用户名: 密码: 验证码:
高效低污染糠醛选择加氢催化剂的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
呋喃工业的重要产品——糠醛来源于生物质玉米芯、棉籽壳、甘蔗渣等可再生资源。由于在呋喃环上含有不饱和碳碳双键和侧链的羰基,糠醛的化学性质十分活泼,经催化加氢可制得众多的衍生物。糠醇和2-甲基呋喃是仅对糠醛的羰基进行选择加氢所获得的产品,主要采用加氢能力较弱的Cu系催化剂。目前,我国生产糠醇的催化剂是从国外进口的Cu-Cr催化剂,价格非常昂贵;生产2-甲基呋喃的催化剂为亚铬酸铜和Cu-Cr合金催化剂。这些催化剂均含有极毒的致癌物质Cr,既给操作人员带来了伤害,又造成了严重的环境污染。因此改善糠醛加氢生产技术的关键应是开发价廉、高效、低污染和无污染的环境友好催化剂,这对发展我国以农副产品等可再生资源为原料的精细化学品工业、推动绿色化学过程技术的发展意义重大。
     本论文以研究低Cr和无Cr的负载型催化剂为目的,制备了低Cr的Cu-Cr/γ-Al_2O_3催化剂和无Cr的Cu-Ca/SiO_2催化剂,采用XRD、SEM、TEM、XPS和TPR等技术对催化剂结构进行了表征,并分别研究了两类催化剂糠醛选择性加氢的催化性能。
     采用浸渍法制备出Cu-Cr/γ-Al_2O_3负载型催化剂,结构表征和糠醛选择加氢制2-甲基呋喃活性评价结果表明,Cr的加入形成了Cu和Cr之间的相互作用,使部分CuO转变成CuCrO_4,改善了Cu在载体中的分散状态。随着Cr含量的增加,Cu和Cr之间的相互作用更加紧密,深加氢能力增强,适宜的Cu/Cr摩尔比为12:5,其Cr含量为6%(wt%,按Cr_2O_3计),远低于工业亚铬酸铜催化剂的Cr含量(Cr_2O_3含量为45%)。在此基础上,加入Mg、Ca、Ba、Zn助剂调变Cu和Cr之间的相互作用,发现碱土金属Mg、Ca、Ba对CuCrO_4结构的破坏作用随助剂碱性的增强而加剧,加氢能力明显下降,不利于2-甲基呋喃的选择性生成。而Zn助剂对调变Cu和Cr之间的相互作用较为适宜,减缓了2-甲基呋喃的深度加氢,提高了2-甲基呋喃的选择性。对优选出的CuCr-Zn5催化剂进行100h的稳定性评价,糠醛的转化率保持在100%,2-甲基呋喃的选择性稳定在91.3%~92.2%之间,反应前后催化剂无明显的体相和表面结构变化,具有优良的结构稳定性和催化性能稳定性。
     根据溶胶-凝胶法制备纳米催化材料的技术特点,以廉价的工业硅溶胶为硅源,利用絮凝剂对硅溶胶的凝胶化作用和对金属离子的沉积作用,制备了高分散的Cu-Ca/SiO_2负载型催化剂。研究结果表明,采用1.0 mol/l的Na_2CO_3溶液,控制pH值为中性,可以制得20~40 nm的超细SiO_2载体,同时可使活性组分以5 nm左右的CuO粒子的形式均匀分散于载体内,避免了后处理过程中活性组分的流失,催化剂具有良好的热稳定性。与浸渍法相比,溶胶-凝胶法制备的催化剂活性组分晶粒尺寸小,分散程度高,表面活性中心密度大,活性组分与载体和助剂间具有较强的相互作用。随着活性组分负载量的增加,活性组分晶粒变大,与载体和助剂间的相互作用增强,同时增加了催化剂的深加氢能力,助剂Ca的加入提高了催化剂的稳定性。当以糠醇为目的产物时,适宜的CuO负载量为15%,在反应温度120℃、H_2/醛摩尔比5~7、糠醛液空速0.36 h~(-1)的条件下,糠醇收率为98%以上。当以2-甲基呋喃为目的产物时,适宜的CuO负载量为20%,在反应温度220℃、H_2/醛摩尔比5~6、糠醛液空速0.4 h~(-1)的条件下,2-甲基呋喃收率为94%左右。
     对优选出的Cu-Cr/γ-Al_2O_3催化剂和Cu-Ca/SiO_2催化剂进行单管放大实验。结果表明,Cu-Cr/γ-Al_2O_3催化剂表现出良好的稳定性,2-甲基呋喃的收率为90%以上,优于工业催化剂;而Cu-Ca/SiO_2催化剂经过1100 h糠醛加氢制2-甲基呋喃和500 h糠醛加氢制糠醇的连续运行,2-甲基呋喃和糠醇的收率分别在92%和98%以上。对使用后的催化剂进行结构表征,结果表明,吸附的糠醛和反应过程中生成的树脂类聚合物覆盖了催化剂的表面或堵塞了催化剂的孔道是导致催化剂失活的主要原因。Cu-Ca/SiO_2催化剂较弱的表面酸性和适宜的中孔结构使其催化性能和抗积炭能力均优于Cu-Cr/γ-Al_2O_3催化剂。
As an important product in the furan industry,furfural comes from renewable biomass resources such as corncob,cotton seed hulls and bagasse etc.Furfural is a very reactive molecule because of its unsaturated carbon-carbon double bonds in the furan ring and the carbonyl in the side chain,so a large number of derivatives can be obtained by catalytic hydrogenation.Furfuryl alcohol and 2-methyl furan are the products obtained by selective hydrogenation of the carbonyl over Cu-based catalysts which have appropriate hydrogenation capability.At present,the commercial catalysts for the furfuryl alcohol are Cu-Cr catalysts imported from abroad,which are very expensive.The catalysts for the 2-methyl furan are either copper chromite or Cu-Cr alloy.These catalysts not only bring harm to the operators, but also cause serious environmental pollution because they contain highly toxic carcinogen Cr.Therefore,to develop an environment friendly catalyst of low cost,high efficiency and pollution free for furfural hydrogenation has become an imminent task.This will play a significant role not only for the development of the fine chemical industry using the renewable resources such as agricultural products but also for the development of the green chemical process technology in China.
     This thesis aims at study on the low-Cr and the Cr free supported catalysts.The low-Cr Cu-Cr/γ-Al_2O_3 catalyst and the Cr free Cu-Ca/SiO_2 catalyst were prepared.Their structure was characterized by XRD,SEM,TEM,XPS,TPR,etc.techniques.Their catalytic performance for the selective hydrogenation of furfural was investigated.
     The supported Cu-Cr/γ-Al_2O_3 catalyst was prepared by impregnation method.The results of structural characterization and activity evaluation for the selective hydrogenation of furfural to 2-methyl furan showed that the interaction between Cu and Cr species was formed by adding Cr,which resulted in the transformation of some CuO into CuCrO_4 and improved the Cu dispersion state in the cartier.It was noticed that increasing the Cr content could lead to enhanced interaction between Cu and Cr species,and improved deep hydrogenation ability of the catalyst.An appropriate Cu / Cr molar ratio was 12/5 where the Cr content in the catalyst was only 6%(wt%of Cr_2O_3),which was much lower than the commercial copper chromite catalyst(Cr_2O_3 45%).Based on this result,the interaction between Cu and Cr species was modified by adding Mg,Ca,Ba or Zn promoters to the catalysts.It was found that while increasing the alkaline-earth metal promoters the destructive effects of alkaline-earth metal Mg,Ca,Ba on CuCrO_4 structure was enhanced and the capacity of the hydrogenation catalyst was therefore reduced,resulting in decreased formation of 2-methyl furan.However,Zn is a more favorable promoter for the modification of the interaction between Cu and Cr species.The deep hydrogenation of 2-methyl furan was slowed down and the formation of 2-methyl furan was increased when using the catalyst modified by Zn promoter.The 100 hours stability test results for the optimum CuCr-Zn5 catalyst showed that the conversion of furfural remained at 100%and the selectivity of 2-methyl furan was stable between 91.3%and 92.2%.There were no visible structural changes of the catalysts after the reactions.Therefore,the CuCr-Zn5 catalyst possessed excellent stability of the structure and the stability of catalytic performance.
     According to the characteristics of sol-gel technique used for preparing the nano-particles catalyst,highly dispersed Cu-Ca/SiO_2 supported catalyst was prepared by the gelation of the flocculant for the commercial silica sol at a low price and its sedimentation for the metal ion.The research results indicated that the 20~40 nanometer ultrafine SiO_2 carrier can be prepared by using solution of 1.0 mol / 1 Na_2CO_3 and controlling pH at the neutrality. At the same time,the active component can be dispersed uniformly in the carrier in the form of 5 nanometer CuO particles,with no loss in the post-processing,to give the catalyst of good thermal stability.Compared with the impregnation method,the grain size of the active component was smaller and its dispersion degree was higher,the density of active site on surface was bigger,and the interaction between active component and the cartier or promoters was stronger for the catalyst prepared by the sol-gel method.The crystal grains of active component became larger,and the interaction between the active component and the carrier or promoters was enhanced,and the deep hydrogenation ability of the catalyst was increased with increasing the content of the active component.The stability of the catalyst was improved by adding Ca promoter in the catalysts.When furfuryl alcohol was the target product,the appropriate loading amount of CuO was 15%,and the yield of furfuryl alcohol could reach above 98%at the reaction temperature 120℃,the H_2/furfural molar ratio of 5-7 and liquid space velocity of furfural 0.36 h~(-1).When 2-methyl furan was the target product,the appropriate loading amount of CuO was 20%,and the yield of 2-methyl furan was about 94% at the reaction temperature 220℃,the H_2/furfural molar ratio 5-6 and liquid space velocity of furfural 0.4 h~(-1).
     The scale-up experiments for the optimum Cu-Cr/γ-Al_2O_3 catalyst and the Cu-Ca/SiO_2 catalyst were carried out in the single-tube reactor.The results showed that the Cu-Cr/γ-Al_2O_3 catalyst displayed good stability.The yield of 2-methyl furan was above 90%,which was superior to one of the commercial catalysts.The yield of 2-methyl furan was above 92%for the Cu-Ca/SiO_2 catalyst after the continuous operations of 1100 hours for the hydrogenation of superior to one of the commercial catalysts.The yield of 2-methyl furan was above 92%for the Cu-Ca/SiO_2 catalyst after the continuous operations of 1100 hours for the hydrogenation of furfural..The yield of furfuryl alcohol was above 98%for the Cu-Ca/SiO_2 catalyst after the continuous operations of 500 hours for the hydrogenation of furfural.The structural characterization of the used catalysts indicated that the deactivation of the catalyst is mainly due to the fact that furfural absorbed on the surface of the catalyst and the resin like polymer generated in the reaction have covered the surface of the catalyst or blocked the pores of the catalyst.It is believed that Cu-Ca/SiO_2 has superior catalytic performance and the ability of resisting the composition of the coke compared with the Cu-Cr/γ-Al_2O_3 catalyst,mainly due to its weaker surface acidity and appropriate pore structure.
引文
[1]任鸿均.我国糠醛工业的未来[J].化工科技市场,2001,(11):12-15.
    [2]许拴善.糠醛的系列衍生物[J].甘肃化工,1992,(3):37-39.
    [3]王景明.糠醛深加工初探[J].天津化工,1997,11(2):7-10.
    [4]章思规.实用精细化学品手册(有机卷).北京:化学工业出版社,1996.
    [5]Adkins H,Connor R.The catalytic hydrogenation of organic compounds over copper chromite[J].Journal of the American Chemical Society,1931,53(3):1091-1095.
    [6]Adkins H,Connor R.Method of hydrogenation of furfural to furfuryl alcohol:US,2094975[P],1937.
    [7]Riener T W.hn improved Laboratory Preparation of Copper-Chromium Oxide Catalyst[J].Journal of the American Chemical Society,1949,71(3):1130.
    [8]McEvoy J,Shalit H.Copper chromite alkali-metal oxide high sueface area hydrogenation catalyst:US,3374184[P],1968.
    [9]Frainier,L J,Fineberg H H.Copper chromite catalyst for preparation of furfuryl alcohol from furfural:US,425139[P]6,1981.
    [10]Starkey F,George J,Bremner M,et al.Improvements in and relating to the hydrogenation of furfural:GB,627293[P],1949.
    [11]Thomas D,Waldo R,Hort,et al.Catalyst comprising Raney nickel with adsorbed molybdenum compound:US,4153578[P],1979.
    [12]Erzhanova M S,Bejsekov T B,Zhanabaev B Zh,et al.Catalyst for hydrating furfural:SU,1351647[P],1987.
    [13]Bejsekov T B,Bitemirova A E,Olejnikov V E,et al.Method of reactivation of spent alloy-type catalyst for hydrogenation of furfural:SU,1759447[P],1992.
    [14]刘荣勋,陈晓春,张晓燕.糠醛气相加氢铜铬催化剂的研究[J].北京化工学院学报,1989,16(1):1-5.
    [15]朱玉雷,李学宽,葛世培.糠醛气相加氢制糠醇催化反应的研究[J].石油化工,1992,21(7):466-469.
    [16]殷恒波,吴静,赵秉乾.CuCr/γ-Al_2O_3催化剂结构及其对糠醛加氢制糠醇的影响[J].应用化学,1993,10(1):83-85.
    [17]殷恒波,申延明,高丽萍,等.糠醛气相常压气相加氢制糠醇催化剂CuCrK/γ-Al_2O_3[J].催化学报,1996,17(4):333-335.
    [18]Huang W P,Li H,Zhu B L,et al.Selective hydrogenation of furfural to furfuryl alcohol over catalysts prepared via sonochemistry[J].Ultrasonics Sonochemistry,2007,14(1):67-74.
    [19]黄子政,邱丽娟.糠醛加氢制糠醇无毒催化剂的研制[J].石油化工,1992,21(1):35-38.
    [20]李国安,王承学,赵凤玉,等.糠醛液相加氢制糠醇新型催化剂的研究[J].精细石油化工,1995(1):40-44.
    [21]林培滋,黄世煜,周焕文,等.新型糠醛加氢制糠醇催化剂研究[J].燃料化学学报,1996,24(4):364-367.
    [22]周亚明,沈伟,徐华龙,等.糠醛常压气相催化加氢制糠醇[J].石油化工,1997,26(1):4-7.
    [23]林培滋,周焕文,赵彤彤,等.一种糠醛加氢制糠醇的方法及催化剂:CN,1149507A[P],1997.
    [24]陈霄榕,王爱菊,卢学英等.Cu-Zn-Al催化剂上糠醛气相加氢制糠醇的研究[J].化工进展,2001,20(6):40-42.
    [25]孙景辉,王际东,张银凯,等.糠醛气相加氢制糠醇催化剂的研究[J].山东化工,2001,20(4):34-36,42.
    [26]王美涵,周焕文,徐杰,等.新型Cu基催化剂在糠醛加氢制糠醇反应中的研究[J].辽宁师范大学学报(自然科学版),2001,24(4):383-385.
    [27]卢素敏,王洪卫,陈霄榕.糠醛常压加氢制糠醇[J].化工时刊,2002,16(2):19-21.
    [28]张丽荣,张明慧,李伟,等.糠醛气相加氢制糠醇新型催化剂[J].石油化工,2003,32(4):329-332.
    [29]张定国,张守民,张淑红,等.Cu-Zn/γ-Al_2O_3催化剂的制备及其在选择加氢反应中的催化性能[J].催化学报,2003,24(5):350-354.
    [30]张定国,刘芬,李发亮,等.糠醛加氢制糠醇中Cu-Zn/γ-Al_2O_3催化剂的改性研究[J].化学反应工程与工艺,2007,23(2):136-140,182.
    [31]乐治平,黄艳秋,代丽丽.海泡石负载Cu催化糠醛气相加氢制糠醇反应[J].分子催化,2005,19(1):69-71.
    [32]卢伟伟,徐贤伦.改性Cu基Al_2O_3-TiO_2负载型糠醛选择加氢催化剂的研究[J].天然气化工,2006,31(3):19-22.
    [33]刘琪英,李勇,蔡伟杰,等.镍基催化剂上糠醛选择性加氢合成糠醇[J].分子催化,2007,21(4):294-299.
    [34]Martin B,Johannes O,Thomas T.Formed copper catalyst for the selective hydrogenation of furfural to furfuryl alcohol:US,5591873[P],1997.
    [35]Rao R S,Baker R T K,Vannice M A.Furfural hydrogenation over carbon-supported copper [J].Catalysis Letters,1999,60(1/2):51-57.
    [36]Kijenski J,Winiarek P,ParyjczakT,et al.Platinum deposited on monolayer supports in selective hydrogenation of furfural to furfuryl alcohol[J].Applied Catalysis A,2002,233(1-2):171-182.
    [37]Nagaraja B M,Siva Kumar V,Shasikala V,et al.A highly efficient Cu/MgO catalyst for vapour phase hydrogenation of furfural to furfuryl alcohol[J].Catalysis Communications,2003,4(6):287-293.
    [38]Nagaraja B M,Padmasri A H,Rajuy B D,et al.Vapor phase selective hydrogenation of furfural to furfuryl alcohol over Cu-MgO coprecipitated catalysts[J].Journal of Molecular Catalysis A,2007,265(1-2):90-97.
    [39]Reddy B M,Reddy G K,Rao K N,et al.Silica supported transition metal-based bimetallic catalysts for vapour phase selective hydrogenation of furfuraldehyde[J].Journal of Molecular.Catalysis A,2007,265(1-2):276-282.
    [40]Beisekov T B,Musaeva S A,Kuatbekov A M,et al.Hydrogenation of furfural on Raney cobalt catalyst[J].Khim Promst,1992,(9):507-510.
    [41]马兴全.钴骨架加氢催化剂及其制各方法:CN,1066610[P],1992.
    [42]彭革,赵凤玉,李国安.糠醛液相加氢制糠醇骨架钴催化剂的研究[J].石油化工,1997,26(6):353-357.
    [43]Liu B J,Lu L H,Wang B Ch,et al.Liquid phase selective hydrogenation of furfural on Raney nickel modified by impregnation of salts of heteropolyacids[J].Applied Catalysis A,1998,171(1):117-122.
    [44]王纪康,王桂林,严巍.采用骨架钴和骨架镍催化剂加氢还原制备糠醇的研究[J].精细化工,1998,15(6):37-40.
    [45]Lee Sh P,Chen Y W.Selective hydrogenation of furfural on Ni-P,Ni-B,and Ni-P-B ultrafine materials[J].Industral Engineering Chemistry Research,1999,38(7):2548-2556.
    [46]Lee Sh P,Chert Y W.Effects of preparation on the catalytic properties of Ni-P-B ultrafine materials[J].Industral Engineering Chemistry Research,2001,40(6):1495-1499.
    [47]骆红山,庄莉,李和兴.超细Ni-B非晶态合金催化糠醛液相加氢制备糠醇[J].分子催化,2002,16(1):49-54.
    [48]Luo H Sh,Li H X,Zhuang L.Furfural hydrogenation to furfuryl alcohol over a novel Ni-Co-B amorphous alloy catalyst[J].Chemistry Letters,2001,30(5):404-405.
    [49]Chen X F,Li H X,Luo H Sh,et al.Liquid phase hydrogenation of furfural to furfuryl alcohol over Mo-doped Co-B amorphous alloy catalysts[J].Applied Catalysis A,2002,233(1-2):13-20.
    [50]Li H X,Luo H Sh,Zhuang L,et al.Liquid phase hydrogenation of furfural to furfuryl alcohol over the Fe-promoted Ni-B amorphous alloy catalysts[J].Journal of Molecular Catalysis A,2003.203(1-2):267-275.
    [51]陈兴凡,刘俊,杨晓春,等.Co-Cu-B催化剂用于糠醛液相加氢制糠醇[J].上海师范大学学报(自然科学版),2007,36(4):88-92.
    [52]卢伟伟,徐贤伦.改性Ni-B合金的制备及其催化糠醛加氢性能的研究[J].分子催化,2006,20(1):67-69.
    [53]石秋杰,雷经新,张宁.糠醛液相加氢用Mo改性Ni-B/TiO_2-Al_2O_3(S)非晶态合金催化剂[J].物理化学学报,2007,23(1):98-102.
    [54]石秋杰,李小玉,杨静,等.改性海泡石和γ-Al_2O_3负载Ni-B-Mo合金催化糠醛液相加氢制糠醇[J].精细化工,2008,25(2):159-162,166.
    [55]Seo G,Chon H.Hydrogenation of furfural over copper-containing catalysts[J].Journal of catalysis,1981,67(2):424-429.
    [56]Hao X,ZHou W,Wang J,et al.Copper-Containing MCM-48 Catalyst for the Selective Hydrogenation of Furfural to Furfuryl Alcohol[J].Chinese Journal of Catalysis,2006,26(11):935-937.
    [57]高会元,李永丹,林跃生.糠醛在Pd-Cu膜反应器中催化加氢合成糠醇[J].化工学报,2006,57(3):693-698.
    [58]Burnette.Production of 2-methylfuran by vapor-phase hydrogenation of furfural[J].Industrial and Engineering Chemistry,1948,40(3):502-505.
    [59]Sokolova V N,Sereda 0 A,Zavelskii D Z,et al.Catalytic activity of a copper chromite catalyst during hydrogenation of furfural to sylvan[J].Tr Gos Inst Prikl Khim,1973,68(1):56-59.
    [60]naidegger E,Kincses G;Kisgergy L,et al.Catalytic hydrogenation of furfural to 2-methylfuran[P].HU,154156,1967.
    [61]Grigorashvili E I,Zolotarev N S,Buimov A A,et al.eontinuous preparation of 2-methylfuran by the catalytic hydrogenation furfural[J].Khim-FarmZh,1969,3(6):50-52.
    [62]Poteryakhin V A,Sabitova V F,Pavlychev V N,et al.Method of preparing 2-methylfuran:SU,694509[P],1979.
    [63]Boris M S,Kuzmin Yu L,Ignatev V M,et al.Process for producing Sylvan:SU,941366[P],1982.
    [64]郑纯智,张国华.糠醛气相加氢制2-甲基呋喃催化剂的研究[J].淮海工学院学报,1998,7(4):32-34.
    [65]朱玉雷,苏化连,相宏伟,等.用于糠醛气相加氢制2-甲基呋喃的催化剂及其用途:CN,1305869A[P],2001.
    [66]杨骏,郑洪岩,朱玉雷.Cu-Cr-Ca-Ba催化剂上糠醛加氢制备2-甲基呋喃[J].化学研究,2004,15(1):16-19.
    [67]杨国旗,冷庆海,王志.LFT-95型催化剂的开发和应用[J].工业催化,2005,13(6):44-46.
    [68]韩建多.糠醛气相加氢制2-甲基呋喃的研讨[J].辽宁化工,2000,29(5):262-264.
    [69]刘仲能,朱德宝,金文清,等.糠醛气相加氢合成2-甲基呋喃催化剂:CN,1145274A[P],1997.
    [70]刘仲能,金文清,沈琴,等.糠醛气相催化加氢合成2-甲基呋喃的研究[J].石油化工,1999,28(1):39-42.
    [71]吴世华,魏伟,李保庆,等.不同方法制备的CuCr/γ-Al_2O_3的结构及其对糠醛加氢制2-甲基呋喃反应的催化性能[J].催化学报,2003,24(1):27-31.
    [72]刘健民,李秋先,乔迁,等.糠醛气相加氢制2-甲基呋喃的负载型催化剂[J].吉林工学院学报,2002,23(2):23-25.
    [73]李长海,李国安.糠醛气相加氢制2-甲基呋喃新型配合物催化剂研究[J].工业催化,2008,16(8):60-64.
    [74]Zheng H Y,Zhu Y L,Huang L,et al.Study on Cu-Mn-Si catalysts for synthesis of cyclohexanone and 2-methylfuran through the coupling process[J].Catalysis Communications,2008,9(3):342-348.
    [75]高玉晶,李国安,孟祥春.用于糠醛气相加氢制2-甲基呋喃的新型合金催化剂研制[J].吉林大学自然科学学报,2001,31(1):102-104.
    [76]Bremner J G M,Keeys R K F.The Hydrogenation of furfuraldehyde to furfuryl alcohol and sylvan(2-methyfuran)[J].Journal of the Chemical Society,1947:1068-1080.
    [77]Rao R,Dandekar A,Baker R T K,et al.Properties of copper chromite catalysts in hydrogenatio reactions[J].Journal of Catalysis,1997,171(2):406-419.
    [78]Dandekar A,Vannice M A.Determination of the dispersion and surface oxidation states of supported Cu catalysts[J].Journal of Catalysis,1998,178(2):621-639.
    [79]刘百军,吕连海,王炳春,等.Cu_(3/2)PMo_(12)O_(40)改性骨架镍催化剂上羰基和碳碳双键的加氢反应[J].催化学报,2002,23(3):289-293.
    [80]Borts M S,Gilchenok N D,Ignateev V M,et al.Kinetics of Vapor-phase Hydrogenation of Furfural on copper-chromium catalysts[J].Zh Prikl Khim,1986,59(1):126-130.
    [81]张力,刘荣勋,张小燕,等.在铜基催化剂上糠醛气相加氢反应动力学研究[J].北京化工大学学报(自然科学版),1987,14(1):23-30.
    [82]赵秉乾,高丽萍,王红心,等.D3催化剂上糠醛常压气相加氢制糠醇本征动力学初探[J].辽宁化工,1993,14(S1):41-43.
    [83]郑纯智,张国华,徐高扬.糠醛气相加氢制糠醇动力学研究[J].化学反应工程与工艺,2001,17(1):84-87.
    [84]郑纯智,张国华,李咏梅.糠醇气相加氢动力学研究[J].淮海工学院学报,1999,8(3):47-49.
    [85]卢素敏,王洪卫.糠醛气相加氢动力学探讨[J].山东化工,2003,32(4):14-16.
    [86]唐洪宇,李长海,王晶瑞,等.糠醛气相催化加氢制2-甲基呋喃及动力学初步研究[J].吉林化工学院学报,2004,21(1):63-65.
    [87]牛立全,刘荣勋,袁挽青.糠醛液相催化加氢反应动力学研究[J].北京化工大学学报(自然科学版),1992,19(4):289-293.
    [88]彭革,李国安,孟祥春,等.糠醛液相加氢制糠醇骨架钻催化剂反应动力学研究[J].工业催化,1996,4(1):15-19.
    [89]Vaidya P D,Mahajani V V.Kinetics of Liquid-Phase Hydrogenation of Furfuraldehyde to Furfuryl Alcohol over a Pt/C Catalyst[J].Industral Engineering Chemistry Research,2003,42(17):3881-3885.
    [90]周红军,赵修波,蒋新.糠醛液相加氢生产糠醇催化剂的失活研究[J].工业催化,2004,12(10):18-21.
    [91]Chen D G.Anti-reflection(AR)coatings made by sol-gel processes:A review[J].Solar Energy Materials and Solar Cells,2001,68(3-4):313-336.
    [92]卢旭晨,徐廷献.溶胶-凝胶法及其应用[J].陶瓷学报,1998,19(1):53-57.
    [93]Tanaka S,Mizukami F,Niwa S,et al.Highly selective formation of aldehydes in the hydrogenation of the corresponding acid chlorides with silica-supported palladium catalysts prepared by acomplexing agent-assisted sol-gel method[5].Applied Catalysis A:General,2002,229(1-2):175-180.
    [94]张莉莉,杨娟,张维光,等.硬脂酸法制备超细K_2La_2Ti_3O_(10)及其酸交换性质研究[J].无机化学学报,2003,19(11):1217-1221.
    [95]姚楠,能国兴,张玉红,等.溶胶—凝胶法制备中孔分布集中的氧化物及混合氧化物催化剂[J].中国科学B辑,2001,31(4):355-363.
    [96]Gonzalez R D,Lopez T,Gomez R.Sol-Gel preparation of supported metal catalysts[J].Catalysis Today,1997,35:293-317.
    [97]Zou w,Gonzalez R D,Lopez T,et al.The effect of precursor structure on the preparation of Pt/SiO_2 catalysts by the sol-gel method[J].Materials Letters,1995,24:35-39.
    [98]周亚松.溶胶凝胶和超临界干燥法制备纳米TiO2粉体[J].石油大学学报,2001,25(6):32-35.
    [99]陈改荣,徐绍红,杨军.硬脂酸溶胶凝胶法制备氧化镁纳米微粒的研究[J].功能材料,2002,33(5):521-523.
    [100]D(?)az G,P(?)rez-Hern(?)ndez R,G(?)mez-Cort(?)s A,et al.CuO-SiO_2 sol-gel catalysts:Characterization and catalytic properties for NO reduction[J].Journal of Catalysis,1999,187(1):1-14.
    [101]Chen J X,Yao N,Wang R J,et al.Hydrogenation of chloronitrobenzene to chloroaniline over Ni/TiO_2 catalysts prepared by sol-gel method[J].Chemical Engineering Journal 2009,148(1):164-172.
    [102]鲍骏,卞国柱,伏义路,等.溶胶-凝胶法制备K-Co-Mo催化剂的结构及其合成低碳醇性能研究-焙烧温度的影响[J].分子催化,1999,13(4):253-257.
    [103]Lakshmi J L,Ihasz N J,Miller J M.Synthesis,characterization and ethanol partial oxidation studies of V_2O_5 catalysts supported on TiO_2-SiO_2 and TiO_2-ZrO_2 sol-gel mixed oxides[J].Journal of Molecular Catalysis A,2001,165(1-2):199-209.
    [104]Moradi G R,Basir M M,Taeb A,et al.Promotion of Co/SiO_2 Fischer-Tropsch catalysts with zirconium[J].Catalysis Communications,2003,4(1):27-32.
    [105]Tang S,Ji L,Lin J,et al.CO_2 Reforming of Methane to Synthesis Gas over Sol-Gel-made Ni/γ-Al_2O_3 Catalysts from Organometallic Precursors[J].Journal of Catalysis,2000,194(2):424-430.
    [106]Kuang W X,Fan Y N,Chen Y.Structure and reactivity of ultrafine Ce-Mo oxide particles [J].Catalysis Today,2001,68(1-3):75-82
    [107]Radwan N R E,El-Shall M S,Hassan H M A.Synthesis and characterization of nanoparticle Co_3O_4,CuO and NiO catalysts prepared by physical and chemical methods to minimize air pollution[J].Applied Catalysis A,2007,331(1)::8-18.
    [108]耿云峰,王希涛,钟顺和.MoO_3/SiO_2催化剂的异丁烷选择氧化反应性能[J].分子催化,2002,16(4):273-278.
    [109]Zhang W D,Liu B S,Tian Y L.CO_2 reforming of methane over Ni/Sm_2O_3-CaO catalyst prepared by a sol-gel technique[J].Catalysis Communications,2007,8(4):661-667.
    [110]王伟,林国栋,张鸿斌,等.低浓度甲烷甲醇深度氧化Ag/La(0.6)Sr(0.4)MnO3催化剂[J].物理化学学报,2000,16(4):299-306.
    [111]Matsumura Y,Ishibe H.Selective steam reforming of methanol over silica-supported copper catalyst prepared by sol-gel method[J].Applied Catalysis B,2009,86(3-4):114-120.
    [112]武志刚,赵永祥,许临萍,等.在NiO-SiO_2气凝胶催化剂上顺酐液相加氢合成γ-丁内酯[J].精细化工,2002,19(9):536-557.
    [113]Krompiec S,Mrowiec-Bia(?)o(?) J,Skutil K,et al.Nickel-alumina composite aerogel catalysts with a high nickel load:a novel fast sol-gel synthesis procedure and screening of catalytic properties[J].Journal of Non-Crystalline Solids,2003,315(3):297-303.
    [114]Fabrizioli P,B(?)rgi T,Baiker A.Environmental Catalysis on Iron Oxide-Silica Aerogels:Selective Oxidation of NH_3 and Reduction of NO by NH_3[J].Journal of Catalysis,2002,206(1):143-154.
    [115]Liu J Y,Shi J L,He D H,et al.Surface active structure of ultra-fine Cu/ZrO_2 catalysts used for the CO_2+H_2 to methanol reaction[J].Applied Catalysis A,2001,218(1-2):113-119.
    [116]Kim J H,Suh D J,Park T J,et al.Effect of metal particle size on coking during CO_2reforming of CH_4 over Ni-alumina aerogel catalysts[J].Applied Catalysis A,2001,197(2):191-200.
    [117]Xu Zh,Li Y M,Zhang J Y,et al.Ultrafine NiO-La_2O_3-Al_2O_3 aerogel:a promising catalyst for CH_4/CO_2 reforming[J].Applied Catalysis A,2001,213(1):65-71.
    [118]陈一民,谢凯,盘毅,等.含钴硅酸乙酯的Sol-Gel法制备Co/SiO_2纳米复合气凝胶[J].硅酸盐学报,2001,29(2):132-136.
    [119]何超,于云,周彩华,等.Ag/TiO_2薄膜结构和光催化性能研究[J].无机材料学报,2002,17(5):1031-1033.
    [120]Chiou Y C,Kumar U,Wu J C S.Photocatalytic splitting of water on NiO/InTaO_4 catalysts prepared by an innovative sol-gel method[J].Applied Catalysis A,2009,357(1):73-78.
    [121]柳利,陈祖兴.新型纳米复合杂多酸催化剂H_3PW_((12))O_((40))/SiO_2的研究[J].合成化学,2002,10(1):73-76.
    [122]Kukovecz A,Balogi Z,K(?)nya Z,et al.Synthesis,characterisation and catalytic applications of sol-gel derived silica-phosphotungstic acid composites[J].Applied Catalysis A,2002,228(1-2):83-94.
    [123]Arp(?)d Moln(?)r,Csilla Keresszegi,B(?)la T r k.Heteropoly acids immobilized into a silica matrix:characterization and catalytic applications[J].Applied Catalysis A,1999,189(2):217-224.
    [124]赵新强,韩岩涛,孙潇磊,等.几种方法制备的H_3PW_(12)O4O/SiO_2催化剂的结构和催化性能[J].催化学报,2007,28(1):91-96.
    [125]李永峰,麦荣坚,余林,等.溶胶-凝胶法制备负载型钨硅酸催化剂[J].材料导报,2008,22(6):140-142.
    [126]Wang W J,Qiao M H,Li H X,et al.Amorphous Ni-P/SiO_2 aerogel:Its preparation,its high thermal stability and its activity during the selective hydrogenation of cyclopentadiene to cyclopentene[J].Applied Catalysis A,1998,166(2):243-247.
    [127]Lenza R F S,Vasconcelos W L.Synthesis and properties of microporous sol-gel silica membranes[J].Journal of Non-Crytalline Solids,2000,273(1-3):164-169.
    [128]盛梅,朱毅青,吴泽彪,等.溶胶-凝胶法制备无机复合膜催化材料[J].无机材料学报,1999,14(6):866-872.
    [129]姜忠义,吴洪,许松伟,等.溶胶-凝胶固定化多酶催化二氧化碳转化为甲醇反应初探[J].催化学报,2002,23(2):162-164.
    [130]赵宏宾,李安武,谷景华,等.溶胶-凝胶制备技术与新型催化材料Ⅱ.γ-Al2O3陶瓷膜制备中浇铸与膜的完整性[J].石油化工,1997,26:804-808.
    [131]Bond G C,Namijo S N.An improved procedure for estimating the metal surface area of supported copper catalysts[J].Journal of Catalysis,1989,118(2):507-510.
    [132]van der Grift C J G,Wielers A F H,Joghi B P J,et al.Effect of the reduction treatment on the structure and reactivity of silica-supported copper particles[J].Journal of Catalysis,1991,131(1):178-189.
    [133]Guerreiro E D,Gorriz O F,Larsen G,et al.Cu/SiO_2 catalysts for methanol to methyl formate dehydrogenation:A comparative study using different preparation techniquesm [J].Applied Catalysis A,2000,204(1):33-48.
    [134]Scofield J H.Hartree-Slater subshell photoionization cross-sections at 1254 and 1487eV[J].Journal of Electron Spectroscopy and Related Phenomena,1976,8(2):129-137.
    [135]朱洪法.催化剂载体制备及应用技术[M].北京:石油工业出版社,2002.
    [136]戎晶芳,黄维,陆文云,等.铜铬氧化物催化剂的结构与性能研究[J].化学物理学报,1994,7(3):254-262.
    [137]赵峰,李国英,李能,等.CuCrO_2和CuCr_2O_4间相互作用对体系结构及催化性能的影响[J].催化学报,2003,24(1):11-16
    [138]Wagner C D,Riggs W M,Davis L E,et al.Handbook of X-Ray Photoelectron Spetroscopy[M].Minnesota:Perkin-Elmer Corportion,1979.
    [139]黄利宏,储伟,龙毅,等.锆助剂对低温液相合成甲醇用铜铬硅催化剂性能的影响[J].燃料化学学报,2005,33(5):597-601.
    [140]Severino F,Brito J,Carias O,et al.Comparative Study of Alumina-supported CuO and CuCr_2O_4 as Catalysts for CO Oxidation[J].Journal of Catalysis,1986,102(1):172-179.
    [141]Boeeuzzi F,Borello E,Zeeehina A,et al.Infrared study of ZnO surface properties[J].Journal of Catalysis,1978,51(2):150-159.
    [142]Okamoto Y,Fukino k,lmanaka T,et al.Surface charaGterization of Cu-ZnO methanol synthesis catalysts by x-ray photoelectron spectroscopy.(1).Precursor and calcined catalysts[J].The journal of physical chemistry,1983,87(2):3740-3747.
    [143]杨咏来,徐恒泳,李文钊.纳米粒子催化剂及其研究进展[J].材料导报,2003,17(2):12-14.
    [144]蔡卫权,陈进富.纳米材料在催化领域中的应用[J].现代化工,2002,22(S1):34-37.
    [145]张万忠,乔学亮,陈建国,等.纳米材料的表面修饰与应用[J].化工进展,2004,23(10):1067-1071.
    [146]郝利峰,高志华,阴丽华,等.气凝胶的制备及其在催化领域的应用[J].天然气化工,2005,30(1):49-53.
    [147]陈宏伟,尹安远,戴维林,等.草酸钠改性共沉淀制备高效Cu/ZrO2催化剂及其在甲醇部分氧化制氢反应中的应用[J].化学学报,2009,67(2):129-133.
    [148]师江柳,刘金尧,朱起明,等.CuO/ZrO_2超细粒子催化剂的制备和物性结构表征[J].催化学报,1996,17(4):277-280.
    [149]董国利,高荫本,陈诵英。纳米级TiO_2粉体的制备研究Ⅲ.成胶温度、钛盐溶液浓度、老化时间的影响[J].分子催化,1998,12(6):471-474.
    [150]杨儒,刘瑛,钟炳,等.CuO-BaO/SiO_2催化剂的表面性质、还原性能及氢解反应性能[J].石油化工,1999,28(7):435-440.
    [151]杨儒,胡天斗,刘涛,等.CuO-BaO/SiO_2催化剂的结构表征[J].物理化学学报,1998,14(7):590-596.
    [152]丛昱,包信和,张涛,等.CO_2加氢合成甲醇的超细Cu-ZnO-ZrO_2催化剂的表征[J].催化学报,2000,21(4):314-318.
    [153]Jing Q Sh,Lou H,Mo L Y,et al.Reforming of CH_4 with CO_2 and O_2 to produce syngas over CaO modified Ni/SiO_2 catalysts in a fluidized bed reactor[J].Reaction Kinetics and Catalysis Letters,2004,83(2):291-298.
    [154]Hou Zh Y,Yokota O,Tanaka T,et al.Characterization of Ca-promoted Ni/-Al_2O_3 catalyst for CH_4 reforming with CO_2[J].Applied Catalysis A,2003,253(2):381-387.
    [155]尚丽霞,谢卫国,吕绍洁,等.碱土金属对甲烷与空气制合成气Ni/CaO-Al_2O_3催化剂性能的影响[J].燃料化学学报,2001,29(5):422-425.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700