.Varshney,et al.2002.Covalent vs metallo-supramolecular block copolymer micelles [J].Macromolecules,35:7427-7435.
    (195)J.F.Gohy;B.G G Lohmeijer;U.S.Schubert.2002.Reversible metallo-supramolecular block copolymer micelles containing a soft core [J].Macromol.Rapid Commun.,23:555-560.
    (196)P.Guillet;C.A.Fustin;C.Mugemana,et al.2008.Tuning block copolymer micelles by metal-ligand interactions [J].Soft Matter,4:2278-2282.
    (197)G N.Tew;K.A.Aamer;R.Shunmugam.2005.Incorporation of terpyridine into the side chain of copolymers to create multi-functional materials [J].Polymer,46:8440-8447.
    (198)K.A.Aamer;G N.Tew.2004.Synthesis of terpyridine-containing polymers with blocky architectures [J].Macromolecules,37:1990-1993.
    (199)R.Shunmugam;G N.Tew.2005.Unique emission from polymer based lanthanide alloys [J].J.Am.Chem.Soc,127:13567-13572.
    (200)K.A.Aamer;G N.Tew.2007.Supramolecular polymers containing terpyridine-metal complexes in the side chain [J].Macromolecules,40:2737-2744.
    (201)R.Shunmugam;G N.Tew.2005.Efficient route to well-characterized homo,block,and statistical polymers containing terpyridine in the side chain [J].J.Polym.Sci.,Part A:Polym.Chem.,43:5831-5843.
    (202)A.D.Levins;X.F.Wang;A.O.Moughton,et al.2008.Synthesis of core functionalized polymer micelles and shell cross-linked nanoparticles [J].Macromolecules,41:2998-3006.
    (203)A.D.levins;A.O.Moughton;R.K.O'Reilly.2008.Synthesis of hollow responsive functional nanocages using a metal-ligand complexation strategy [J].Macromolecules,41:3571-3578.
    (1) C.A.Fustin;V.Abetz;J.F.Gohy.2005.Triblock terpolymer micelles:A personal outlook[J].Eur.Phys.J.E,16:291-302.
    (2) J.F.Gohy.2005.Block copolymer micelles[J].Adv.Polym.Sci.,190:65-136.
    (3) J.Rodriguez-Hernandez;F.Checot;Y.Gnanou,et al.2005.Toward 'smart' nano-objects by self-assembly of block copolymers in solution[J].Prog.Polym.Sci.,30:691-724.
    (4) A.V.Kabanov;V.A.Kabanov.1998.Interpolyelectrolyte and block ionomer complexes for gene delivery:Physicochemical aspects[J].Adv.Drug Delivery Rev.,30:49-60.
    (5) H.Colfen;M.Antonietti.1998.Crystal design of calcium carbonate microparticles using double-hydrophilic block copolymers[J].Langmuir,14:582-589.
    (6) L.M.Bronstein;S.N.Sidorov;A.Y.Gourkova,et al.1998.Interaction of metal compounds with 'double-hydrophilic' block copolymers in aqueous medium and metal colloid formation[J].Inorg.Chim.Acta,280:348-354.
    (7) L.Y.Zhang;R.Guo;M.Yang,et al.2007.Thermo and pH dual-responsive nanoparticles for anti-cancer drug delivery[J].Adv.Mater.,19:2988-+.
    (8)M.L.T.Zweers;G.H.M.Engbers;D.W.Grijpma,et al.2006.Release of anti-restenosis drugs from poly(ethylene oxide)-poly (DL-lactic-co-glycolic acid)nanoparticles [J].J.Controlled Release,114:317-324.
    (9)P.Jie;S.S.Venkatraman;F.Min,et al.2005.Micelle-like nanoparticles of star-branched PEO-PLA copolymers as chemotherapeutic carrier [J].J.Controlled Release,110:20-33.
    (10)G.Kwon;M.Naito;M.Yokoyama,et al.1997.Block copolymer micelles for drug delivery:loading and release of doxorubicin [J].J.Controlled Release,48:195-201.
    (11)K.Kataoka;G.S.Kwon;M.Yokoyama,et al.1993.Block-Copolymer Micelles as Vehicles for Drug Delivery [J].J.Controlled Release,24:119-132.
    (12)D.Kim;E.S.Lee;K.Park,et al.2008.Doxorubicin Loaded pH-sensitive Micelle:Antitumoral Efficacy against Ovarian A2780/DOXR Tumor [J],Pharm.Res.,25:2074-2082.
    (13)E.S.Lee;K.Na;Y.H.Bae.2005.Doxorubicin loaded pH-sensitive polymeric micelles for reversal of resistant MCF-7 tumor [J].J.Controlled Release,103:405-418.
    (14)K.Kataoka;A.Harada;Y.Nagasaki.2001.Block copolymer micelles for drug delivery:design,characterization and biological significance [J].Adv.Drug Delivery Rev.,47:113-131.
    (15)M.R.Simmons;C.S.Patrickios.1999.Near-monodisperse,catalytically active,imidazole-containing homooligomers:Synthesis by group transfer polymerization and solution characterization [J].J.Polym.Sci.,Part A:Polym.Chem.,37:1501-1512.
    (16)I.M.Okhapkin;L.M.Bronstein;E.E.Makhaeva,et al.2004.Thermosensitive imidazole-containing polymers as catalysts in hydrolytic decomposition of p-nitrophenyl acetate [J].Macromolecules,37:7879-7383.
    (17)I.A.Okhapkin;E.E.Makhaeva;A.R.Khokhlov.2006.Water solutions of amphiphilic polymers:Nanostructure formation and possibilities for catalysis [J].Adv.Polym.Sci.,195:177-210.
    (18)G.Q.Wang;K.Kuroda;T.Enoki,et al.2000.Gel catalysts that switch on and off [J].Proc.Natl.Acad.Sci.U.S.A.,97:9861-9864.
    (19)C.S.Patrickios;M.R.Simmons.2000.Synthesis and aqueous solution characterization of catalytically active homopolymers,block copolymers and networks containing imidazole [J].Colloids and Surf.A:Physicochem.and Eng.Asp.,167:61-72.
    (20)C.G.T.Overberger;S.Pierre;N.Vorchheimer,et al.1963.The Esterolytic Catalysis of Poly-4(5)-vinylimidazole and Poly-5(6)-vinylbenzimidazole [J].J.Am.Ceram.Soc.,85:3513-3515.
    (21)H.G.Schild.1992.Poly (N-Isopropylacrylamide)-Experiment,Theory and Application [J].Prog.Polym.Sci.,17:163-249.
    (22)V.I.Lozinsky;I.A.Simenel;V.K.Kulakova,et al.2003.Synthesis and studies of N-vinylcaprolactam/N-vinylimidazole copolymers that exhibit the“proteinlike”behavior in aqueous media [J].Macromolecules,36:7308-7323.
    (23)T.Dwars;E.Paetzold;G.Oehme.2005.Reactions in micellar systems [J].Angew.Chem.,Int.Ed.,44:7174-7199.
    (24)M.R.Simmons;C.S.Patrickios.1998.Synthesis and aqueous solution characterization of catalytically active block copolymers containing imidazole [J],Macromolecules,31:9075-9077.
    (25)S.Perrier;P.Takolpuckdee.2005.Macromolecular design via reversible addition-fragmentation chain transfer (RAFT)/Xanthates (MADIX)polymerization [J].J.Polym.Sci.,Part A:Polym.Chem.,43:5347-5393.
    (26)D.C.Wan;K.Satoh;M.Kamigaito,et al.2005.Xanthate-mediated radical polymerization of N-vinylpyrrolidone in fluoroalcohols for simultaneous control of molecular weight and tacticity[J].Macromolecules,38:10397-10405.
    (27)L.J.Shi;T.M.Chapman;E.J.Beckman.2003.Poly(ethylene glycol)-block-poly(N-vinylformamide)copolymers synthesized by the RAFT methodology [J].Macromolecules,36:2563-2567.
    (28)D.Charmot;P.Corpart;H.Adam,et al.2000.Controlled radical polymerization in dispersed media [J].Macromol.Symp.,150:23-32.
    (29)D.Taton;A.Z.Wilczewska;M.Destarac.2001.Direct synthesis of double hydrophilic statistical di-and triblock copolymers comprised of acrylamide and acrylic acid units via the MADIX process [J].Macromol.Rapid Commun.,22:1497-1503.
    (30)Y.K.Chong;T.P.T.Le;G.Moad,et al.1999.A more versatile route to block copolymers and other polymers of complex architecture by living radical polymerization:The RAFT process [J].Macromolecules,32:2071-2074.
    (31)J.Chiefari;Y.K.Chong;F.Ercole,et al.1998.Living free-radical polymerization by reversible addition-fragmentation chain transfer:The RAFT process [J].Macromolecules,31:5559-5562.
    (32)F.M.Winnik;M.F.Ottaviani;S.H.Bossmann,et al.1992.Cononsolvency of Poly(N-Isopropylacrylamide)in Mixed Water-Methanol Solutions-a Look at Spin-Labeled Polymers [J].Macromolecules,25:6007-6017.
    (33)R.O.R.Costa;R.F.S.Freitas.2002.Phase behavior of poly(N-isopropylacrylamide)in binary aqueous solutions [J].Polymer,43:5879-5885.
    (34)G.Z.Zhang;C.Wu.2001.The water/methanol complexation induced reentrant coil-to-globule-to-coil transition of individual homopolymer chains in extremely dilute solution [J]. J.Am.Chem.Soc,123:1376-1380.
    (35)H.Kanazawa;K.Yamamoto;Y.Matsushima,et al.1996.Temperature-responsive chromatography using poly(N-isopropylacrylamide)-modified silica [J].Anal.Chem.,68:100-105.
    (36)C.Khemtong;C.W.Kessinger;J.Gao.2009.Polymeric nanomedicine for cancer MR imaging and drug delivery [J].Chem.Commun.,DOI:10.1039/b821865j.
    (37)N.Nasongkla;E.Bey;J.M.Ren,et al.2006.Multifunctional polymeric micelles as cancer-targeted,MRI-ultrasensitive drug delivery systems [J].Nano Lett.,6:2427-2430.
    (38)H.Ai;C.Flask;B.Weinberg,et al.2005.Magnetite-loaded polymeric micelles as ultrasensitive magnetic-resonance probes [J].Adv.Mater.,17:1949-+.
    (39)C.L.Lo;C.K.Huang;K.M.Lin,et al.2007.Mixed micelles formed from graft and diblock copolymers for application in intracellular drug delivery [J].Biomaterials,28:1225-1235.
    (40)C.L.Lo;K.M.Lin;C.K.Huang,et al.2006.Self-assembly of a micelle structure from graft and diblock copolymers:An example of overcoming the limitations of polyions in drug delivery [J].Adv.Funct.Mater.,16:2309-2316.
    (41)B.S.Sumerlin;N.V.Tsarevsky;G.Louche,et al.2005.Highly efficient“click” functionalization of poly(3-azidopropyl methacrylate)prepared by ATRP [J].Macromolecules,38:7540-7545.
    (42)P.De;S.R.Gondi;B.S.Sumerlin.2008.Folate-conjugated thermoresponsive block copolymers:Highly efficient conjugation and solution self-assembly [J].Biomacromolecules,9:1064-1070.
    (43)D.E.Prasuhn;R.M.Yeh;A.Obenaus,et al.2007.Viral MRI contrast agents:coordination of Gd by native virions and attachment of Gd complexes by azide-alkyne cycloaddition [J].Chem.Commun.,1269-1271.
    (44)Y.Song;E.K.Kohlmeir;T.J.Meade.2008.Synthesis of multimeric MR contrast agents for cellular imaging [J].J.Am.Chem.Soc,130:6662-+.
    (45)H.S.Yoo;T.G.Park.2004.Folate receptor targeted biodegradable polymeric doxorubicin micelles [J].J.Controlled Release,96:273-283.
    (46)X.H.Gao;Y.Y.Cui;R.M.Levenson,et al.2004.In vivo cancer targeting and imaging with semiconductor quantum dots [J].Nat.Biotechnol.,22:969-976.
    (47)F.Gu;L.Zhang;B.A.Teply,et al.2008.Precise engineering of targeted nanoparticles by using self-assembled biointegrated block copolymers [J].Proc.Natl.Acad.Sci.U.S.A.,105:2586-2591.
    (48)J.P.Lin;S.N.Zhang;T.Chen,et al.2007.Micelle formation and drug release behavior of polypeptide graft copolymer and its mixture with polypeptide block copolymer [J].Int.J.Pharm., 336:49-57.
    (49)Y.Z.Wang;L.Yu;L.M.Han,et al.2007.Difunctional Pluronic copolymer micelles for paclitaxel delivery:Synergistic effect of folate-mediated targeting and Pluronic-mediated overcoming multidrug resistance in tumor cell lines [J].Int.J.Pharm.,337:63-73.
    (50)G.Y.Li;L.Guo;S.M.Ma,et al.2009.Complex Micelles Formed from Two Diblock Copolymers for Applications in Controlled Drug Release [J].J.Polym.Sci.,Part A:Polym.Chem.,47:1804-1810.
    (51)L.Li;Y.B.Tan.2008.Preparation and properties of mixed micelles made of Pluronic polymer and PEG-PE [J].J.Colloid Interface Sci.,317:326-331.
    (52)E.S.Lee;K.Na;Y.H.Bae.2005.Super pH-sensitive multifunctional polymeric micelle [J].Nano Lett.,5:325-329.
    (53)J.P.Lin;J.Q.Zhu;T.Chen,et al.2009.Drug releasing behavior of hybrid micelles containing polypeptide triblock copolymer [J].Biomaterials,30:108-117.
    (54)P.Caravan;J.J.Ellison;T.J.McMurry,et al.1999.Gadolinium(Ⅲ)chelates as MRI contrast agents:Structure,dynamics,and applications [J].Chem.Rev.,99:2293-2352.
    (55)A.Accardo;D.Tesauro;P.Roscigno,et al.2004.Physicochemical properties of mixed micellar aggregates containing CCK peptides and Gd complexes designed as tumor specific contrast agents in MRI [J].J.Am.Chem.Soc,126:3097-3107.
    (56)D.K.Kim;M.Mikhaylova;F.H.Wang,et al.2003.Starch-coated superparamagnetic nanoparticles as MR contrast agents [J].Chem.Mater.,15:4343-4351.
    (57)E.Battistini;E.Gianolio;R.Gref,et al.2008.High-relaxivity magnetic resonance imaging (MRI)contrast agent based on supramolecular assembly between a gadolinium chelate,a modified dextran,and poly-beta-cyclodextrin [J].Chem.-Eur.J.,14:4551-4561.
    (1)D.A.Tomalia;H.D.Durst.1993.Genealogically Directed Synthesis-Starburst Cascade Dendrimers and Hyperbranched Structures [J].Top.Curr.Chem.,165:193-313.
    (2)J.M.J.Frechet;D.A.Tomalia.2001.Dendrimers and Other Dendritic Polymers [M].New York:Wiley.
    (3)C.J.Hawker.1999.Dendritic and hyperbranched macromolecules-Precisely controlled macromolecular architectures [J].Adv.Polym.Sci.,147:113-160.
    (4)C.J.Hawker;K.L.Wooley.2005.The convergence of synthetic organic and polymer chemistries [J].Science,309:1200-1205.
    (5)C.J.Hawker;K.L.Wooley;J.M.J.Frechet.1993.Unimolecular Micelles and Globular Amphiphiles-Dendritic Macromolecules as Novel Recyclable Solubilization Agents [J].J.Chem.Soc,Perkin Trans.1,1287-1297.
    (6)M.Niwa;T.Higashizaki;N.Higashi.2003.Aggregation properties of oligo(methacrylic acid)-shelled dendrimer and its microenvironment in aqueous solutions [J].Tetrahedron,59:4011-4015.
    (7)I.Gitsov;C.Lin.2005.Dendrimers-Nanoparticles with precisely engineered surfaces [J].Curr.Org.Chem.,9:1025-1051.
    (8)Y.Haba;A.Harada;T.Takagishi,et al.2004.Rendering poly(amidoamine)or poly(propylenimine)dendrimers temperature sensitive [J].J.Am.Chem.Soc,126:12760-12761.
    (9)M.Kimura;M.Kato;T.Muto,et al.2000.Temperature-sensitive dendritic hosts:Synthesis,characterization,and control of catalytic activity [J].Macromolecules,33:1117-1119.
    (10)Y.Z.You;C.Y.Hong;C.Y.Pan,et al.2004.Synthesis of a dendritic core-shell nanostructure with a temperature-sensitive shell [J].Adv.Mater.,16:1953-+.
    (11)I.Gitsov;C.Zhu.2002.Amphiphilic hydrogels constructed by poly(ethylene glycol)and shape-persistent dendritic fragments [J].Macromolecules,35:8418-8427.
    (12)K.R.Lambrych;I.Gitsov.2003.Linear-dendritic poly(ester)-block-poly(ether)-block-poly(ester)ABA copolymers constructed by a divergent growth method [J].Macromolecules,36:1068-1074.
    (13)C.M.B.Santini;M.A.Johnson;J.Q.Boedicker,et al.2004.Synthesis and bulk assembly behavior of linear-dendritic rod diblock copolymers [J].J.Polym.Sci.,Part A:Polym.Chem.,42:2784-2814.
    (14)E.R.Gillies;T.B.Jonsson;J.M.J.Frechet.2004.Stimuli-responsive supramolecular assemblies of linear-dendritic copolymers [J].J.Am.Chem.Soc,126:11936-11943.
    (15)I.Gitsov;J.M.J.Frechet.1996.Stimuli-responsive hybrid macromolecules:Novel amphiphilic star copolymers with dendritic groups at the periphery [J].J.Am.Chem.Soc,118:3785-3786.
    (16)M.R.Leduc;C.J.Hawker;J.Dao,et al.1996.Dendritic initiators for“living”radical polymerizations:A versatile approach to the synthesis of dendritic-linear block copolymers [J].J.Am.Chem.Soc.,118:11111-11118.
    (17)K.Sill;T.Emrick.2005.Bis-dendritic polyethylene prepared by ring-opening metathesis polymerization in the presence of bis-dendritic chain transfer agents [J].J.Polym.Sci.,Part A:Polym.Chem.,43:5429-5439.
    (18)M.R.Leduc;W.Hayes;J.M.J.Frechet.1998.Controlling surfaces and interfaces with functional polymers:Preparation and functionalization of dendritic-linear block copolymers via metal catalyzed“living”free radical polymerization [J].J.Polym.Sci.,Part A:Polym.Chem.,36:1-10.
    (19)I.Gitsov;K.L.Wooley;J.M.J.Frechet.1992.Novel Polyether Copolymers Consisting of Linear and Dendritic Blocks [J].Angew.Chem.Int.Ed.Engl.,31:1200-1202.
    (20)I.Gitsov;J.M.J.Frechet.1993.Solution and Solid-State Properties of Hybrid Linear-Dendritic Block-Copolymers [J].Macromolecules,26:6536-6546.
    (21)J.P.Kampf;C.W.Frank;E.E.Malmstrom,et al.1999.Stability and molecular conformation of poly(benzyl ether)monodendrons with oligo(ethylene glycol)tails at the air-water interface [J].Langmuir,15:227-233.
    (22)J.M.J.Frechet;I.Gitsov;T.Monteil,et al.1999.Modification of surfaces and interfaces by non-covalent assembly of hybrid linear-dendritic block copolymers:Poly(benzyl ether)dendrons as anchors for poly(ethylene glycol)chains on cellulose or polyester [J].Chem.Mater.,11:1267-1274.
    (23)I.Gitsov;K.R.Lambrych;V.A.Remnant,et al.2000.Micelles with highly branched nanoporous interior:Solution properties and binding capabilities of amphiphilic copolymers with linear dendritic architecture [J].J.Polym.Sci.,Part A:Polym.Chem.,38:2711-2727.
    (24)I.Gitsov;K.L.Wooley;C.J.Hawker,et al.1993.Synthesis and Properties of Novel Linear Dendritic Block-Copolymers-Reactivity of Dendritic Macromolecules toward Linear-Polymers [J].Macromolecules,26:5621-5627.
    (25)D.Yu;N.Vladimirov;J.M.J.Frechet.1999.MALDI-TOF in the characterizations of dendritic-linear block copolymers and stars [J].Macromolecules,32:5186-5192.
    (26)X.X.Duan;F.Yuan;X.J.Wen,et al.2004.Alternating crystalline-amorphous layers in hybrid block copolymers of linear poly(ethylene glycol)and dendritic poly(benzyl ether)[J].Macromol.Chem.Phys.,205:1410-1417.
    (27)C.X.Cheng;Y.Huang;R.P.Tang,et al.2005.Molecular architecture effect on self-assembled nanostructures of a linear-dendritic rod triblock copolymer in solution [J].Macromolecules,38:3044-3047.
    (28)C.Zhu;C.Hard;C.P.Lin,et al.2005.Novel materials for bioanalytical and biomedical applications:Environmental response and binding/release capabilities of amphiphilic hydrogels shape-persistent dendritic junctions [J].J.Polym.Sci.,Part A:Polym.Chem.,43:4017-4029.
    (29)A.Richez;J.Belleney;L.Bouteiller,et al.2006.Synthesis and MALDI-TOF analysis of dendritic-linear block copolymers of lactides:Influence of architecture on stereocomplexation [J],J.Polym.Sci.,Part A:Polym.Chem.,44:6782-6789.
    (30)T.Magbitang;V.Y.Lee;J.N.Cha,et al.2005.Oriented nanoporous lamellar organosilicates templated from topologically unsymmetrical dendritic-linear block copolymers [J].Angew.Chem.,Int.Ed.,44:7574-7580.
    (31)Q.B.Li;F.X.Li;L.Jia,et al.2006.New asymmetric AB(n)-shaped amphiphilic poly(ethylene glycol)-b-[poly(L-lactide)](n)(n=2,4,8)bridged with dendritic ester linkages:I.Syntheses and their characterization [J].Biomacromolecules,7:2377-2387.
    (32)R.Vestberg;C.Nilsson;C.Lopes,et al.2005.Thiophene-cored 2,2-bis(methylol)propionic acid dendrimers for optical-power-limiting applications [J].J.Polym.Sci.,Part A:Polym.Chem.,43:1177-1187.
    (33)E.S.Gil;S.A.Hudson.2004.Stimuli-reponsive polymers and their bioconjugates [J].Prog.Polym.Sci.,29:1173-1222.
    (34)T.M.Chapman;G.L.Hillyer;E.J.Mahan,et al.1994.Hydraamphiphiles-Novel Linear Dendritic Block-Copolymer Surfactants [J].J.Am.Chem.Soc.,116:11195-11196.
    (35)Y.Chang;Y.C.Kwon;S.C.Lee,et al.2000.Amphiphilic linear PEO-dendritic carbosilane block copolymers [J].Macromolecules,33:4496-4500.
    (36)Y.Y.Chang;C.Kim.2001.Synthesis and photophysical characterization of amphiphilic dendritic-linear-dendritic block copolymers [J].J.Polym.Sci.,Part A:Polym.Chem.,39:918-926.
    (37)H.Namazi;M.Adeli.2005.Solution proprieties of dendritic triazine/poly (ethylene glycol)/dendritic triazine block copolymers [J].J.Polym.Sci.,Part A:Polym.Chem.,43:28-41.
    (38)H.Namazi;M.Adeli.2005.Synthesis of barbell-like triblock copolymers,dendritic triazine-block-poly(ethylene glycol)-block-dendritic triazine and investigation of their solution behaviors [J].Polymer,46:10788-10799.
    (39)Y.S.Kim;E.S.Gil;T.L.Lowe.2006.Synthesis and characterization of thermoresponsive-co-biodegradable linear-dendritic copolymers [J].Macromolecules,39:7805-7811.
    (40)L.Y.Zhu;X.F.Tong;M.Z.Li,et al.2000.Synthesis and solution properties of anionic linear-dendritic block amphiphiles [J].J.Polym.Sci.,Part A:Polym.Chem.,38:4282-4288.
    (41)J.Iyer;P.T.Hammond.1999.Langmuir behavior and ultrathin films of new linear-dendritic diblock copolymers [J].Langmuir,15:1299-1306.
    (42)J.S.Choi;D.K.Joo;C.H.Kim,et al.2000.Synthesis of a barbell-like triblock copolymer,poly(L-lysine)dendrimer-block-poly(ethylene glycol)-block-poly(L-lysine)dendrimer,and its self-assembly with plasmid DNA [J].J.Am.Chem.Soc.,122:474-480.
    (43)M.A.Johnson;J.Iyer;P.T.Hammond.2004.Microphase segregation of PEO-PAMAM linear-dendritic diblock copolymers [J].Macromolecules,37:2490-2501.
    (44)P.M.Nguyen;P.T.Hammond.2006.Amphiphilic linear-dendritic triblock copolymers composed of poly(amidoamine)and poly(propylene oxide)and their micellar-phase and encapsulation properties [J].Langmuir,22:7825-7832.
    (45)J.C.M.Vanhest;M.W.P.L.Baars;C.Elissenroman,et al.1995.Acid-Functionalized Amphiphiles Derived from Polystyrene-Poly(Propylene Imine)Dendrimers,with a Ph-Dependent Aggregation [J].Macromolecules,28:6689-6691.
    (46)A.vanHest;T.Steckler.1996.Effects of procedural parameters on response accuracy:Lessons from delayed (non-)matching procedures in animals [J].Cognitive Brain Research,3:193-203.
    (47)I.Gitsov;P.T.Ivanova;J.M.J.Frechet.1994.Dendrimers as Macroinitiators for Anionic Ring-Opening Polymerization-Polymerization of Epsilon-Caprolactone [J].Macromol.Rapid Commun.,15:387-393.
    (48)C.J.Hawker;J.M.J.Frechet.1990.Preparation of Polymers with Controlled Molecular Architecture-a New Convergent Approach to Dendritic Macromolecules [J].J.Am.Chem.Soc.,112:7638-7647.
    (49)F.Ganachaud;M.J.Monteiro;R.G.Gilbert,et al.2000.Molecular weight characterization of poly(N-isopropylacrylamide)prepared by living free-radical polymerization [J].Macromolecules,33:6738-6745.
    (50)C.Schilli;M.G.Lanzendorfer;A.H.E.Muller.2002.Benzyl and cumyl dithiocarbamates as chain transfer agent in the RAFT polymerization of N-isopropylacrylamide.In situ FT-NIR and MALDI-TOF MS investigation [J].Macromolecules,35:6819-6827.
    (51)B.Zhao;W.J.Brittain.2000.Polymer brushes:surface-immobilized macromolecules [J].Prog.Polym.Sci.,25:677-710.
    (52)J.Shan;J.Chen;M.Nuopponen,et al.2004.Two phase transitions ofpoly(N-isopropylacrylamide)brushes bound to gold nanoparticles [J].Langmuir,20:4671-4676.
    (53)A.Halperin;M.Tirrell;T.P.Lodge.1992.Tethered Chains in Polymer Microstructures [J].Adv.Polym.Sci.,100:31-71.
    (54)P.W.Zhu;D.H.Napper.1994.Experimental-Observation of Coil-to-Globule Type Transitions at Interfaces [J].J.Colloid Interface Sci.,164:489-494.
    (55)W.Chen;C.J.Durning;N.J.Turro.1999.Photodegradation of pyrene-labeled polystyrene adsorbed on silica surface in chloroform [J].Macromolecules,32:4151-4153.
    (56)F.M.Winnik.1990.Fluorescence Studies of Aqueous-Solutions of Poly(N-Isopropylacrylamide)Below and above Their Lest [J].Macromolecules,23:233-242.
    (57)S.Picarra;J.Duhamel;A.Fedorov,et al.2004.Coil-globule transition of pyrene-labeled polystyrene in cyclohexane:Determination of polymer chain radii by fluorescence [J].J.Phys.Chem.B,108:12009-12015.
    (58)N.Hadjichristidis;M.Pitsikalis;S.Pispas,et al.2001.Polymers with complex architecture by living anionic polymerization [J].Chem.Rev.,101:3747-3792.
    (59)N.Hadjichristidis;S.Pispas.2006.Designed block copolymers for ordered polymeric nanostructures [J].Adv.Polym.Sci.,200:37-55.
    (60)N.Hadjichristidis;M.Pitsikalis;H.Iatrou.2005.Synthesis of block copolymers [J].Adv.Polym.Sci.,189:1-124.
    (61)T.Emrick;W.Hayes;J.M.J.Frechet.1999.A TEMPO-mediated “living”free-radical approach to ABA triblock dendritic linear hybrid copolymers [J].J.Polym.Sci.,Part A:Polym.Chem.,37:3748-3755.
    (62)S.Perrier;P.Takolpuckdee.2005.Macromolecular design via reversible addition-fragmentation chain transfer (RAFT)/Xanthates (MADIX)polymerization [J].J.Polym.Sci.,Part A:Polym.Chem.,43:5347-5393.
    (63)R.T.A.Mayadunne;E.Rizzardo;J.Chiefari,et al.2000.Living polymers by the use of trithiocarbonates as reversible addition-fragmentation chain transfer (RAFT)agents:ABA triblock copolymers by radical polymerization in two steps [J].Macromolecules,33:243-245.
    (64)B.Tamami;A.R.Kiasat.1998.Synthesis of symmetrical dialkyl trithiocarbonates using a polymer supported system [J].Journal of Chemical Research-S,454-455.
    (65)B.Tamami;A.R.Kiasat.1998.Synthesis of diacyl disulfides using a polymer supported reagent [J].Synth.Commun.,28:1275-1280.
    (66)Y.Z.You;C.Y.Hong;C.Y.Pan.2002.A new strategy for the synthesis of polytrithiocarbonates using a polymeric support system [J].Macromol.Rapid Commun.,23:776-780.
    (1) N.Hadjichristidis;M.Pitsikalis;H.Iatrou.2005.Synthesis of block copolymers[J].Adv.Polym.Sci.,189:1-124.
    (2) N.Hadjichristidis;M.Pitsikalis;S.Pispas,et al.2001.Polymers with complex architecture by living anionic polymerization[J].Chem.Rev.,101:3747-3792.
    (3) A.Suzuki;D.Nagai;B.Ochiai,et al.2004.Star-shaped polymer synthesis by anionic polymerization of propylene sulfide based on trifunctional initiator derived from trifunctional five-membered cyclic dithiocarbonate[J].Macromolecules,37:8823-8824.
    (4) C.Tsitsilianis;D.Papanagopoulos;P.Lutz.1995.Amphiphilic Heteroarm Star Copolymers of Polystyrene and Poly(Ethylene Oxide)[J].Polymer,36:3745-3752.
    (5) A.Mavroudis;A.Avgeropoulos;N.Hadjichristidis,et al.2006.Synthesis and morphological behavior of model 6-miktoarm star copolymers,PS(P2MP)(5),of styrene(S) and 2-methyl-1,3-pentadiene(P2MP)[J].Chem.Mater.,18:2164-2168.
    (6) G.Velis;N.Hadjichristidis.1999.Synthesis of model PS(PI)(5) and(PI)(5)PS(PI)(5)nonlinear block copolymers of styrene(S) and isoprene(I)[J].Macromolecules,32:534-536.
    (7) Y.Chen;Z.Shen;E.Barriau,et al.2006.Synthesis of multiarm star poly(glycerol)-block-poly(2-hydroxyethyl methacrylate)[J].Biomacromolecules,7:919-926.
    (8)S.J.Hou;E.L.Chaikof;D.Taton,et al.2003.Synthesis of water-soluble star-block and dendrimer-like copolymers based on poly(ethylene oxide)and poly(acrylic acid)[J].Macromolecules,36:3874-3881.
    (9)R.Matmour;B.Lepoittevin;T.J.Joncheray,et al.2005.Synthesis and investigation of surface properties of dendrimer-like copolymers based on polystyrene and poly(tert-butylacrylate)[J].Macromolecules,38:5459-5467.
    (10)Y.L.Cai;S.P.Armes.2005.Synthesis of well-defined Y-shaped zwitterionic block copolymers via atom-transfer radical polymerization [J].Macromolecules,38:271-279.
    (11)Y.L.Cai;Y.Q.Tang;S.P.Armes.2004.Direct synthesis and stimulus-responsive micellization of Y-shaped hydrophilic block copolymers [J].Macromolecules,37:9728-9737.
    (12)Y.Z.You;C.Y.Hong;C.Y.Pan,et al.2004.Synthesis of a dendritic core-shell nanostructure with a temperature-sensitive shell [J].Adv.Mater.,16:1953-1956.
    (13)J.Xu;S.Z.Luo;W.F.Shi,et al.2006.Two-stage collapse of unimolecular micelles with double thermoresponsive coronas [J].Langmuir,22:989-997.
    (14)S.Z.Luo;J.Xu;Z.Y.Zhu,et al.2006.Phase transition behavior of unimolecular micelles with thermoresponsive poly(N-isopropylacrylamide)coronas [J].J.Phys.Chem.B,110:9132-9139.
    (15)J.L.Wang;L.Wang;C.M.Dong.2005.Synthesis,crystallization,and morphology of star-shaped poly(epsilon-caprolactone)[J].J.Polym.Sci.,Part A:Polym.Chem.,43:5449-5457.
    (16)W.Z.Yuan;X.B.Huang;X.Z.Tang.2005.Synthesis of star-shaped PCL-b-PMMA/PSt from cyclotriphosphazene initiator by ring-opening polymerization and atom transfer radical polymerization [J].Polym.Bull.,55:225-233.
    (17)M.A.R.Meier;J.F.Gohy;C.A.Fustin,et al.2004.Combinatorial synthesis of star-shaped block copolymers:Host-guest chemistry of unimolecular reversed micelles [J].J.Am.Chem.Soc,126:11517-11521.
    (18)Q.B.Li;F.X.Li;L.Jia,et al.2006.New asymmetric AB(n)-shaped amphiphilic poly(ethylene glycol)-b-[poly(L-lactide)](n)(n=2,4,8)bridged with dendritic ester linkages:I.Syntheses and their characterization [J].Biomacromolecules,7:2377-2387.
    (19)Y.Miura;H.Dote.2005.Syntheses of 12-arm star polymers and star diblock copolymers by nitroxide-mediated radical polymerization using dendritic dodecafunctional macroinitiators [J].J.Polym.Sci.,Part A:Polym.Chem.,43:3689-3700.
    (20)Y.Miura;A.Narumi;S.Matsuya,et al.2005.Synthesis of well-defined AB(20)-type star polymers with cyclodextrin-core by combination of NMP and ATRP [J].J.Polym.Sci.,Part A: Polym.Chem.,43:4271-4279.
    (21)X.F.Yu;T.F.Shi;G.Zhang,et al.2006.Synthesis of asymmetric H-shaped block copolymer by the combination of atom transfer radical polymerization and living anionic polymerization [J].Polymer,47:1538-1546.
    (22)Y.Miura;Y.Sakai;K.Yamaoka.2005.Synthesis of AB(2)3-and AB(4)5-miktoarm star copolymers initiated from dendritic tri-and penta-functional initiators by combination of ring-opening polymerization of epsilon-caprolactone and nitroxide-mediated radical polymerization of styrene [J].Macromol.Chem.Phys.,206:504-512.
    (23)Y.Miura;K.Yamaoka;M.A.Mannan.2006.Syntheses of AB(2)3-and AB(4)5-miktoarm star copolymers by combination of the anionic ring-opening polymerization of hexamethylcyclotrisiloxane and nitroxide-mediated radical polymerization of styrene [J].Polymer,47:510-519.
    (24)Y.M.Guo;C.Y.Pan;J.Wang.2001.Block and star block copolymers by mechanism transformation.VI.Synthesis and characterization of A(4)B(4)miktoarm star copolymers consisting of polystyrene and polytetrahydrofuran prepared by cationic ring-opening polymerization and atom transfer radical polymerization [J].J.Polym.Sci.,Part A:Polym.Chem.,39:2134-2142.
    (25)Y.M.Guo;J.Xu;C.Y.Pan.2001.Block and star block copolymers by mechanism transformation.IV.Synthesis of S-(PSt)(2)(PDOP)(2)miktoarm star copolymers by combination of ATRP and CROP [J].J.Polym.Sci.,Part A:Polym.Chem.,39:437-445.
    (26)B.Luan;B.Q.Zhang;C.Y.Pan.2006.Synthesis and characterizations of well-defined branched polymers with AB(2)branches by combination of RAFT polymerization and ROP as well as ATRP [J].J.Polym.Sci.,Part A:Polym.Chem.,44:549-560.
    (27)J.Z.Du;Y.M.Chen.2004.Star polymer,PCL-PS heteroarm star polymer by ATRP,and core-carboxylated PS star polymer thereof [J].Macromolecules,37:3588-3594.
    (28)F.L.Beyer;S.P.Gido;Y.Poulos,et al.1997.Morphology of Vergina star 16-arm block copolymers and scaling behavior of interfacial area with graft point functionality [J].Macromolecules,30:2373-2376.
    (29)C.Tsitsilianis;D.Voulgaris.1997.Poly(2-vinylpyridine)-based star-shaped polymers.Synthesis of heteroarm star (A(n)B(n))and star-block (AB)(n)copolymers [J].Macromol.Chem.Phys.,198:997-1007.
    (30)D.Voulgaris;C.Tsitsilianis;F.J.Esselink,et al.1998.Polystyrene poIy(2-vinyl pyridine)heteroarm star copolymer micelles in toluene:morphology and thermodynamics [J].Polymer,39:6429-6439.
    (31)H.F.Gao;N.V.Tsarevsky;K.Matyjaszewski.2005.Synthesis of degradable miktoarm star copolymers via atom transfer radical polymerization [J].Macromolecules,38:5995-6004.
    (32)H.F.Gao;K.Matyjaszewski.2006.Synthesis of miktoarm star polymers via ATRP using the “in-out”method:Determination of initiation efficiency of star macroinitiators [J].Macromolecules,39:7216-7223.
    (33)A.Jabbarzadeh;J.D.Atkinson;R.I.Tanner.2003.Effect of molecular shape on rheological properties in molecular dynamics simulation of star,H,comb,and linear polymer melts [J].Macromolecules,36:5020-5031.
    (34)Y.Tezuka;H.Oike.2001.Topological polymer chemistry:Systematic classification of nonlinear polymer topologies [J].J.Am.Chem.Soc.,123:11570-11576.
    (35)Y.Tezuka;F.Ohashi.2005.Synthesis of polymeric topological isomers through double metathesis condensation with H-shaped telechelic precursors [J].Macromol.Rapid Commun.,26:608-612.
    (36)N.Hadjichristidis;H.latrou;M.Pitsikalis,et al.2005.Linear and non-linear triblock terpolymers.Synthesis,self-assembly in selective solvents and in bulk [J].Prog.Polym.Sci.,30:725-782.
    (37)S.Pispas;N.Hadjichristidis;I.Potemkin,et al.2000.Effect of architecture on the micellization properties of block copolymers:A(2)B miktoarm stars vs AB diblocks [J].Macromolecules,33:1741-1746.
    (38)E.E.Dormidontova.1999.Micellization kinetics in block copolymer solutions:Scaling model [J].Macromolecules,32:7630-7644.
    (39)T.Tanahashi;M.Kawaguchi;T.Honda,et al.1994.Adsorption of Poly(N-Isopropylacrylamide)on Silica Surfaces [J].Macromolecules,27:606-607.
    (40)C.Honda;Y.Abe;T.Nose.1996.Relaxation kinetics of micellization in micelle-forming block copolymer in selective solvent [J].Macromolecules,29:6778-6785.
    (41)G.Mountrichas;M.Mpiri;S.Pispas.2005.Micelles of star block (PSPIX8)and PSPI diblock copolymers (PS=polystyrene,PI=polyisoprene):Structure and kinetics of micellization [J].Macromolecules,38:940-947.
    (42)Z.Y.Zhu;S.P.Armes;S.Y.Liu.2005.pH-induced micellization kinetics of ABC triblock copolymers measured by stopped-flow light scattering [J].Macromolecules,38:9803-9812.
    (43)D.Wang;J.Yin;Z.Y.Zhu,et al.2006.Micelle formation and inversion kinetics of a schizophrenic diblock copolymer [J].Macromolecules,39:7378-7385.
    (44)M.Ciampolini;N.Nardi.1966.[J].Inorg.Chem.Commun.,5:41-43.
    (45)G.H.Chen;A.S.Hoffman.1995.Graft-Copolymers That Exhibit Temperature-Induced Phase-Transitions over a Wide-Range of Ph [J].Nature,373:49-52.
    (46)A.Durand;D.Hourdet.1999.Synthesis and thermoassociative properties in aqueous solution of graft copolymers containing poly(N-isopropylacrylamide)side chains [J].Polymer,40:4941-4951.
    (47)H.Mori;M.G.Lanzendorfer;A.H.E.Muller,et al.2004.Silsesquioxane-based nanoparticles formed via hydrolytic condensation of organotriethoxysilane containing hydroxy groups [J].Macromolecules,37:5228-5238.
    (48)H.Mori;M.G.Lanzendorfer;A.H.E.Muller,et al.2004.Organic-inorganic nanoassembly based on complexation of cationic silica nanoparticles and weak anionic polyelectrolytes in aqueous and alcohol media [J].Langmuir,20:1934-1944.
    (49)H.Mori;A.H.E.Muller;J.E.Klee.2003.Intelligent colloidal hybrids via reversible pH-induced complexation of polyelectrolyte and silica nanoparticles [J].J.Am.Chem.Soc,125:3712-3713.
    (50)Y.M.Wang;W.L.Mattice;D.H.Napper.1993.Simulation of the Formation of Micelles by Diblock Copolymers under Weak Segregation [J].Langmuir,9:66-70.
    (51)F.J.Esselink;E.E.Dormidontova;G.Hadziioannou.1998.Redistribution of block copolymer chains between mixed micelles in solution [J].Macromolecules,31:4873-4878.
    (52)F.J.Esselink;E.Dormidontova;G.Hadziioannou.1998.Evolution of block copolymer micellar size and structure evidenced with cryo electron microscopy [J].Macromolecules,31:2925-2932.
    (53)E.A.G.Aniansson;S.N.Wall;M.Almgren,et al.1976.Theory of the kinetics of micellar equilibria and quantitative interpretation of chemical relaxation studies of micellar solutions of ionic surfactants [J].J.Phys.Chem.,80:905-922.
    (54)I.Goldmints;J.F.Holzwarth;K.A.Smith,et al.1997.Micellar dynamics in aqueous solutions of PEO-PPO-PEO block copolymers [J].Langmuir,13:6130-6134.
    (55)B.Michels;G.Waton;R.Zana.1997.Dynamics of micelles of poly(ethylene oxide)poly(propylene oxide)poly(ethylene oxide)block copolymers in aqueous solutions [J].Langmuir,13:3111-3118.
    (56)I.Goldmints;F.K.vonGottberg;K.A.Smith,et al.1997.Small-angle neutron scattering study of PEO-PPO-PEO micelle structure in the unimer-to-micelle transition region [J].Langmuir,13:3659-3664.
    (57)M.J.Kositza;C.Bohne;P.Alexandridis,et al.1999.Dynamics of micro-and macrophase separation of amphiphilic block-copolymers in aqueous solution [J].Macromolecules,32:5539-5551.
    (58) G.Waton;B.Michels;R.Zana.2001.Dynamics of block copolymer micelles in aqueous solution[J].Macromolecules,34:907-910.
    (59) T.Z.Huang;D.M.Knauss.2004.(Star PS)-block-(linear PI)-block-(star PS) triblock copolymers-Thermoplastic elastomers with complex branched architectures[J].Macromol.Symp.,215:81-93.
    (60) D.M.Knauss;T.Z.Huang.2002.Star-block-linear-block-star triblock(pom-pom)polystyrene by convergent living anionic polymerization[J].Maeromolecules,35:2055-2062.
    (61) Y.G.Li;P.J.Shi;C.Y.Pan.2004.Synthesis,characterization,and thermal behavior of H-shaped eopolymers prepared by atom transfer radical polymerization[J].Maeromolecules,37:5190-5195.
    (62) D.H.Han;C.Y.Pan.2007.Preparation and characterization of heteroarm H-shaped terpolymers by combination of reversible addition-fragmentation transfer polymerization and ring-opening polymerization[J].J.Polym.Sci.,Part A:Polym.Chem.,45:789-799.
    (63) K.Xu;Y.Wang;Y.X.Wang,et al.2006.Synthesis and characterization of ABC ternary segregated H-shaped copolymers[J].Polymer,47:4480-4484.
    (64) J.Liu;C.Y.Pan.2005.Synthesis and characterization of H-shaped copolymers by combination of RAFT polymerization and CROP[J].Polymer,46:11133-11141.
    (65) J.Xu;Z.S.Ge;Z.Y.Zhu,et al.2006.Synthesis and micellization properties of double hydrophilic A(2)BA(2) and A(4)BA(4) non-linear block copolymers[J].Macromolecules,39:8178-8185.
    (66) M.R.Whittaker;C.N.Urbani;M.J.Monteiro.2006.Synthesis of 3-miktoarm stars and 1st generation mikto dendritic eopolymers by "living" radical polymerization and "click" chemistry [J].J.Am.Chem.Soc.,128:11360-11361.
    (67) L.Barner;T.P.Davis;M.H.Stenzel,et al.2007.Complex macromolecular architectures by reversible addition fragmentation chain transfer chemistry:Theory and practice[J].Macromol.Rapid Commun.,28:539-559.
    (68) W.H.Binder;R.Sachsenhofer.2008.'Click' chemistry in polymer and material science:An update[J].Macromol.Rapid Commun.,29:952-981.
    (69) H.Iatrou;L.Willner;N.Hadjichristidis,et al.1996.Aggregation phenomena of model PS/PI super-H-shaped block copolymers.Influence of the architecture[J].Macromolecules,29:581-591.
    (70) M.Liu;K.Kono;J.M.J.Frechet.2000.Water-soluble dendritic unimolecular micelles::Their potential as drug delivery agents[J].J.Controlled Release,65:121-131.
    (71) Y.L.Zhao;Y.M.Chen;C.F.Chen,et al.2005.Synthesis of well-defined star polymers and star block copolymers from dendrimer initiators by atom transfer radical polymerization[J]. Polymer,46:5808-5819.
    (72) R.Haag.2004.Supramolecular drug-delivery systems based on polymeric core-shell architectures[J].Angew.Chem.,Int.Ed.,43:278-282.
    (73) M.C.Jones;M.Ranger;J.C.Leroux.2003.pH-sensitive unimolecular polymeric micelles:Synthesis of a novel drug carrier[J].Bioconjugate Chem.,14:774-781.
    (74) A.Heise;J.L.Hedrick;C.W.Frank,et al.1999.Starlike block copolymers with amphiphilic arms as models for unimolecular micelles[J].J.Am.Chem.Soc.,121:8647-8648.
    (75) C.J.Hawker;K.L.Wooley;J.M.J.Frechet.1993.Unimolecular Micelles and Globular Amphiphiles-Dendritic Macromolecules as Novel Recyclable Solubilization Agents[J].J.Chem.Sot.,Perkin Trans.1,1287-1297.
    (76) K.E.Uhrich;S.M.Cannizzaro;R.S.Langer,et al.1999.Polymeric Systems for Controlled Durg Release[J].Chem.Rev.,99:3181-3198.
    (77) N.Fazeli;F.A.Taromi.2003.Using the new in-in method for the synthesis of polyisoprene/polystyrene heteroarm star polymers[J].J.Polym.Sci.,Part A:Polym.Chem.,41:135-142.
    (78) J.Z.Du;Y.M.Chen.2004.Preparation of poly(ethylene oxide) star polymers and poly(ethylene oxide)-polystyrene heteroarm star polymers by atom transfer radical polymerization [J].J.Polym.Sci.,Part A:Polym.Chem.,42:2263-2271.
    (79) D.F.Evans;H.Wennerstrom.1994.The Colloidal Domain:Where Physics,Chemistry,Biology,and Technology Meet[M].New York:VCH Publishers.
    (80) A.Harada;K.Kataoka.1995.Formation of Polyion Complex Micelles in an Aqueous Milieu from a Pair of Oppositely-Charged Block-Copolymers with Poly(Ethylene Glycol) Segments[J].Macromolecules,28:5294-5299.
    (81) A.Harada;K.Kataoka.1998.Novel polyion complex micelles entrapping enzyme molecules in the core:Preparation of narrowly-distributed micelles from lysozyme and poly(ethylene glycol)-poly(aspartic acid) block eopolymer in aqueous medium[J].Macromolecules,31:288-294.
    (82) X.F.Yuan;Y.Yamasaki;A.Harada,et al.2005.Characterization of stable lysozyme-entrapped polyion complex(PIC) micelles with crosslinked core by glutaraldehyde[J].Polymer,46:7749-7758.
    (83) A.V.Kabanov;S.V.Vinogradov;Y.G.Suzdaltseva,et al.1995.Water-Soluble Block Polycations as Carriers for Oligonucleotide Delivery[J].Bioconjugate Chem.,6:639-643.
    (84) A.V.Kabanov;T.K.Bronich;V.A.Kabanov,et al.1996.Soluble stoichiometric complexes from poly(N-ethyl-4-vinylpyridinium) cations and poly(ethylene oxide)-block-polymethacrylate anions[J].Macromolecules,29:6797-6802.
    (85)J.F.Gohy;S.K.Varshney;S.Antoun,et al.2000.Water-soluble complexes formed by sodium poly(4-styrenesulfonate)and a poly(2-vinylpyridinium)-block-poly(ethyleneoxide)copolymer [J].Macromolecules,33:9298-9305.
    (86)J.F.Gohy;S.K.Varshney;R.Jerome.2001.Water-soluble complexes formed by poly(2-vinylpyridinium)-block-poly(ethylene oxide)and poly(sodium methacrylate)-block-poly(ethylene oxide)copolymers [J].Macromolecules,34:3361-3366.
    (87)S.Y.Liu;H.Zhu;H.Y.Zhao,et al.2000.Interpolymer hydrogen-bonding complexation induced micellization from polystyrene-b-poly(methyl methacrylate)and PS(OH)in toluene [J].Langmuir,16:3712-3717.
    (88)D.Topouza;K.Orfanou;S.Pispas.2004.Thermosensitive noncovalently bonded block copolymerlike micelles from interpolymer complexes [J].J.Polym.Sci.,Part A:Polym.Chem.,42:6230-6237.
    (89)W.Q.Zhang;L.Q.Shi;Z.J.Miao,et al.2005.Core-shell-corona micellar complexes between poly(ethylene glycol)-block-poly(4-vinyl pyridine)and polystyrene-block-poly(acrylic acid)[J].Macromol.Chem.Phys.,206:2354-2361.
    (90)Y.Ding;M.Jiang;W.H.Jiang,et al.2005.Expression,purification,and characterization of recombinant human flotillin-1 in Escherichia coli [J].Protein Expression Purif.,42:137-145.
    (91)N.Kang;M.E.Perron;R.E.Prud'homme,et al.2005.Stereocomplex block copolymer micelles:Core-shell nanostructures with enhanced stability [J].Nano Lett.,5:315-319.
    (92)L.M.Bronstein;M.Vamvakaki;M.Kostylev,et al.2005.Transformations of poly(methoxy hexa(ethylene glycol)methacrylate)-b-(2-(diethylamino)ethyl methacrylate)block copolymer micelles upon metalation [J].Langmuir,21:9747-9755.
    (93)S.J.Hou;K.Y.K.Man;W.K.Chan.2003.Nanosized micelles formed by the self-assembly of amphiphilic block copolymers with luminescent rhenium complexes [J].Langmuir,19:2485-2490.
    (94)H.Y.Zhao;E.P.Douglas;B.S.Harrison,et al.2001.Preparation of CdS nanoparticles in salt-induced block copolymer micelles [J].Langmuir,17:8428-8433.
    (95)M.A.C.Stuart;N.A.M.Besseling;R.G.Fokkink.1998.Formation of micelles with complex coacervate cores [J].Langmuir,14:6846-6849.
    (96)S.van der Burgh;A.de Keizer;M.A.C.Stuart.2004.Complex coacervation core micelles.Colloidal stability and aggregation mechanism [J].Langmuir,20:1073-1084.
    (97)I.K.Voets;A.de Keizer;M.A.C.Stuart,et al.2006.Core and Corona Structure of Mixed Polymeric Micelles [J].Macromolecules,39:5952-5955.
    (98)I.K.Voets;A.de Keizer;P.de Waard,et al.2006.Double-faced micelles from water-soluble polymers [J].Angew.Chem.,Int.Ed.,45:6673-6676.
    (99)J.V.M.Weaver;S.P.Armes;S.Y.Liu.2003.A“Holy Trinity”of micellar aggregates in aqueous solution at ambient temperature:Unprecedented self-assembly behavior from a binary mixture of a neutral-cationic diblock copolymer and an anionic polyelectrolyte [J].Macromolecules,36:9994-9998.
    (100)D.Voulgaris;C.Tsitsilianis.2001.Aggregation behavior of polystyrene/poly(acrylic acid)heteroarm star copolymers in 1,4-dioxane and aqueous media [J].Macromol.Chem.Phys.,202:3284-3292.
    (101)D.Voulgaris;C.Tsitsilianis;V.Grayer,et al.1999.Amphiphile micelles formed by polystyrene/poly(2-vinyl pyridine)heteroarm star copolymers in toluene [J].Polymer,40:5879-5889.
    (102)S.B.Lee;A.J.Russell;K.Matyjaszewski.2003.[J].Macromolecules,4:1386.
    (103)C.Tsitsilianis;P.Chaumont;P.Rempp.1990.[J].Macromol.Chem.Phys.,191:2319-2328.
    (104)K.Matyjaszewski.2003.The synthesis of functional star copolymers as an illustration of the importance of controlling polymer structures in the design of new materials [J].Polym.Int.,52:1559-1565.
    (105)S.Holappa;T.Andersson;L.Kantonen,et al.2003.Soluble polyelectrolyte complexes composed of poly(ethylene oxide)-block-poly(sodium methacrylate)and poly(methacryloyloxyethyl trimethylammonium chloride)[J].Polymer,44:7907-7916.
    (106)S.Holappa;L.Kantonen;F.M.Winnik,et al.2004.Self-complexation of poly(ethylene oxide)-block-poly(methacrylic acid)studied by fluorescence spectroscopy [J].Macromolecules,37:7008-7018.
    (107)S.Holappa;M.Karesoja;J.Shan,et al.2002.Solution properties of linear and branched block copolymers consisting of acidic and PEO blocks [J].Macromolecules,35:4733-4738.
    (108)G.Gorodyska;A.Kiriy;S.Minko,et al.2003.Reconformation and metallization of unimolecular micelles in controlled environment [J].Nano Lett.,3:365-368.
    (109)M.Stepanek;K.Podhajecka;E.Tesarova,et al.2001.Hybrid polymeric micelles with hydrophobic cores and mixed polyelectrolyte/nonelectrolyte shells in aqueous media.1.Preparation and basic characterization [J].Langmuir,17:4240-4244.
    (110)K.Podhajecka;M.Stepanek;K.Prochazka,et al.2001.Hybrid polymeric micelles with hydrophobic cores and mixed polyelectrolyte/nonelectrolyte shells in aqueous media.2.Studies of the shell behavior [J].Langmuir,17:4245-4250.
    (111)L.K.Shatayeva;G.V.Samsonov;J.Vacik,et al.1979.Penneability of heterogeneous membranes based on methacrylic acid [J].J.Appl.Polym.Sci.,23:2245-2251.
    (1) J.A.Semlyen.2000.Cyclic Polymers[M].2nd ed.Boston:Kluwer Academic Publishers.
    (2) D.A.Culkin;W.H.Jeong;S.Csihony,et al.2007.Zwitterionic polymerization of lactide to cyclic poly(lactide) by using N-heterocyclic carbene organocatalysts[J].Angew.Chem.,Int.Ed.,46:2627-2630.
    (3) T.He;G.H.Zheng;C.Y.Pan.2003.Synthesis of cyclic polymers and block copolymers by monomer insertion into cyclic initiator by a radical mechanism[J].Macromolecules,36:5960-5966.
    (4) W.Jeong;J.L.Hedrick;R.M.Waymouth.2007.Organic spirocyclic initiators for the ring-expansion polymerization of beta-lactones[J].J.Am.Chem.Soc.,129:8414-+.
    (5) R.Riva;S.Schmeits;C.Jerome,et al.2007.Combination of ring-opening polymerization and "click chemistry":Toward functionalization and grafting of poly(epsilon-caprolactone)[J]. Macromolecules,40:796-803.
    (6)H.Y.Li;R.Riva;R.Jerome,et al.2007.Combination of ring-opening polymerization and “click” chemistry for the synthesis of an amphiphilic tadpole-shaped poly(epsilon-caprolactone)grafted by PEO [J].Macromolecules,40:824-831.
    (7)H.Y.Li;A.Debuigne;R.Jerome,et al.2006.Synthesis of macrocyclic poly(epsilon-caprolactone)by intramolecular cross-linking of unsaturated end groups of chains precyclic by the initiation [J].Angew.Chem.,Int.Ed.,45:2264-2267.
    (8)C.W.Bielawski;D.Benitez;R.H.Grubbs.2002.An“endless”route to cyclic polymers [J].Science,297:2041-2044.
    (9)H.R.Kricheldorf.2004.Biodegradable polymers with variable architectures via ring-expansion polymerization [J].J.Polym.Sci.,Part A:Polym.Chem.,42:4723-4742.
    (10)H.Oike;T.Mouri;Y.Tezuka.2001.A cyclic macromonomer designed for a novel polymer network architecture having both covalent and physical linkages [J].Macromolecules,34:6229-6234.
    (11)H.Oike;M.Hamada;S.Eguchi,et al.2001.Novel synthesis of single-and double-cyclic polystyrenes by electrostatic self-assembly and covalent fixation with telechelics having cyclic ammonium salt groups [J].Macromolecules,34:2776-2782.
    (12)D.Geiser;H.H6cker.1980.[J].Macromolecules,13:653-656.
    (13)L.Riquelurbet;M.Schappacher;A.Deffieux.1994.A New Strategy for the Synthesis of Cyclic Polystyrenes-Principle and Application [J].Macromolecules,27:6318-6324.
    (14)M.Schappacher;A.Deffieux.2001.alpha-acetal-omega-bis(hydroxymethyl)heterodifunctional polystyrene:Synthesis,characterization,and investigation of intramolecular end-to-end ring closure [J].Macromolecules,34:5827-5832.
    (15)M.Schappacher;A.Deffieux.2008.Synthesis of macrocyclic copolymer brushes and their self-assembly into supramolecular tubes [J].Science,319:1512-1515.
    (16)M.Kubo;H.Takeuchi;T.Ohara,et al.1999.Synthesis of a well-defined cyclic polystyrene via alpha-carboxyl,omega-amino heterodifunctional polystyrene [J].J.Polym.Sci.,Part A:Polym.Chem.,37:2027-2033.
    (17)M.Kubo;T.Hayashi;H.Kobayashi,et al.1997.Synthesis of alpha-carboxyl,omega-amino heterodifunctional polystyrene and its intramolecular cyclization [J].Macromolecules,30:2805-2807.
    (18)B.A.Laurent;S.M.Grayson.2006.An efficient route to well-defined macrocyclic polymers via“Click”cyclization [J].J.Am.Chem.Soc,128:4238-4239.
    (19)D.M.Eugene;S.M.Grayson.2008.Efficient preparation of cyclic poly(methyl acrylate)-block-poly(styrene)by combination of atom transfer radical polymerization and click cyclization [J].Macromolecules,41:5082-5084.
    (20)J.F.Lutz.2008.Polymerization of oligo(ethylene glycol)(meth)acrylates:Toward new generations of smart biocompatible materials [J].J.Polym.Sci.,Part A:Polym.Chem.,46:3459-3470.
    (21)V.Butun;S.P.Armes;N.C.Billingham.2001.Synthesis and aqueous solution properties of near-monodisperse tertiary amine methacrylate homopolymers and diblock copolymers [J].Polymer,42:5993-6008.
    (22)V.Butun;N.C.BiUingham;S.P.Armes.1997.Synthesis and aqueous solution properties of novel hydrophilic-hydrophilic block copolymers based on tertiary amine methacrylates [J].Chem.Commun.,671-672.
    (23)J.F.Gohy.2005.Block copolymer micelles [J],Block Copolymers Ii,190:65-136.
    (24)G.Riess.2003.Micellization of block copolymers [J].Prog.Polym.Sci.,28:1107-1170.
    (25)K.Prochazka;B.Bednar;E.Mukhtar,et al.1991.Nonradiative Energy-Transfer in Block Copolymer Micelles [J].J.Phys.Chem.,95:4563-4568.
    (26)C.K.Smith;G.J.Liu.1996.Determination of the rate constant for chain insertion into poly(methyl methacrylate)-block-poly(methacrylic acid)micelles by a fluorescence method [J].Macromolecules,29:2060-2067.
    (27)R.Lund;L.Willner;D.Richter,et al.2006.Equilibrium chain exchange kinetics of diblock copolymer micelles:Tuning and logarithmic relaxation [J].Macromolecules,39:4566-4575.
    (28)R.Lund;L.Willner;J.Stellbrink,et al.2006.Logarithmic chain-exchange kinetics of diblock copolymer micelles [J].Phys.Rev.Lett.,96:.
    (29)M.M.Tian;A.W.Qin;C.Ramireddy,et al.1993.Hybridization of Block-Copolymer Micelles [J].Langmuir,9:1741-1748.
    (30)J.Duhamel;A.Yekta;S.Ni,et al.1993.Characterization of the Core of Polystyrene Block Poly(Methyl Methacrylate)Polymer Micelles by Energy-Transfer [J].Macromolecules,26:6255-6260.
    (31)S.Creutz;J.vanStam;S.Antoun,et al.1997.Exchange of polymer molecules between block copolymer micelles studied by emission spectroscopy.A method for the quantification of unimer exchange rates [J].Macromolecules,30:4078-4083.
    (32)Z.Y.Zhu;S.P.Armes;S.Y.Liu.2005.pH-induced micellization kinetics of ABC triblock copolymers measured by stopped-flow light scattering [J].Macromolecules,38:9803-9812.
    (33)M.Pal;K.Parasuraman;K.R.Yeleswarapu.2003.Palladium-catalyzed cleavage of O/N-propargyl protecting groups in aqueous media under a copper-free condition [J].Org.Lett., 5:349-352.
    (34)J.F.Lutz;H.G.Borner;K.Weichenhan.2005.Combining atom transfer radical polymerization and click chemistry:A versatile method for the preparation of end-functional polymers [J].Macromol.Rapid Commun.,26:514-518.
    (35)M.Tanaka;A.Sudo;F.Sanda,et al.2002.Solution phase and solid supported syntheses of end-functionalized poly(MMA)by aldol-type reaction of samarium(Ⅲ)enolate at the chain end [J].Macromolecules,35:6845-6850.
    (36)F.Q.Zeng;Y.Q.Shen;S.P.Zhu,et al.2000.Rapid communication-Atom transfer radical polymerization of 2-(dimethylamino)ethyl methacrylate in aqueous media [J].J.Polym.Sci.,Part A:Polym.Chem.,38:3821-3827.
    (37)S.Y.Liu;J.V.M.Weaver;Y.Q.Tang,et al.2002.Synthesis of shell cross-linked micelles with pH-responsive cores using ABC triblock copolymers [J].Macromolecules,35:6121-6131.
    (38)N.V.Tsarevsky;B.S.Sumerlin;K.Matyjaszewski.2005.Step-growth“click”coupling of telechelic polymers prepared by atom transfer radical polymerization [J].Macromolecules,38:3558-3561.
    (39)J.F.Lutz;K.Matyjaszewski.2005.Nuclear magnetic resonance monitoring of chain-end functionality in the atom transfer radical polymerization of styrene [J].J.Polym.Sci.,Part A:Polym.Chem.,43:897-910.
    (40)S.I.Yamamoto;J.Pietrasik;K.Matyjaszewski.2008.The effect of structure on the thermoresponsive nature of well-defined poly(oligo(ethylene oxide)methacrylates)synthesized by ATRP [J].J.Polym.Sci.,Part A:Polym.Chem.,46:194-202.
    (41)M.Schappacher;A.Deffieux.1995.Controlled Synthesis of Bicyclic 8-Shaped Poly(Chloroethyl Vinyl Ether)S [J].Macromolecules,28:2629-2636.
    (42)T.E.Hogen-Esch.2006.Synthesis and characterization of macrocyclic vinyl aromatic polymers [J].J.Polym.Sci.,Part A:Polym.Chem.,44:2139-2155.
    (43)R.Chen;J.M.Johnson;S.E.Bradforth,et al.2003.Ultraviolet absorption and fluorescence emission spectroscopic studies of macrocyclic and linear poly(9,9-dimethyl-2-vinylfluorene).Evidence for ground-state chromophore interactions [J].Macromolecules,36:9966-9970.
    (44)K.A.Alberty;R.Chen;T.E.Hogen-Esch.2002.New bifunctional initiator for use in anionic polymerizations [J].J.Polym.Sci.,Part A:Polym.Chem.,40:2108-2115.
    (45)A.Halperin;E.B.Zhulina.1991.Stretching Polymer Brushes in Poor Solvents [J].Macromolecules,24:5393-5397.
    (46)C.Wu;A.Z.Niu;L.M.Leung,et al.1999.Preparation of narrowly distributed stable and soluble polyacetylene block copolymer nanoparticles [J].J.Am.Chem.Soc,121:1954-1955.
    (47)E.Minatti;P.Viville;R.Borsali,et al.2003.Micellar morphological changes promoted by cyclization of PS-b-PI copolymer:DLS and AFM experiments [J].Macromolecules,36:4125-4133.
    (48)H.Iatrou;N.Hadjichristidis;G.Meier,et al.2002.Synthesis and characterization of model cyclic block copolymers of styrene and butadiene.Comparison of the aggregation phenomena in selective solvents with linear diblock and triblock analogues [J].Macromolecules,35:5426-5437.
    (1) L.Brunsveld;B.J.B.Folmer;E.W.Meijer,et al.2001.Supramolecular polymers[J].Chem.Rev.,101:4071-4097.
    (2) A.Ciferri.2000.Supramolecular Polymers[M].New York:Marcel-Dekker:.
    (3) G.Fernandez;E.M.Perez;L.Sanchez,et al.2008.Self-organization of electroactive materials:A head-to-tail donor-acceptor supramolecular polymer[J].Angew.Chem.,Int.Ed.,47:1094-1097.
    (4) J.H.K.K.Hirschberg;L.Brunsveid;A.Ramzi,et al.2000.Helical self-assembled polymers from cooperative stacking of hydrogen-bonded pairs[J].Nature,407:167-170.
    (5) U.Michelsen;C.A.Hunter.2000.Self-assembled porphyrin polymers[J].Angew.Chem.,Int.Ed.,39:764-+.
    (6) J.S.Moore.1999.Suprarnolecular polymers[J].Curr.Opin.Colloid Interface Sci.,4:108-116.
    (7) R.P.Sijbesma;E.W.Meijer.1999.Self-assembly of well-defined structures by hydrogen bonding[J].Curr.Opin.Colloid Interface Sci.,4:24-32.
    (8) F.Wang;C.Y.Han;C.L.He,et al.2008.Self-sorting organization of two heteroditopic monomers to supramolecular alternating copolymers[J].J.Am.Chem.Soc.,130:11254-+.
    (9) A.Harada;Y.Takashima;H.Yamaguchi.2009.Cyclodextrin-based supramolecular polymers [J].Chem.Soc.Rev.,38:875-882.
    (10) T.F.A.Greef;E.W.Meijer.2008.Materials science-Supramolecular polymers[J].Nature,453:171-173.
    (11) N.M.Sangeetha.;U.Maitra.2005.Supramolecular gels:Functions and uses[J].Chem.Soc.Rev.,34:821-836.
    (12) L.A.Estroff;A.D.Hamilton.2004.Water gelation by small organic molecules[J].Chem.Rev.,104:1201-1217.
    (13) Y.Osada;J.P.Gong.1998.Soft and wet materials:Polymer gels[J].Adv.Mater.,10:827-837.
    (14) D.K.Smith.2006.Dendritic gels-Many arms make light work[J].Adv.Mater.,18:2773-2778.
    (15) M.Yang;Z.Zhang;F.Yuan,et al.2008.Self-assembled structures in organogels of Amphiphilic diblock codendrimers[J].Chem.-Eur.J.,14:3330-3337.
    (16) C.M.Li;N.J.Buurma;I.Haq,et al.2005.Synthesis and characterization of biocompatible,thermoresponsive ABC and ABA triblock copolymer gelators[J].Langmuir,21:11026-11033.
    (17)C.M.Li;J.Madsen;S.P.Armes,et al.2006.A new class of biochemically degradable,stimulus-responsive triblock copolymer gelators [J].Angew.Chem.,Int.Ed.,45:3510-3513.
    (18)Y.M.Zhou;K.Q.Jiang;Q.L.Song,et al.2007.Thermo-induced formation of unimolecular and multimolecular micelles from novel double hydrophilic multiblock copolymers of N,N-dimethylacrylamide and N-isopropylacrylamide [J].Langmuir,23:13076-13084.
    (19)A.Ajayaghosh;V.K.Praveen;S.Srinivasan,et al.2007.Quadrupolar pi-gels:Sol-gel tunable red-green-blue emission in donor-acceptor-type oligo(p-phenylenevinylene)s [J].Adv.Mater.,19:411-+.
    (20)X.Don;W.Pisula;J.Wu,et al.2008.Reinforced self-assembly of hexa-peri-hexabenzocoronenes by hydrogen bonds:From microscopic aggregates to macroscopic fluorescent organogels [J].Chem.-Eur.J.,14:240-249.
    (21)K.Balakrishnan;A.Datar;T.Naddo,et al.2006.Effect of side-chain substituents on self-assembly of perylene diimide molecules:Morphology control [J].J.Am.Chem.Soc,128:7390-7398.
    (22)W.H.Binder;L.Petraru;T.Roth,et al.2007.Magnetic and temperature-sensitive release gels from supramolecular polymers [J].Adv.Funct.Mater.,17:1317-1326.
    (23)S.Yagai;T.Nakajima;K.Kishikawa,et al.2005.Hierarchical organization of photoresponsive hydrogen-bonded rosettes [J].J.Am.Chem.Soc,127:11134-11139.
    (24)A.Noro;Y.Matsushita;T.P.Lodge.2008.Thermoreversible supramacromolecular ion gels via hydrogen bonding [J].Macromolecules,41:5839-5844.
    (25)K.P.Nair;V.Breedveld;M.Weck.2008.Complementary hydrogen-bonded thermoreversible polymer networks with tunable properties [J].Macromolecules,41:3429-3438.
    (26)T.Park;S.C.Zimmerman.2006.Formation of a miscible supramolecular polymer blend through self-assembly mediated by a quadruply hydrogen-bonded heterocomplex [J].J.Am.Chem.Soc,128:11582-11590.
    (27)R.P.Sijbesma;F.H.Beijer;L.Brunsveld,et al.1997.Reversible polymers formed from self-complementary monomers using quadruple hydrogen bonding [J].Science,278:1601-1604.
    (28)W.C.Yount;D.M.Loveless;S.L.Craig.2005.Small-molecule dynamics and mechanisms underlying the macroscopic mechanical properties of coordinatively cross-linked polymer networks [J].J.Am.Chem.Soc,127:14488-14496.
    (29)D.M.Loveless;S.L.Jeon;S.L.Craig.2007.Chemoresponsive viscosity switching of a metallo-supramolecular polymer network near the percolation threshold [J].J.Mater.Chem.,17:56-61.
    (30)W.G.Weng;J.B.Beck;S.J.Rowan,et al.2006.Mechanism of gel formation of metallo-supramolecular polymers [J].Abstracts of Papers of the American Chemical Society,231:-.
    (31)W.L.Leong;S.K.Batabyal;S.Kasapis,et al.2008.Fluorescent Magnesium(Ⅱ)Coordination Polymeric Hydrogel [J].Chem.-Eur.J.,14:8822-8829.
    (32)R.M.Meudtner;S.Hecht.2008.Responsive backbones based on alternating triazole-pyridine/benzene copolymers:From helically folding polymers to metallosupramolecularly crosslinked gels [J].Macromol.Rapid Commun.,29:347-351.
    (33)J.M.J.Paulusse;D.J.M.van Beek;R.P.Sijbesma.2007.Reversible switching of the sol-gel transition with ultrasound in rhodium(Ⅰ)and iridium(Ⅰ)coordination networks [J].J.Am.Chem.Soc.,129:2392-2397.
    (34)I.Tomatsu;A.Hashidzume;A.Harada.2006.Redox-responsive hydrogel system using the molecular recognition of beta-cyclodextrin [J].Macromol.Rapid Commun.,27:238-241.
    (35)O.Kretschmann;S.W.Choi;M.Miyauchi,et al.2006.Switchable hydrogels obtained by supramolecular cross-linking of adamantyl-containing LCST copolymers with cyclodextrin dimers [J].Angew.Chem.,Int.Ed.,45:4361-4365.
    (36)W.Deng;H.Yamaguchi;Y.Takashima,et al.2007.A chemical-responsive supramolecular hydrogel from modified cycloclextrins [J].Angew.Chem.,Int.Ed.,46:5144-5147.
    (37)T.Ogoshi;Y.Takashima;H.Yamaguchi,et al.2007.Chemically-responsive sol-gel transition of supramolecular single-walled carbon nanotubes (SWNTs)hydrogel made by hybrids of SWNTs and cyclodextrins [J].J.Am.Chem.Soc.,129:4878-+.
    (38)I.Hwang;W.S.Jeon;H.J.Kim,et al.2007.Cucurbit[7]uril:A simple macrocyclic,pH-triggered hydrogelator exhibiting guest-induced stimuli-responsive behavior [J].Angew.Chem.,Int.Ed.,46:210-213.
    (39)J.Becerril;M.1.Burguete;B.Escuder,et al.2002.Minimalist peptidomimetic cyclophanes as strong organogelators [J].Chem.Commun.,738-739.
    (40)S.Chaterji;I.K.Kwon;K.Park.2007.Smart polymeric gels:Redefining the limits of biomedical devices [J].Prog.Polym.Sci.,32:1083-1122.
    (41)A.R.Hirst;B.Escuder;J.F.Miravet,et al.2008.High-Tech Applications of Self-Assembling Supramolecular Nanostructured Gel-Phase Materials:From Regenerative Medicine to Electronic Devices [J].Angew.Chem.,Int.Ed.,47:8002-8018.
    (42)S.Debnath;A.Shome;S.Dutta,et al.2008.Dipeptide-based low-molecular-weight efficient organogelators and their application in water purification [J].Chem.-Eur.J.,14:6870-6881.
    (43)A.Shome;S.Debnath;P.K.Das.2008.Head group modulated pH-responsive hydrogel of amino acid-based amphiphiles:Entrapment and release of cytochrome c and vitamin B-12 [J]. Langmuir,24:4280-4288.
    (44)C.J.Pedersen.1967.Cyclic Polyethers and Their Complexes with Metal Salts [J].J.Am.Chem.Soc,89:7017-7036.
    (45)S.I.Kawano;N.Fujita;S.Shinkai.2003.Novel host-guest organogels as stabilized by the formation of crown-ammonium pseudo-rotaxane complexes [J].Chem.Commun.,1352-1353.
    (46)J.H.Jung;H.Kobayashi;M.Masuda,et al.2001.Helical ribbon aggregate composed of a crown-appended cholesterol derivative which acts as an amphiphilic gelator of organic solvents and as a template for chiral silica transcription [J].J.Am.Chem.Soc,123:8785-8789.
    (47)T.Akutagawa;K.Kakiuchi;T.Hasegawa,et al.2005.Molecularly assembled nanostructures of a redox-active organogelator [J].Angew.Chem.,Int.Ed.,44:7283-7287.
    (48)K.Morino;M.Oobo;E.Yashima.2005.Helicity induction in a poly(phenylacetylene)bearing aza-18-crown-6 ether pendants with optically active bis(amino acid)s and its chiral stimuli-responsive gelation [J].Macromolecules,38:3461-3468.
    (49)S.J.Langford;M.J.Latter;V.L.Lau,et al.2006.Organogels derived from tetranitrated crown ethers [J].Org.Lett.,8:1371-1373.
    (50)F.Diederich;L.Echegoyen;M.Gomez-Lopez,et al.1999.The self-assembly of fullerene-containing [2]pseudorotaxanes:formation of a supramolecular C-60 dimer [J].Journal of the Chemical Society-Perkin Transactions 2,1577-1586.
    (51)P.R.Ashton;P.J.Campbell;E.J.T.Chrystal,et al.1995.Dialkylammonium Ion Crown-Ether Complexes-the Forerunners of a New Family of Interlocked Molecules [J].Angew.Chem.Int.Ed.Engl.,34:1865-1869.
    (52)J.Qian;F.P.Wu.2008.Vesicles Prepared from Supramolecular Block Copolymers [J].Macromolecules,41:8921-8926.
    (53)U.Rauwald;O.A.Scherman.2008.Supramolecular block copolymers with cucurbit[8]uril in water [J].Angew.Chem.,Int.Ed.,47:3950-3953.
    (54)L.Theogarajan;S.Desai;M.Baldo,et al.2008.Versatile synthesis of self-assembling ABA triblock copolymers with polymethyloxazoline A-blocks and a polysiloxane B-block decorated with supramolecular receptors [J].Polym.Int.,57:660-667.
    (55)C.A.Fustin;P.Guillet;U.S.Schubert,et al.2007.Metallo-supramolecular block copolymers [J].Adv.Mater.,19:1665-1673.
    (56)B.G.G.Lohmeijer;U.S.Schubert.2002.Supramolecular engineering with macromolecules:An alternative concept for block copolymers [J].Angew.Chem.,Int.Ed.,41:3825-3829.
    (57)A.V.Ambade;Si Kyung Yang;M.Week.2009.Supramolecular ABC Triblock Copolymers [J].Angew.Chem.Int.Ed.,48:2894-2898.
    (58)T.Park;S.C.Zimmerman.2006.A supramolecular multi-block copolymer with a high propensity for alternation [J],J.Am.Chem.Soc,128:13986-13987.
    (59)X.W.Yang;F.J.Hua;K.Yamato,et al.2004.Supramolecular AB diblock copolymers [J].Angew.Chem.,Int.Ed.,43:6471-6474.
    (60)W.H.Binder;M.J.Kunz;C.Kluger,et al.2004.Synthesis and analysis of telechelic polyisobutylenes for hydrogen-bonded supramolecular pseudo-block copolymers [J].Macromolecules,37:1749-1759.
    (61)H.W.Gibson;Z.X.Ge;F.H.Huang,et al.2005.Syntheses and model complexation studies of well-defined crown terminated polymers [J].Macromolecules,38:2626-2637.
    (62)F.Huang;D.S.Nagvekar;C.Slebodnick,et al.2005.A supramolecular triann star polymer from a homotritopic tris(crown ether)host and a complementary monotopic paraquat-terminated polystyrene guest by a supramolecular coupling method [J].J.Am.Chem.Soc,127:484-485.
    (63)Z.X.Zhang;X.Liu;F.J.Xu,et al.2008.Pseudo-block copolymer based on star-shaped poly(N-isopropylacrylamide)with a beta-cyclodextrin core and guest-bearing PEG:Controlling thermoresponsivity through supramolecular self-assembly [J].Macromolecules,41:5967-5970.
    (64)J.F.Lutz;K.Matyjaszewski.2005.Nuclear magnetic resonance monitoring of chain-end functionality in the atom transfer radical polymerization of styrene [J].J.Polym.Sci.,Part A:Polym.Chem.,43:897-910.
    (65)F.H.Huang;J.W.Jones;C.Slebodnick,et al.2003.Ion pairing in fast-exchange host-guest systems:Concentration dependence of apparent association constants for complexes of neutral hosts and divalent guest salts with monovalent counterfoils [J].J.Am.Chem.Soc,125:14458-14464.
    (66)F.H.Huang;F.R.Fronczek;H.W.Gibson.2003.A cryptand/bisparaquat [3]pseudorotaxane by cooperative complexation [J].J.Am.Chem.Soc,125:9272-9273.
    (67)H.W.Gibson;N.Yamaguchi;J.W.Jones.2003.Supramolecular pseudorotaxane polymers from complementary pairs of homoditopic molecules [J].J.Am.Chem.Soc,125:3522-3533.
    (68)H.W.Gibson;N.Yamaguchi;L.Hamilton,et al.2002.Cooperative self-assembly of dendrimers via pseudorotaxane formation from a homotritopic guest molecule and complementary monotopic host dendrons [J].J.Am.Chem.Soc,124:4653-4665.
    (69)W.Brown;P.Stepanek.1992.Dynamic Behavior in Concentrated Polystyrene Cyclohexane Solutions Close to the Theta-Point-Relaxation-Time Distributions as a Function of Concentration and Temperature [J].Macromolecules,25:4359-4363.
    (70)S.F.Ai;Y.Cui;Q.He,et al.2006.Nanorods assembly of polystyrene under theta condition [J].Colloids and Surfaces a-Physicochemical and Engineering Aspects,275:218-220.
    (1) A.Harada.1997.Design and construction of supramolecular architectures consisting of cyclodextrins and polymers[J].Adv.Polym.Sci.,133:141-191.
    (2) A.Harada.2001.Cyclodextrin-based molecular machines[J].Ace.Chem.Res.,34:456-464.
    (3) M.Miyauchi;A.Harada.2004.Construction of supramolecular polymers with alternating alpha-,beta-cyelodextrin units using conformational change induced by competitive guests[J].J.Am.Chem.Sot.,126:11418-11419.
    (4) M.Miyauchi;T.Hoshino;H.Yamaguchi,et al.2005.A[2]rotaxane capped by a cyclodextrin and a guest:Formation of supramolecular[2]rotaxane polymer[J].J.Am.Chem.Soc.,127:2034-2035.
    (5) M.Miyauchi;Y.Kawaguchi;A.Harada.2004.Formation of supramolecular polymers constructed by eyclodextrins with cinnamamide[J].J.Inclusion Phenom.Macrocyclic Chem.,50:57-62.
    (6) M.Miyauchi;Y.Takashima;H.Yamaguchi,et al.2005.Chiral supramolecular polymers formed by host-guest interactions[J].J.Am.Chem.Soc.,127:2984-2989.
    (7) A.Miyawaki;M.Miyauchi;Y.Takashima,et al.2008.Formation of supramolecular isomers;poly[2]rotaxane and supramolecular assembly[J].Chem.Commun.,456-458.
    (8) A.Harada;A.Hashidzume;Y.Takashima.2006.Cyclodextrin-based supramolecular polymers[J].Adv.Polym.Sci.,201:1-43.
    (9) A.Harada;K.Kataoka.2006.Supramolecular assemblies of block copolymers in aqueous media as nanoeontainers relevant to biological applications[J].Prog.Polym.Sci.,31:949-982.
    (10) Y.Liu;J.Xu;S.L.Craig.2004.Hierarchical self-assembly of noncovalent amphiphiles[J].Chem.Commun.,1864-1865.
    (11) O.Crespo-Biel;B.Dordi;D.N.Reinhoudt,et al.2005.Supramolecular layer-by-layer assembly:Alternating adsorptions of guest- and host-functionalized molecules and particles using multivalent supramolecular interactions[J].J.Am.Chem.Soc.,127:7594-7600.
    (12) A.Sandier;W.Brown;H.Mays,et al.2000.Interaction between an adamantane end-capped poly(ethylene oxide) and a beta-cyclodextrin polymer[J].Langmuir,16:1634-1642.
    (13) Y.Liu;Z.L.Yu;Y.M.Zhang,et al.2008.Supramolecular architectures of beta-cyclodextrin-modified chitosan and pyrene derivatives mediated by carbon nanotubes and their DNA condensation [J].J.Am.Chem.Soc,130:10431-10439.
    (14)J.Wang;M.Jiang.2006.Polymeric self-assembly into micelles and hollow spheres with multiscale cavities driven by inclusion complexation [J].J.Am.Chem.Soc,128:3703-3708.
    (15)M.Scholl;Z.Kadlecova;H.A.Klok.2009.Dendritic and hyperbranched polyamides [J].Prog.Polym.Sci.,34:24-61.
    (16)C.Gao;D.Yan.2004.Hyperbranched polymers:from synthesis to applications [J].Prog.Polym.Sci.,29:183-275.
    (17)A.Hult;M.Johansson;E.Malmstrom.1999.Hyperbranched polymers [J].Branched Polymers Ii,143:1-34.
    (18)L.Brunsveld;B.J.B.Folmer;E.W.Meijer,et al.2001.Supramolecular polymers [J].Chem.Rev.,101:4071-4097.
    (19)T.F.A.Greef;E.W.Meijer.2008.Materials science-Supramolecular polymers [J].Nature,453:171-173.
    (20)F.H.Huang;H.W.Gibson.2004.Formation of a supramolecular hyperbranched polymer from self-organization of an AB(2)monomer containing a crown ether and two paraquat moieties [J].J.Am.Chem.Soc,126:14738-14739.
    (21)L.Galantini;A.Jover;C.Leggio,et al.2008.Early stages of formation of branched host-guest supramolecular polymers [J].J.Phys.Chem.B,112:8536-8541.
    (22)J.Y.Rao;Y.F.Zhang;J.Y.Zhang,et al.2008.Facile Preparation of Well-Defined AB(2)Y-Shaped Miktoarm Star Polypeptide Copolymer via the Combination of Ring-Opening Polymerization and Click Chemistry [J].Biomacromolecules,9:2586-2593.
    (23)M.T.Reetz;S.R.Waldvogel.1997.beta-cyclodextrin-modified diphosphanes as ligands for supramolecular rhodium catalysts [J].Angew.Chem.Int.Ed.Engl.,36:865-867.
    (24)C.Hocquelet;J.Blu;C.K.Jankowski,et al.2006.Synthesis of calixarene-cyclodextrin coupling products [J].Tetrahedron,62:11963-11971.
    (25)P.Wu;A.K.Feldman;A.K.Nugent,et al.2004.Efficiency and fidelity in a click-chemistry route to triazole dendrimers by the copper(Ⅰ)-catalyzed ligation of azides and alkynes [J].Angew.Chem.,Int.Ed.,43:3928-3932.
    (26)D.O'Krongly;S.R.Denmeade;M.Y.Chiang,et al.1985.[J].J.Am.Chem.Soc,107:5544-5545.
    (27)M.Ciampolini;N.Nardi.1966.[J].Inorg.Chem.Commun.,5:41-43.
    (28)Y.Xia;N.A.D.Burke;H.D.H.Stover.2006.End group effect on the thermal response of narrow-disperse poly(N-isopropylacrylamide)prepared by atom transfer radical polymerization [J].Macromolecules,39:2275-2283.
    (29) Y.Xia;X.C.Yin;N.A.D.Burke,et al.2005.Thermal response of narrow-disperse poly(N-isopropylacrylamide) prepared by atom transfer radical polymerization[J].Macromolecules,38:5937-5943.
    (30) H.J.Schneider;F.Hacket;V.Rudiger,et al.1998.NMR studies of cyclodextrins and cyclodextrin complexes[J].Chem.Rev.,98:1755-1785.
    (31) V.Rudiger;A.Eliseev;S.Simova,et al.1996.Conformational,calorimetric and NMR spectroscopic studies on inclusion complexes of cyclodextrins with substituted phenyl and adamantane derivatives[J].Journal of the Chemical Society-Perkin Transactions 2,2119-2123.
    (32) C.Jaime;J.Redondo;F.Sanchezferrando,et al.1990.Solution Geometry of Beta-Cyclodextrin-1-Bromoadamantane Host-Guest Complex as Determined by H-1(H-1)-Intermolecular Noe and Mm2 Calculations[J].J.Org.Chem.,55:4772-4776.
    (33) H.G.Schild.1992.Poly(N-Isopropylacrylamide)-Experiment,Theory and Application[J].Prog.Polym.Sci.,17:163-249.
    (1) U.S.Schubert;C.Eschbaumer.2002.Macromolecules containing bipyridine and terpyridine metal complexes:Towards metallosupramolecular polymers[J].Angew.Chem.,Int.Ed., 41:2893-2926.
    (2)M.Zhou;J.Roovers.2001.Dendritic supramolecular assembly with multiple Ru(Ⅱ)tris(bipyridine)units at the periphery:Synthesis,spectroscopic,and electrochemical study [J].Macromolecules,34:244-252.
    (3)H.Hofmeier;J.Pahnke;C.H.Weidl,et al.2004.Combined biotin-terpyridine systems:A new versatile bridge between biology,polymer science and metallo-supramolecular chemistry [J].Biomacromolecules,5:2055-2064.
    (4)J.P.Collin;C.Dietrich-Buchecker;P.Gavina,et al.2001.Shuttles and muscles:Linear molecular machines based on transition metals [J].Acc.Chem.Res.,34:477-487.
    (5)M.Oh;C.A.Mirkin.2006.Ion exchange as a way of controlling the chemical compositions of nano-and microparticles made from infinite coordination polymers [J].Angew.Chem.,Int.Ed.,45:5492-5494.
    (6)M.Oh;C.A.Mirkin.2005.Chemically tailorable colloidal particles from infinite coordination polymers [J].Nature,438:651-654.
    (7)X.B.Zhao;B.Xiao;A.J.Fletcher,et al.2004.Hysteretic adsorption and desorption of hydrogen by nanoporous metal-organic frameworks [J].Science,306:1012-1015.
    (8)C.A.Fustin;P.Guillet;U.S.Schubert,et al.2007.Metallo-supramolecular block copolymers [J].Adv.Mater.,19:1665-1673.
    (9)R.Hoogenboom;U.S.Schubert.2006.The use of (metallo-)supramolecular initiators for living/controlled polymerization techniques [J].Chem.Soc.Rev.,35:622-629.
    (10)H.Hofmeier;U.S.Schubert.2004.Recent developments in the supramolecular chemistry of terpyridine-metal complexes [J].Chem.Soc.Rev.,33:373-399.
    (11)B.G.G.Lohmeijer;U.S.Schubert.2003.Playing LEGO with macromolecules:Design,synthesis,and self-organization with metal complexes [J].J.Polym.Sci.,Part A:Polym.Chem.,41:1413-1427.
    (12)P.Alexandridis;B.lindman.2000.Amphiphilic Block Copolymers:Self-assembly and Application [M].Amsterdam:Elsevier.
    (13)K.Kataoka;A.Harada;Y.Nagasaki.2001.Block copolymer micelles for drug delivery:design,characterization and biological significance [J].Adv.Drug Delivery Rev.,47:113-131.
    (14)A.Guo;G.J.Liu;J.Tao.1996.Star polymers and nanospheres from cross-linkable diblock copolymers [J].Macromolecules,29:2487-2493.
    (15)D.Y.Chen;H.S.Peng;M.Jiang.2003.A novel one-step approach to core-stabilized nanoparticles at high solid contents [J].Macromolecules,36:2576-2578.
    (16)J.Z.Du;Y.M.Chen.2004.Preparation of organic/inorganic hybrid hollow particles based on gelation of polymer vesicles [J].Macromolecules,37:5710-5716.
    (17)J.Z.Du;Y.M.Chen;Y.H.Zhang,et al.2003.Organic/inorganic hybrid vesicles based on a reactive block copolymer [J].J.Am.Chem.Soc,125:14710-14711.
    (18)G.H.Zheng;Q.Zheng;C.Y.Pan.2006.One-pot synthesis of micelles with a cross-linked poly(acrylic acid)core [J].Macromol.Chem.Phys.,207:216-223.
    (19)G.H.Zheng;C.Y.Pan.2006.Reversible addition-fragmentation transfer polymerization in nanosized micelles formed in situ [J].Macromolecules,39:95-102.
    (20)U.S.Schubert;C.Eschbaumer;G.Hochwimmer.1999.High yield synthesis of 5,5′-dimethyl-2,2′-bipyridine and 5,5″-dimethyl-2,2′:6′,2″-terpyridine and some bisfunctionalization reactions using N-bromosuccinimide [J].Synthesis,779-782.
    (21)J.Chiefari;Y.K.Chong;F.Ercole,et al.1998.Living free-radical polymerization by reversible addition-fragmentation chain transfer:The RAFT process [J].Macromolecules,31:5559-5562.
    (22)U.S.Schubert;C.Eschbaumer.2001.Functionalized oligomers and copolymers with metal complexing segments:A simple and high yield entry towards 2,2′:6′,2″-terpyridine monofunctionalized telechelics [J].Macromol.Symp.,163:177-187.
    (23)U.S.Schubert;O.Nuyken;G.Hochwimmer.2000.Polymers with metal binding units:bipyridine and terpyridine containing polyoxazolines [J].J.Macromol.Sci.-Pure Appl.Chem.,37:645-658.
    (24)P.R.Andres;H.Hofmeier;B.G.G.Lohmeijer,et al.2003.Synthesis of 4 '-Functionalized 2,2′:6′,2″-terpyridines via the pyridone route:Symmetric and asymmetric bis-complex formation [J].Synthesis,2865-2871.
    (25)U.S.Schubert;H.Hofmeier.2002.Metallo-supramolecular graft copolymers:A novel approach toward polymer-analogous reactions [J].Macromol.Rapid Commun.,23:561-566.
    (26)J.F.Gohy;H.Hofmeier;A.Alexeev,et al.2003.Aqueous micelles from supramolecular graft copolymers [J].Macromol.Chem.Phys.,204:1524-1530.
    (27)S.Schmatloch;A.M.J.Van den Berg;H.Hofmeier,et al.2004.Linear coordination polymers:synthetic strategies and solution viscosities [J].Des.Monomers Polym.,7:191-201.
    (28)K.A.Aamer;G.N.Tew.2004.Synthesis of terpyridine-containing polymers with blocky architectures [J].Macromolecules,37:1990-1993.
    (29)J.F.Lutz.2008.Polymerization of oligo(ethylene glycol)(meth)acrylates:Toward new generations of smart biocompatible materials [J].J.Polym.Sci.,Part A:Polym.Chem.,46:3459-3470.
    (30)Y.H.Ma;Y.Q.Tang;N.C.Billingham,et al.2003.Well-defined biocompatible block copolymers via atom transfer radical polymerization of 2-methacryloyloxyethyl phosphorylcholine in protic media [J].Macromolecules,36:3475-3484.
    (31)D.A.Styrkas;V.Butun;J.R.Lu,et al.2000.pH-controlled adsorption of polyelectrolyte diblock copolymers at the solid/liquid interface [J].Langmuir,16:5980-5986.
    (32)R.J.Spontak;S.D.Smith.2001.Perfectly-alternating linear (AB)(n)multiblock copolymers:Effect of molecular design on morphology and properties [J].J.Polym.Sci.,Part B:Polym.Phys.,39:947-955.
    (33)J.Masuda;A.Takano;J.Suzuki,et al.2007.Composition-dependent morphological transition of hierarchically-ordered structures formed by multiblock terpolymers [J].Macromolecules,40:4023-4027.
    (34)E.A.Eastwood;M.D.Dadmun.2001.A method to synthesize multiblock copolymers of methyl methacrylate and styrene regardless of monomer sequence [J].Macromolecules,34:740-747.
    (35)Y.Z.You;C.Y.Hong;C.Y.Pan.2002.A novel strategy for synthesis of multiblock copolymers [J].Chem.Commun.,2800-2801.
    (36)S.Motokucho;A.Sudo;F.Sanda,et al.2002.Controlled monomer insertion into polymer main chain:synthesis of sequence ordered polystyrene containing thiourethane and trithiocarbonate units by the RAFT process [J].Chem.Commun.,1946-1947.
    (37)X.J.Loh;S.H.Goh;J.Li.2007.New biodegradable thermogelling copolymers having very low gelation concentrations [J].Biomacromolecules,8:585-593.
    (38)J.Lee;Y.H.Bae;Y.S.Sohn,et al.2006.Thermogelling aqueous solutions of alternating multiblock copolymers of poly(L-lactic acid)and poly(ethylene glycol)[J].Biomacromolecules,7:1729-1734.
    (39)P.L.Golas;N.V.Tsarevsky;B.S.Sumerlin,et al.2006.Catalyst performance in“click” coupling reactions of polymers prepared by ATRP:Ligand and metal effects [J].Macromolecules,39:6451-6457.
    (40)N.V.Tsarevsky;B.S.Sumerlin;K.Matyjaszewski.2005.Step-growth“click”coupling of telechelic polymers prepared by atom transfer radical polymerization [J].Macromolecules,38:3558-3561.
    (41)T.Park;S.C.Zimmerman.2006.A supramolecular multi-block copolymer with a high propensity for alternation [J].J.Am.Chem.Soc,128:13986-13987.
    (42)Y.Hasegawa;M.Miyauchi;Y.Takashima,et al.2005.Supramolecular polymers formed from beta-cyclodextrms dimer linked by poly(ethylene glycol)and guest dimers [J].Macromolecules,38:3724-3730.
    (43)M.Kimura;Y.Iwashima;K.Ohta,et al.2005.Formation of metallosupramolecular polymers within highly ordered silica mesochannels [J].Macromolecules,38:5055-5059.
    (44)D.Cohn;G.Lando;A.Sosnik,et al.2006.PEO-PPO-PEO-based poly(ether ester urethane)s as degradable reverse thermo-responsive multiblock copolymers [J].Biomaterials,27:1718-1727.
    (45)M.A.R.Meier;D.Wouters;C.Ott,et al.2006.Supramolecular ABA triblock copolymers via a polycondensation approach:Synthesis,characterization,and micelle formation [J].Macromolecules,39:1569-1576.
    (46)M.Chiper;M.A.R.Meier;J.M.Kranenburg,et al.2007.New insights into nickel(Ⅱ),iron(Ⅱ),and cobalt(Ⅱ)bis-complex-based metallo-supramolecular polymers [J].Macromol.Chem.Phys.,208:679-689.
    (47)S.Y.Liu;S.P.Armes.2001.The facile one-pot synthesis of shell cross-linked micelles in aqueous solution at high solids [J].J.Am.Chem.Soc,123:9910-9911.
    (48)S.Y.Liu;N.C.Billingham;S.P.Armes.2001.A schizophrenic water-soluble diblock copolymer [J].Angew.Chem.,Int.Ed.,40:2328-+.
    (49)J.Matko;P.Nagy.1997.Fluorescent lipid probes 12-AS and TMA-DPH report on selective,purinergically induced fluidity changes in plasma membranes of lymphoid cells [J].J.Photochem.Photobiol.,B,40:120-125.
    (50)J.Z.Lu;Y.H.Hao;J.W.Chen.2001.Effect of cholesterol on the formation of an interdigitated gel phase in lysophosphatidylcholine and phosphatidylcholine binary mixtures [J].J.Biochem.,129:891-898.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700