用户名: 密码: 验证码:
丁香害虫调查及其对柳蛎盾蚧化学抗性机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
丁香属植物(Syringa spp.)为园林绿化的优良树种,其很多种类又兼具良好的药用功能,长期以来人们一直认为其少虫害、耐瘠薄。但笔者的调查却发现,危害丁香属植物的昆虫至少有11种,且致使其树势衰弱、甚至死亡的有2-3种。研究这些害虫的危害规律,抗虫机理,是保护丁香属植物资源和进一步挖掘丁香属植物利用潜能的必要前提。为此,笔者细致调查了从丁香展叶至其落叶过程中的害虫种类,并从化学生态学的角度分析了丁香对柳蛎盾蚧的抗性机理,深入探讨了丁香单宁、酚酸以及各种防御蛋白在丁香抗柳蛎盾蚧方面的作用,为更好地保护和利用丁香资源及抗虫品种的选育提供基础资料,也为柳蛎盾蚧的防治提供理论依据。
     调查发现,在哈尔滨地区至少有11种昆虫危害丁香属植物,除柳蝙蛾和饰棍蓟马外,其余9种均为首次报道。其中:蛀干类昆虫柳蝙蛾(Phassus excrescens Butler)危害紫丁香(Syringa oblata Lindl.)、红丁香(Syringa villosa Vahl.)、西南丁香(Syringa emodi Wall. ex G. Don)、小叶丁香(Syringa microphylla Diels)、洋丁香(Syringa vulgaris Linn.)、关东丁香(Syringa velutina Kom.)、大花重瓣洋丁香(Syringa vulgaris 'dahua')、暴马丁香(Syringa reticulata (Blume) Hara var. mandshurica (Maxim.) Hara.)、朝鲜丁香(Syringa dilatata Nakai),寄主范围较广;食叶类昆虫丁香天蛾(Psilogramma increta (Walker,[1865]))为黑龙江省新纪录种,危害紫丁香、红丁香、西南丁香、小叶丁香、关东丁香、紫叶重瓣洋丁香(Syringa vulgaris'zihong');刺吸性昆虫黑龙江粒粉蚧(Coccurra ussuriensis (Borchs))只在暴马丁香上被发现;康氏粉蚧(Pseudococcus comstocki (Kuwana,1902))危害暴马丁香及小叶丁香;柳蛎盾蚧(Lepidosaphes salicina Borchsenius)对紫丁香、红丁香、西南丁香、白丁香(Syringa oblata var. alba Hort. ex Rehd.)、朝鲜丁香、洋丁香及其变种危害较重。此外,还有危害紫丁香叶部的饰棍蓟马(Dendrothrips ornatus (Jablonowsky,1894))、梨剑纹夜蛾(Acronicta rumicis Linnaeus)及1种毒蛾科幼虫,危害暴马丁香叶部的2种蓟马及1种蚜虫。
     根据柳蛎盾蚧在丁香上的虫口密度,应用聚类分析法将13种(品种)丁香分为高抗类(什锦丁香等7种)、中抗类(西南丁香等3种)、易感类(紫丁香等2种)、高感类(红丁香)。分别在柳蛎盾蚧的未危害期(5月末)、危害盛期(6月末)、危害弱期(7月术)、危害末期(8月末)采集其叶片,用香兰素盐酸法、高效液相色谱法测定其内的单宁、酚酸含量,分析了丁香叶中单宁、总酚酸含量、酚酸种类等与柳蛎盾蚧危害的关系。结果表明:高抗类中不感虫丁香叶中的酚酸种类齐全,除小叶丁香外其总酚酸含量均显著高于其余种(品种)(p<0.05)。而高抗类中的感虫丁香,未危害期,朝鲜丁香单宁含量显著高于其余感虫丁香(p<0.05);在危害盛期,除朝鲜丁香单宁增幅不显著外,其余种单宁、总酚酸含量均显著高于中抗、易感和高感类丁香,其增幅为81.75%-888.43%。中抗类丁香,在危害盛期其总酚酸含量增幅显著高于易感和高感类丁香,其单宁含量显著高于易感类丁香。易感和高感类丁香在未危害期其单宁和总酚酸含量相对较低,危害盛期其单宁或总酚酸含量存在诱导滞后性,其酚酸种数只是高抗和中抗类丁香的1/2。此外,一些特定酚酸种类的有无及其含量的多少也与丁香的抗性相关,如:高抗类及中抗类丁香在5—8月份均检测到肉桂酸,易感和高感类丁香5—8月均未检测到肉桂酸。对不同危害期内13种丁香叶中的POD、SOD、CAT、PPO、 PAL、TI CI共7种防御蛋白活性的测定结果表明:危害时期、丁香种(品种)对丁香防御蛋白活力有极显著影响(p<0.01)。 POD活性,在危害盛期,高抗、中抗类丁香均显著升高(p<0.05),易感、高感类应激滞后,分别在危害弱期和危害末期升高。CAT在易感类和高感类丁香防御上起主导作用,其活性在危害盛期显著升高,中抗和高抗类未见明显变化。SOD活性,高抗类丁香危害盛期无显著性变化,而其余3类则显著降低。PPO活性,未危害期的高低与抗性相关,虫害盛期诱导表达的强弱也与抗性相关;PAL活性未能反映抗性品种间的差异。TI和CI活性,在未危害期的高低与其抗虫性无明显相关性,在危害盛期的升高幅度与抗虫性成正相关。
     综上所述,丁香中酚酸种类多、总酚酸或单宁含量高,或者其单宁和总酚酸含量能在虫害后迅速升高、增幅大的种类,对柳蛎盾蚧的抗性就强,反之则弱。PPO未危害期活性的高低可作为筛选丁香抗虫品种的指标,危害盛期POD、PPO、TI和CI活性升高的幅度与丁香抗虫性水平呈正相关。因此,在抗性品种的选育上丁香酚酸种类数、总酚酸和单宁含量、PPO活性可作为选育指标。
Syringa plants are excellent landscaping trees and many species of them have good medicinal effects. The plants have long been considered less pests and resistant infertility. However, our survey found there were at least11different species of insects damaged Syringa plants and2-3species of them made trees weak growth, even death. Studying the rule of pests damage and insect-resistant mechanism are necessary prerequisite for protecting Syringa plants resources and further develop its using potential. For this purpose, the pest species during the period from clove leaves expansion to deciduous were detailed investigated and the resistance mechanism of Syringa spp. on Lepidosaphes salicina were analyzed from the point of view of the chemical ecology. Furthermore, the effects of cloves tannins, phenolic acids and a variety of defense protein on L. salicina were discussed. Our study will provide basic data for better protection and use of the cloves resources and breeding insect-resistant varieties, and also provide a theoretical basis for the prevention and treatment of L. salicina.
     Our survey found there were at least11different species of insects damaged Syringa plants in Harbin. Except phassus excrescens and Lepidosaphes salicina, all the other9species are reported for the first time. Thereinto, the trunk borer Phassus excrescens damaged nine variations, including Syringa oblata, Syringa villosa, Syringa emodi, Syringa microphylla, Syringa vulgaris., Syringa velutina, Syringa vulgaris'dahua', Syringa reticulata var. mandshurica and Syringa dilatata. The hosts of this pest are in large scope, with the highest fatality rate to Syringa plants. The defoliator Psilogramma increta damaged Syringa oblata, Syringa villosa, Syringa emodi, Syringa microphylla, Syringa velutina and Syringa vulgaris 'zihong'. The Phloem-Sucking pests Coccurra ussuriensis was only found in Syringa reticulata var. mandshurica. Pseudococcus comstocki endangers Syringa reticulata var. mandshurica and Syringa microphylla. Lepidosaphes salicina greatly damaged Syringa oblata, Syringa villosa, Syringa emodi, Syringa oblata, Syringa dilatata, Syringa vulgaris and its variations, and occasionally endangered Syringa reticulata var. mandshurica, but not Syringa microphylla, Syringa velutina, Syringax chinensis f. chinensis and Syringa vulgaris'zihong'. Moreover, other insects were also found to damage Syringa spp., for instance, the Dendrothrips ornatus and two Lymantridae larvae that feed on Syringa oblate, and two thrips and one aphid that feed on Syringa reticulata var. mandshurica.
     On the basis of the population density of L. salicina on Syringa spp.,13species/cultivars of Syringa spp. were categorized into following four groups:highly-resistant group (e.g. Syringa chinensis et al), moderately-resistant group (e.g. S. emodi et al), susceptible group (e.g. S. oblate et al), highly-susceptible group (e.g.5. villosa), by cluster analysis. The contents of various tannins and phenolic acids in leaves of these13species/cultivars of Syringa from four sampling periods:the pre-infesting period (end of May), the peak-infesting period (end of June), the weakly-infesting period (end of July) and the late-infesting period (end of August), were measured with Vanillin-HCl and HPLC methods; and then their relationships with the susceptibility to L. salicina attacks were analyzed. The results showed that in the highly-resistant group, a full range/types of phenolic acids were detected in the uninfected leaves, and the total contents of phenolic acids were significantly higher than those species/varieties in other groups (p<0.05), except S. microphylla. Among the infested Syringa spp. within the highly-resistant group, the contents of tannins in S. dilatata leaves during the pre-infesting period were significantly higher than those in the other infested species within the same group (p<0.05); during the peak-infesting period, except that the increasing range of tannin is not significant in S. dilatata, the contents of tannin and total phenolic acids of the non-infested species were significantly higher (around81.75%to888.43%) than the infected Syringa spp. As for the moderately-resistant group, the increase range of total phenolic acids contents was significantly higher than that in the susceptible group and the highly-susceptible group during the peak-infesting period, and the tannin content was significantly higher than that in the susceptible group. In the susceptible group and highly-susceptible group, the contents of tannin and total phenolic acids were relatively low during the pre-infesting period, and there was a lag of induction in the total contents of tannins and phenolic acids during the peak-infesting period, and the types of phenolic acids were just half of the highly-resistant and moderately resistant groups. In addition, some specific kinds of phenolic acids and the changes of contents were related to the resistance of Syringa spp. eg. From May to August, the cinnamic acid was detected in all highly-resistant group and moderately-resistant group, whereas it wasn't detected in the susceptible and the highly susceptible groups.
     We investigated the relationship between activities of various defensive plant proteins and pest-resistance to the L. salicina by testing seven kinds of defensive protein activities (POD, SOD, CAT, PPO, PAL, TI and CI) from the leaves of13Syringa species (seven species with high pest-resistance, three species with general resistance, two species with vulnerable type and one with very susceptible type) in different pest periods. The results showed highly significant difference in defensive proteins activities between different Syringa species (/?<0.01) in the pest period. POD activity of the species with high and general pest-resistance were significantly increased (p<0.05) in the peak-infesting period (end of June). In contrast, POD activity of the species with vulnerable and very susceptible pest-resistance was increased in the weak-infesting period (end of July) and the late-infesting period (end of August). CAT activity was significantly increased in the peak-infesting period; it may play a primary role in protection of the two types of species from pest damage. SOD activity was significantly decreased in all the tested species except the high resistance species in the peak-infesting period. The change of the PPO activity was positively correlated with the resistance in the pre-infesting period (end of May) and its increment also had correlation with pest resistance in the peak-infesting period. There were no differences in PAL activity between different resistance species. Similarly no significant correlation was found between the activities of TI and CI and the pest resistance in the pre-inf esting period. In summary, the level of PPO activity in the pre-infesting period is recommended as an index screening the resistant species.
     In summary, the resistance of Syringa spp. against L. salicina is related to its constitutive and induced defenses. The species that contain more types of phenolic acids and high contents of total phenolic acids and tannin, or can quickly respond to insect attacks by producing or increasing the contents of tannin or phenolic acids, might have a strong resistance potential against L. salicina, and vice versa. The activity level of the PPO non-harmful period can be used as index for screening cloves insect-resistant varieties. Increment of POD, PPO, TI and CI activities in the peak-infesting period were positively correlated with pest-resistance level of Syringa spp.. Therefore, on the breeding of resistant varieties, the species number of cloves phenolic acid, the total phenolic acid, and tannin contents, PPO activity can be used as breeding index.
引文
[1]施佳,朱松岩,师丽华,等.丁香属植物引种栽培探讨[J].林业科技情报,2008,40(2):32-33.
    [2]周丽光,冯雪松,黄开毅,等.关东丁香化学成分研究[J].中药材,2008,31(5):679-681.
    [3]周丽光.关东丁香化学成分研究[D].长春:吉林大学畜牧兽医学院,2008:1.
    [4]明军,顾万春,刘春,等.丁香属植物种子资源研究概况[J].世界林业研究,2007,20(3):20-26.
    [5]Ahmad M, Aflab K. Hypotensive action of syringin from Syringa vulgaris[J]. Phytother Res,1995,9 (6):452-454.
    [6]周业明.紫丁香叶的化学成分研究[D].沈阳:沈阳药科大学硕士学位论文,2005:14.
    [7]程淑云.注射用广炎灵粉针剂成型工艺及质量标准的研究[D].哈尔滨:黑龙江中医药大学,2007,6.
    [8]李永吉,吕邵娃,王艳宏,等.丁香叶药用研究进展[J].中医药信息,2003,20(1):22-24.
    [9]黑龙江省药品监督管理局.黑龙江省中药材标准2001[M/OL].2001[2012-10-20]http://db.yaozh.com/index.php?action=yaocai_bz&search=search&name=%E4%B8%8 1%E9%A6%99%E5%8F%B6&context=&first=&first_s=&submit_namess=.
    [10]湖南省食品药品监督管理局.湖南省中药材标准(2009年版)[M].湖南科学技术出版社,2009:132.
    [11]程红,严善春.危害丁香属植物的昆虫种类[J].东北林业大学学报,2011,39(3):113-116.
    [12]刘军侠,刘宽余,林同,等.杨圆蚧、柳蛎蚧研究进展[J].河北林果研究,2001,16(3):299-304.
    [13]姬兰柱,杨金宽,邵玉华.柳牡蛎蚧的研究[J].林业科学,1994,30(2):188-192.
    [14]臧淑英,李容辉.论丁香属植物引种的现状与前景[J].植物学通报,1992,9(2):30-33.
    [15]臧淑英,催洪霞.丁香花[M].上海:上海科学技术出版社,2000:1,4,118-120,75,79-80.
    [16]孟听.北京地区丁香属种质资源收集以及园林应用[J].北京园林,2011,27(2):35-42.
    [17]何淼.东北地区丁香属植物分子系统学研究[D].哈尔滨:东北林业大学园林学院博士论文,2007:1.
    [18]王艳,李华.包头地区丁香属植物开花习性的调查统计分析[J].内蒙古农业科技,2009(5):74-75.
    [19]Kolmogorova E Y. The structural-functional characteristics of Syringa vulgaris L. and an assessment of their applicability in diagnosing the atmospheric pollution of the city of Kemerovo[J]. Contemporary Problems of Ecology,2010,3 (2):241-244.
    [20]国家中医药管理局《中华本草》编委会.中华本草[M].上海:上海科学技术出版社,1999:5513-5519.
    [21]南京中医药大学.中药大辞典[M].2版.上海:上海科学技术出版社,2006:3282.
    [22]郝婷婷,严铭铭,郭婷婷,等.紫丁香叶中总皂苷提取工艺的研究[J].时珍国医国药,2008,19(6):1425-1424.
    [23]王丹丹,刘盛泉,陈英杰,等.紫丁香有效成分的研究[J].药学学报,1982,17(12):951-954.
    [24]王迪,张贵军,李仁郁.黑龙江省丁香属植物药资源研究[J].中医药信息,1985(3):32.
    [25]王峰,文玉晶,牛俊奇,等.丁香叶片药理和毒理的实验研究[J].临床肝胆病杂志,2000,16(2):94-96.
    [26]邢美玉,黄树春.紫丁香叶制剂的抗单疱Ⅰ型病毒实验及临床[J].眼科新进展,1988,8(2):15-18.
    [27]杨唯唯,邢美玉.紫丁香叶制剂对单疱病毒性角膜炎治疗前后的免疫学测定[J].实用眼科杂志,1990,8(4):225-226.
    [28]邢美玉,李波.紫丁香叶制剂治疗流行性出血性结膜炎[J].中西医结合眼科杂志,1996,14(1):30.
    [29]孙士华,肖洪彬.几种丁香植物的药理作用研究[J].中医药信息,1986,4(2):37-38.
    [30]李淑静,徐连英.紫丁香叶治疗痔疮18例[J].中国民间疗法,2001,9(1):57.
    [31]王丽丽,赵新淮.紫丁香叶提取物在食用油脂中的抗氧化作用[J].粮油食品科技,2006,14(6):39-40,46.
    [32]李永吉,吕邵娃,王艳宏,等.丁香叶生药学特性及理化鉴别[J].中医药学报,2003,31(6):19-21.
    [33]张晓燕,朱广伟,李容.木犀科科丁香叶中总黄酮的含量测定[J].黑龙江医药,2007,21(1):1-2.
    [34]李永吉,吕邵娃,王艳宏,等.朝鲜丁香叶的化学成分分离鉴定[J].中医药信息,2003,20(2):25-27.
    [35]江蔚新,朱广伟,李睿.丁香叶与丁香花中多糖含量比较[J].中成药,2007,29(8):3-4.
    [36]王晓东,褚英新,原永波.暴马丁香的利用及栽培[J].特种经济动植物,2002(3):25
    [37]陈长春,张新彩,李万波,等.秦岭11种丁香属植物抗菌作用的实验研究[J].陕西林业科技,1995(3):11-12.
    [38]徐国兴.长白山暴马丁香枝化学成分的研究[D].长春:吉林大学硕士学位论文,2005:1.
    [39]尹卫平,赵天增,张占旺,等.丁香属河南小叶丁香挥发油成分的研究[J].中草药, 1998,29(4):225
    [40]Park H J, Lee M S, Lee K T. Studies on constituents with cytotoxic activity from the stem bark of Syringa velutina[J]. Chem Pharm Bull,1999,47 (7):1029-1031.
    [41]Hyuncheol O, Eun-Kyoung K, Do-Hoon K, et al. Secoiridoid glucosides with free radical scavenging activity from the leaves of Syringa dilatata[J]. Phytotherapy Research,2003, 17:417-419.
    [42]米宝丽.中药丁香叶的质量及应用研究[D].沈阳:辽宁中医药大学硕士学位论文,2008:56-58.
    [43]朱玲,安哲.几种丁香叶的多元素分析[J].哈尔滨医科大学学报,1996,30(6):554-555.
    [44]张军锋,张树军.丁香属植物的化学成分及其药理作用的研究进展[J].海南大学学报自然科学版,2007,25(2):200-205.
    [45]Li Zuguang, Lee M R, Shen D L. Analysis of volatile compounds emitted from fresh Syringa oblata flowers in different florescence by headspace solid-phase microextraction-gas chromatography-mass spectrometry[J]. Analytica Cbimica Acta,2006,576 (1):43-49.
    [46]Xu Qiongming, Li Quan, Liu Yanli, et al. New lignans from Syringa reticulata var. mandshurica[J]. Chemistry of Natural Compounds,2010,46 (3):366-369.
    [47]Machida K, Ohkawa N, Ohsawa A, et al. Two new phenolic glycosides from Syringa reticulata[J]. Journal of Natural Medicines,2009,63 (2):192-194.
    [48]Mazzon E, Esposito E, Di Paola R, et al. Effects of verbascoside biotechnologically produced by Syringa vulgaris plant cell cultures in a rodent model of colitis [J], Naunyn-Schmiedeberg's Archives of Pharmacology,2009,380 (1):79-94.
    [49]Genovese T, Paterniti I, Mazzon E, et al. Efficacy of treatment with verbascoside, biotechnologically produced by Syringa vulgaris plant cell cultures in an experimental mice model of spinal cord trauma[J]. Naunyn-Schmiedeberg's Archives of Pharmacology, 2010,382 (4):331-345.
    [50]陈合明,朱丽虹,祁润身,等.饰棍蓟马的生物学及防治研究[J].北京农业大学学学报,1994,20(2):171-177.
    [51]吴利民,丛淑春.饰棍蓟马的生物学特性及防治[J].中国森林病虫,2001(增刊):17.
    [52]刘振陆.疣纹蝙蝠蛾生活习性初步观察[J].昆虫学报,1962,11(3):321-322.
    [53]迟德富,孙凡,甄志先,等.柳蝙蛾生物学特性及发生规律[J].应用生态学报,2000,11(5):757-762.
    [54]宋寅德,王育选,张鹏.丁香盲蝽的发生与防治对策[J].植物保护,1996(2):28.
    [55]Murakami M. Effect of avian predation on survival of leaf-rolling lepidopterous larvae[J]. Population Ecology,1999,41 (2):135-138.
    [56]Roda A L, Baldwin I T. Molecular technology reveals how the induced direct defenses of plants work[J]. Basic and Applied Ecology,2003,4:15-26.
    [57]李新岗,刘惠霞,黄建.虫害诱导植物防御的分子机理研究进展[J].应用生态学报,2008,19(4):893-900.
    [58]刘兴平,陈春平,王国红,等.我国松树诱导抗虫性研究进展[J].林业科学,2003,39(5):119-128.
    [59]程春龙,李俊清.植物多酚的定量分析方法和生态作用研究进展[J].应用生态学报,2006,17(12):2457-2460.
    [60]何强,姚开,石碧.植物单宁的营养学特性[J].林产化学与工业,2001,21(1):80-85.
    [61]李斌.单宁:一种植物的次生代谢产物[J].生物学教学,2002,7(12):36-37.
    [62]徐载春.丹宁的化学与对饲料利用的影响[J].四川畜牧兽医,1999,26(增刊):45-48.
    [63]朱南山,张彬,李丽立.单宁的抗营养作用机理及处理措施[J].中国词料,2006(17):26-29.
    [64]Cowan M M. Plant products as antimicrobial agents[J]. Clinical Microbiology Reviews, 1999,12 (4):564-582.
    [65]袁红娥,严善春,佟丽丽,等.剪叶损伤与昆虫取食对兴安落叶松(Larix gmelinii)针叶中缩合单宁诱导作用的差异[J].生态学报,2009,29(3):1415-1420.
    [66]武予清,郭予元.棉花单宁-黄酮类化合物对棉铃虫的抗性潜力[J].生态学报,2001,21(2):286-289.
    [67]张时妙,莫建初,程梦林,等.单宁酸对淡色床蚊抗氰戊菊酯品系和敏感品系幼虫生长发育的影响[J].昆虫学报,2005,48(6):886-891.
    [68]Serratos A, Arnason J T, Nozzolillo C, et al. Factors contributing to resistance of exotic maize populations to maize weevil, Sitophilus zeamais[J]. Journal of Chemical Ecology, 1987,13 (4):751-762.
    [69]Raisanen T, Ryyppo A, Julkunen-Tiitto R, et al. Effects of elevated CO2 and temperature on secondary compounds in the needles of Scots pine (Pinus sylvestris L.)[J]. Trees,2008, 22:121-135.
    [70]周嘉熹,杨雪彦,宋占邦,等.树木单宁含量可作为对两种星天牛的抗性指标[J].陕西林业科技,1996(4):15-18
    [71]李继东,桑玉强,毕会涛,等.4树种树皮有机物质含量与对桑天牛抗性关系的研究[J].河南科学,2007,25(4),578-581.
    [72]Lin Y M, Liu J W, Xiang P, et al. Tannin dynamics of propagules and leaves of Kandelia candel and Bruguiera gymnorrhiza in the Jiulong River Estuary, Fujian, China[J]. Biogeochemistry,2006,78 (3):343-359.
    [73]李镇宇,陈桦盛,袁小环,等.油松对赤松毛虫的诱导化学防御[J].林业科学,1998,34(2):43-49.
    [74]薛皎亮,谢映平,刘计权,等.鞘蛾危害后诱导华北落叶松体内化学物质变化的研究[J].林业科学,2000,36(4):46-50.
    [75]林凤敏,吴敌,陆宴辉,等.棉花主要抗虫次生物质与其对绿盲蝽抗性的关系[J].植物保护学报,2011,38(3):202-208.
    [76]孙萍,郭树平,李海霞.杨树单宁含量与青杨天牛危害的关系[J].东北林业大学学报,2008,36(5):51-52.
    [77]李会平,王志刚,杨敏生,等.杨树单宁与酚类物质种类及含量与光肩星天牛危害之间关系的研究[J].河北农业大学学报,2003,26(1):36-39.
    [78]黄舒静,郭启荣,林益明,等.福建东山引种的短枝木麻黄国际种源含能有机物和单宁含量的研究[J].厦门大学学报:自然科学版,2009,48(1):124-127.
    [79]吴耀军,常明山,李德伟,等.桉树枝瘿姬小蜂危害对桉树缩合单宁含量的影响[J].南京林业大学学报:自然科学版,2010,34(6):1-4.
    [80]Schofield P, Mbugua D M, Pell A N. Analysis of condensed tannins:a review[J]. Aninal Feed Science and Technology,2001,91:21-40.
    [81]Haslam E. Vegetable tannins-lessons of a phytochemical lifetine[J]. Phytochemistry,2007, 68:2713-2721.
    [82]赵学丽,周志军,郭成博,等.柳树单宁含量与光肩星天牛危害的关系[J].林业勘查设计,2011(1):71-73.
    [83]张飞萍,邓秀明,陈清林,等.毛竹尖胸沫蝉危害对毛竹枝叶黄酮和单宁含量的影响[J].竹子研究汇刊,2003,22(1):43-46.
    [84]刘鹏程,陈顺立,童应华,等.红腹柄天牛为害对甜储黄酮、单宁含量的影响[J].福建林学院学报,2006,26(4):314-317.
    [85]王燕,戈峰,李镇宇.马尾松诱导化学物质变化的时空动态[J].生态学报,2001,21(8):1256-1261.
    [86]孟昭军,周永泉,严善春,等.外源茉莉酸类化合物对2种落叶松针叶内单宁含量的影响[J].林业科学,2010,46(3):96-104.
    [87]Dixon R A, Paiva N L. Stress-induced phenylpropanoid metabolism[J]. Plant Cell,1995,7: 1085-1097.
    [88]高微微,佟健明,郭顺星.植物次生代谢产物的生态学功能研究进展[J].中国药学杂志,2006,41(13):961-963.
    [89]Morton L W, Caccetta A R, Puddey I B, et al. Chemistry and biological effects of dietary phenolic compounds:relevance to cardiovascular disease[J]. Clinical and Experimental Pharmacology and Physiology,2000,27 (3):152-159.
    [90]van Loon J J A. Chemoreception of phenolic acids and flavonoids in larvae of two species of Pieris[J]. Journal of Comparative Physiology A:Neuroethology, Sensory, Neural, and Behavioral Physiology,1990,166 (6):889-899.
    [91]Xu Guihua, Ye Xingqian, Liu Donghong, et al. Composition and distribution of phenolic acids in Ponkan (Citrus poonensis Hort. ex Tanaka) and Huyou (Citrus paradisi Macf. Changshanhuyou) during maturity [J]. Journal of Food Composition and Analysis,2008,21 (5):382-389.
    [92]谢兴.杨树枝条酚酸的提取与分析及其对青杨天牛的影响[D].哈尔滨:东北林业大学硕士学位论文,2010,5.
    [93]Kovacik J, Klejdus B, Stork F, et al. Prey-induced changes in the accumulation of amino acids and phenolic metabolites in the leaves of Drosera capensis L.[J]. Amino Acids,2012, 42 (4):1277-1285.
    [94]Baque M A, Lee E J, Paek K Y. Medium salt strength induced changes in growth, physiology and secondary metabolite content in adventitious roots of Morinda citrifolia: the role of antioxidant enzymes and phenylalanine ammonia lyase[J]. Plant Cell Reports, 2010,29 (7):685-694.
    [95]Szopa A, Ekiert H, Szewczyk A, et al. Production of bioactive phenolic acids and furanocoumarins in in vitro cultures of Ruta graveolens L. and Ruta graveolens ssp. divaricata (Tenore) Gams, under different light conditions[J]. Plant Cell Tissue and Organ Culture,2012,110 (3):329-336.
    [96]Classen D, Arnason J T, Serratos J A, et al. Correlation of phenolic acid content of maize to resistance to Sitophilus zeamais, the maize weevil, in CIMMYT'S collections [J]. Journal of Chemical Ecology,1990,16 (2):301-315.
    [97]Beninger C W, Abou-Zaid M M, Kistner A L E, et al. A Flavanone and two phenolic acids from Chrysanthemum morifolium with phytotoxic and insect growth regulating activity [J]. Journal of Chemical Ecology,2004,30 (3):589-606.
    [98]严善春,袁红娥,王琪,等.叶损伤诱导兴安落叶松针叶中10种酚酸的变化[J].应用生态学报,2010,21(4):1000-1006.
    [99]左彤彤,迟德富,王牧原,等.不同品系杨树酚酸类物质对青杨脊虎天牛的驱避作用[J].植物保护学报,2008,35(2):160-164.
    [100]Seneviratne G, Jayasinghearachchi H. Phenolic acids:possible agents of modifying N2-fixing symbiosis through rhizobial alteration [J]. Plant and Soil,2003,252 (2):385-395.
    [101]Kessler A, Baldwin I. Plant responses to insect herbiovory:the emerging molecular analysis[J]. Annual Review of Plant Biology,2002,53 (1):299-328.
    [102]鲁艺芳.光照强度对兴安落叶松(Larix gmelinii)组成抗虫性的影响[J].哈尔滨:东北林业大学硕士学位论文,2012:5.
    [103]Yu An, Shen Yingbai, Wu Lijuan, et al. A change of phenolic acids content in poplar leaves induced by methyl salicylate and methyl jasmonate[J]. Journal of Forestry Research, 2006,17 (2):107-110.
    [104]Todd G W, Getahun A, Cress D C. Resistance in barley to the greenbug, Schizaphis graminum L., toxicity of phenolic and flavonoid compounds and related substances[J]. Annals of the Entomological Society of America,1971,64:718-722.
    [105]王琪,严善春.外源茉莉酸类化合物系统诱导红松酚酸含量变化[J].北京林业大学学报,2012,34(6):98-106.
    [106]胡远,韩颖,赵欣,等.小麦不同抗蚜品种中3种酚酸类化合物的含量变化及其作用评价[J].应用与环境生物学报,2008,14(6):753-756.
    [107]邓文红,沈应柏,李镇宇,等.虫食与熏蒸对马尾松苗木针叶酚酸含量的影响[J].北京林业大学学报,2010,32(1):39-43.
    [108]Famer E E, Ryan C A. Interplant communication:Airborne methyl-jasmonate induces sy thesis of proteinase inhibitors in plant leaves [J]. Proceedings of the National Academy of Sciences,1990,87(7):713-716.
    [109]李镇宇,王燕,陈华盛,等.赤松毛虫的危害对小油松针叶内物质含量的影响[J].京林业大学学报,1999,21(5):41-45.
    [110]季春梅.瓜蚜侵染对黄瓜叶片次生代谢物质及相关酶活性的影响[D].泰安:山东农业大学硕士学位论文,2011:11-12.
    [111]Orozco-Cardenas M L, Narvaez-Vasquez J, Ryan C A. Hydrogen peroxide acts as a second messenger for the induced of defense genes in tomato plants in response to wounding, systemin, and methyl jasmonate[J]. Plant Cell,2001,13:179-191.
    [112]杜秀敏,殷文璇,赵彦修,等.植物中活性氧的产生及清除机制[J].生物工程学报,2001,17(2):121-125.
    [113]Xin M, Daohui L, Yi X, et al. Effects of phenanthrene on chemical composition and enzyme activity in fresh tea leaves[J]. Food Search,2008,115 (2):569-573.
    [114]Revandy I, Mahmood M, Mohd R, et al. Responses of the antioxidative enzymes in Malaysian rice (Oryza sativa L.) cultivars under submergence condition[J]. Acta Physiologiae Plantarum,2010,32 (4):739-747.
    [115]Tang Ke, Zhan Jicheng, Yang Haoru, et al. Changes of resveratrol and antioxidant enzymes during UV-induced plant defense response in peanut seedlings [J]. Journal of Plant Physiology,2010,167 (2):95-102.
    [116]黄伟,贾志宽,韩清芳.蚜虫(Aphis medicaginis Koch)危害胁迫对不同苜蓿品种体内丙二醛含量及防御性酶活性的影响[J].生态学报,2007,27(6):2177-2183.
    [117]Wang Qi, Yan Shancun, Shi Lei, et al. Effects of manual cutting and larval herbivory on systemic induction of antioxidant defense enzymes in Larix gmelinii[J]. Scandinavian Journal of Forest Research,2011,26 (1):61-68.
    [118]王琪,严善春,徐波.红松的化学防御及冷杉梢斑螟和赤松梢斑螟的生存策略[J].林业科学,2012,48(7):79-85.
    [119]谭永安,柏立新,肖留斌,等.绿盲蜻危害对棉花防御性酶活性及丙二醛含量的诱导[J].棉花学报,2010,22(5):479-485.
    [120]何龙喜,吴小芹,俞禄珍,等.不同抗性松树与松材线虫互作中H202及其氧化酶活性的差异[J].南京林业人学学报:自然科学版,2010,34(6):13-17.
    [121]Wang J, Higgins V J. Nitric oxide modulates H2O2 mediated defenses in the Colletotrichum coccodes-tamato interaction[J]. Physiological and Molecular Plant Pathology,2006,67 (3/5):131-137.
    [122]Allen R G, Tresini M. Oxidative stress and gene regulation[J]. Free Radical Biol Med, 2000,28:463.
    [123]Leon J, Lawton M A, Raskin I. H2O2 stimulates salicylic acid biosynthesis in tobacco[J]. Plant Physiol,1995,108:1673-1678.
    [124]刘裕强,江玲,孙立宏,等.褐飞虱刺吸诱导的水稻一些防御性酶活性的变化[J].植物生理与分子生物学学报,2005,31(6):643-650.
    [125]潘敏,杨建平,李永祥,等.韭菜受迟眼蕈蚊为害后3种酶活性的变化[J].西北农业学报,2005,14(3):137-140.
    [126]郑文静,张艳芝,王辉,等.水稻不同品种抗感条纹叶枯病的防御酶活性变化的比较[J].沈阳农业大学学报,2010,41(5):521-525.
    [127]Nikolaeva T. On the relationship between the activity of O-methyltransferase and the content of lignin in various organs of kidney bean[J]. Russian Journal of Plant Physiology, 2001,48 (4):464-466.
    [128]Sudhamoy M, Adinpunya M, Nirupama M. Time course study on accumulation of cell wall-bound phenolics and activities of defense enzymes in tomato roots in relation to Fusarium wilt[J]. World Journal of Microbiology and Biotechnology,2009,25 (5):795-802.
    [129]李庆亮.B型烟粉虱为害对烟草生理生化的影响及其诱导的防御反应[D].泰安:山东农业大学硕士学位论文,2009:9.
    [130]Felton G W, Donato K, Delvecchio R J, et al. Activation of plant foliar oxidases by insect feeding reduces nutritive quality of foliage for noctuid herbivore[J]. Journal of Chemical Ecology,1989,15:667-694.
    [131]Tscharntke T, Thiessen S, Dolch R, et al. Herbivory, induced resistance and interplant signal transfer in Alnus glutinosa[J]. Biochemical Systematics and Ecology,2001,29: 1025-1047.
    [132]Allison S D, Schultz J C. Differential activity of peroxidase isozymes in response to wounding, gypsy moth, and plant hormones in northern red oak (Quercus rubra L.)[J]. Journal of Chemical Ecology,2004,30:1363-1379.
    [133]胡增辉.合作杨苗木诱导抗性产生的生理生化基础研究[D].北京:北京林业大学博士学位论文,2007:14.
    [134]毛红,陈瀚,刘小侠,等.绿盲蜻取食与机械损伤对棉花叶片内防御性酶活性的影响[J].应用昆虫学报,2011,48(5):1431-1436.
    [135]徐波.危害红松球果的梢斑螟属两种害虫的发生规律及其化学防治[D].哈尔滨:东北林业大学林学院硕士学位论文,2009:23-27.
    [136]Kruzmane D, Jankevica L, Ievinsh G. Effect of regurgitant from Leptinotarsa decemlineata on wound responses in Solanum tuberosum and Phaseolus vulgaris[J]. Physiologia Plantarum,2002,115 (4):577-584.
    [137]孙多鑫.几种与抗性有关的生化物质和酶在春小麦对麦长管蚜抗性作用的研究[D].兰州:甘肃农业大学学位论文,2006:33-34.
    [138]季春梅,曹辰兴,雷关红,等.黄瓜诱导抗蚜性与次生代谢相关酶活性的关系[J].山东农业科学,2011(10):32-35.
    [139]周丹丹,刘长仲,姜生林,等.烟粉虱刺吸胁迫对棉花叶片生理的影响[J].甘肃农业大学学报,2009,44(1):107-114.
    [140]欧阳光察,薛应龙.植物苯丙烷类代谢的生理意义及其调控[J].植物生理学通讯,1998(3):9-16.
    [141]Brenda W S. Evidence for enzyme complexes in the phenylpropanoid and flavonoid pathways[J]. Physiologia Plantarum,1999,107:142-149.
    [142]Weisshaar B, Jenkins G I. Phenylpropanoid biosynthesis and its regulation[J]. Current Opinion in Plant Biologygy,1998,1:251-257.
    [143]Radhika D, Man K, Jo B, et al. ABA, hydrogen peroxide and nitric oxide signaling in stomatal guard cells[J]. Journal of Experimental Botany,2004,55:205-212.
    [144]滕涛,曹福祥,王猛,等.松材线虫侵染对松树苯丙氨酸解氨酶及酚类物质的影响[J].中南林业科技大学学报,2007,27(3):124-127.
    [145]Hahlbrock K, Scheel D. Physiology and molecular biology of phenylpropanoid metabolism[J]. Annual Review of Plant Physiology and Plant Molecular Biology,1989,40 (1):347-369.
    [146]Rajender S, Umesh G, Gupta R, et al. Allelic variations functional markers for polyphenol oxidase (PPO) genes in Indian bread wheat (Triticum aestivum L.) cultivars[J]. Journal of Genetics,2009,88 (3):325-329.
    [147]沈兆梅.不同种植地点小麦品种多酚氧化酶活性的变异[J].合肥:安徽农业大学硕士学位论文,2007:2-3.
    [148]张蓬军.植物对专性植食者的组成抗性和诱导抗性的平衡调节机制[J].杭州:浙江大学博士学位论文,2007:5.
    [149]许传俊,李玲.蝴蝶兰外植体褐变发生与总酚含量、PPO、POD和PAL的关系[J].园艺学报,2006,33(3):671-673.
    [150]席玛芳,罗自生,程度,等.竹笋采后木质化与多酚氧化酶、过氧化物酶和苯丙氨酸解氨酶活的关系[J].植物生理学通讯,2001,37(4):294-295.
    [151]李继东,毕会涛,冯建灿,等.毛白杨无性系有机物质含量和酶活性与抗性关系研究[J].河南科学,2006,24(4):517-520.
    [152]李新岗,刘惠霞,侯慧波,等.油松球果对外源茉莉酸甲酯和虫害诱导的生化反应[J].林业科学,2007,43(3):66-72.
    [153]李润植,毛雪,李彩霞,等.棉花诱导抗蚜性与次生代谢相关酶活性的关系[J].山西农业大学学报,1998,18(2):165-168.
    [154]史瑞,迟德富,张晟铭.10种杨树酶活性与抗性的关系[J].东北林业大学学报,2008,36(9):74-75.
    [155]李进步,方丽平,张亚楠,等.棉花抗蚜性与苯丙氨酸解氨酶话性的关系[J].昆虫知识,2008,45(3):422-425.
    [156]许宁,冻雪芬,陈华才.茶树品种抗茶橙屡蜗的形态与生化特征[J].茶叶科学,1996,16(2):125-130.
    [157]蒲晓娟,陈辉.华山松大小蠹危害与寄主华山松营养物质和抗性成分的关系[J].西北农林科技大学学报:自然科学版,2007,35(3):106-110.
    [158]Heath R L, McDonald G, Christeller J T, et al. Proteinase inhibitors from Nicotiana alata enhance plant resistance to insect pests[J]. Journal of Insect Physiology,1997,43:833-842.
    [159]Koiwa H, Bressan R A, Hasegawa P M. Regulation of proteinase inhibitors and plant defense[J]. Trends in Plant Science,1997,2:379-384.
    [160]Smigocki A, Puthoff D, Zuzga S, et al. Low efficiency processing of an insecticidal Nicotiana proteinase inhibitor precursor in Beta vulgar is hairy roots[J]. Plant Cell, Tissue and Organ Culture,2009,97 (2):167-174.
    [161]Schuler T H, Poppy G M, Kerry B R, et al. Insect resistant transgenic plants[J]. Trends in biotechnology,1998,16 (4):168-175.
    [162]Haruta M, Major IT, Christopher M E, et al. A Kunitz trypsin inhibitor gene family from trembling aspen (Populu tremuloides Michx.):cloning functional expression,and induction by wounding and herbivory[J]. Plant Mol Biol,2001,46 (3):347-359.
    [163]肖怀秋,林亲录,李玉珍,等.蛋白酶抑制剂抗虫基因工程研究进展[J].生物技术通报,2004(4):22-25.
    [164]王转花,杨斌,张政.植物蛋白酶抑制剂抗虫基因工程研究进展[J].植物保护学报,2001,28(1):83-88.
    [165]Jin-Hee H, Wook-Gyo L, Byoung-Kuk N, et al. Identifination and characterization of a serine protease inhibitor of Paragonimus westermani[3]. Parasitology Research,2008,104 (3):495-501.
    [166]Bhattacharyya A, Rai S, Babu C R. A trypsin and chymotrypsin inhibitor from Caesalpinia bonduc seeds:isolation, partial characterization and insecticidal properties[J]. Plant Physiology and Biochemistry,2007,45 (3/4):169-117.
    [167]Benchabane M, Goulet M C, Dallaire C, et al. Hybrid protease inhibitors for pest and pathogen control-a functional cost for the fusion partners[J]. Plant Physiology and Biochemistry,2008,46 (7):701-708.
    [168]赵秀振.蓖麻蚕体液胰凝乳蛋白酶抑制剂调查及其基因克隆[D].北京:中国农业科学院硕士学位论文,2007:3-4.
    [169]王琛柱,钦俊德.大豆胰蛋白酶抑制剂与棉酚或丹宁混用对棉铃虫中肠蛋白酶和生长率的影响[J].昆虫学报,1996,39(4):337-341.
    [170]刘会香,张星耀.植物蛋白酶抑制剂及其在林木抗虫基因工程中的应用[J].林业科学,2005,41(3):148-157.
    [171]孙建萍.丁香在包头市城市绿化中的应用[J].内蒙古林业,2009(8):24.
    [172]郭娜,郭金丽,舒金帅,等.丁香属三种植物一年两次开花及结实特性的研究[J].内蒙古农业大学学报,2011,32(2):155-159.
    [173]牛鸿鑫.河北林木检疫害虫——柳蝙蛾[J].河北林业科技,1985(3):23-25.
    [174]甄志先,迟德富,孙凡,等.柳蝙蛾危害对水曲柳木材性质的影响[J].东北林业大学学报,2006,34(3):13-15.
    [175]甄志先,迟德富,张晓燕,等.柳蝙蛾的研究进展[J].河北林果研究,2001,16(2)178-182.
    [176]王健生,孙举勇.柳蝙蛾生物学与生态学特性的初步观察[J].山东林业科技,1995(4):35-37.
    [177]王春艳.柳蝙蛾生物学特性观察及防治对策[J].植物保护,2008(10):41,43.
    [178]钱巧琴,朱贤喜.柳蝙蛾的发生于防治试验[J].落叶果树,2005(3):60.
    [179]敖礼林,余定达,饶卫华,等.柳蝙蛾对猕猴桃的危害及综合防治技术[J].柑桔与亚热带果树信息,2003,19(7):42.
    [180]刘永生,丁强.柳蝙蛾生物学特性及防治研究初报[J].植物检疫,2001,15(2):85-87.
    [181]朱弘复,王林瑶.中国动物志:第11卷[M].北京:科学出版社,1997.
    [182]傅俊范,傅超,严雪瑞,等.辽宁树葛病虫害调查初报[J].吉林农业大学学报,2009,31(5):661-665.
    [183]邹金光.湖口县流泗公社发现梨剑纹夜蛾为害棉花[J].江西棉花科技通讯,1981(4):44.
    [184]李群博.越橘园节肢动物群落结构与功能的初步研究[D].长春:吉林农业大学硕士论文,2006:2.
    [185]鄢淑琴,黄跃阁,胡奇,等.梨剑纹夜蛾生物学的初步研究[J].吉林农业大学学报,1992,14(2):5-7.
    [186]胡淼,祁明利.梨剑纹夜蛾的形态和生活习性[J].昆虫知识,1993,30(2):95-96.
    [187]葡萄梨剑纹夜蛾 . (2011-10-21) [2013-01-15]. [EB/OL]http://www.zhongnong.com/binghai/111791.html.
    [188]王建全.柳蛎盾蚧生活史观察及防治[J].农业科技与信息,2004(9):11.
    [189]徐公天.东北地区柳蛎盾蚧的初步观察[J].昆虫知识,1979(6):259-260.
    [190]刘金江.沙棘蛀干害虫柳蝙峨的危害与防治[J].农业科技通讯,2006(4):54.
    [191]刘宽余,刘军侠,严善春,等.柳蛎蚧防治阈值的研究[J].东北林业大学学报,1997,25(5):1-4.
    [192]宋丽娜,范旭东,冀永生,等.不同生境中苦储叶片取食率·损失率及单宁含量变化关系[J].安徽农业科学,2010,38(7):3784-3786.
    [193]Kovacik J, Klejdus B, Hedbavny J, et al. Effect of copper and salicylic acid on phenolic metabolites and free amino acids in Scenedesmus quadricauda (Chlorophyceae) [J]. Plant Science,2010,178 (3):307-311.
    [194]冷平,张国军,吴晓云,等.秋冬季节柿属植物树体内酚类物质含量的变化[J].中国农业大学学报,2001,6(1):63-67.
    [195]Teklemariam T A, Blake T J. Phenylalanine ammonia-lyase-induced freezing tolerance in jack pine (Pinus banksiana) seedlings treated with low, ambient levels of ultraviolet-bradiation[J]. Physiol plantarum,2004,122:244-253.
    [196]Hoshino T, Odaira M, Yoshida M, et al. Physiology and biochemical significance of antifreeze substances in plants[J]. J Plant Res,1999,112:255-261.
    [197]钦俊德.植食性昆虫食性的生理基[J].昆虫学报,1980,23(1):106-121.
    [198]Muetzel S, Becker K. Extractability and biological activity of tannins from various tree leaves determined by chemical and biological assays as affected by drying procedure[J]. Animal Feed Science and Technology,2006,125 (1):39-149.
    [199]李波,倪志勇,王娟,等.木质素生物合成关键酶咖啡酸-O-甲基转移酶基因(COMT)的研究进展[J].分子植物育种,2010,8(1):117-124.
    [200]Malamy J, Carr J P, Klessing D F, et al. Salicylic acid:a likely endogenous signal in the resistance response of tobacco to viral infection[J]. Science,1990,250:1002-1004.
    [201]金鑫.杨树中次生代谢产物的提取与分析及其与青杨天牛抗性关系的研究[J].长春:吉林大学化学学院硕士学位论文,2008:33-34.
    [202]Dixon R A, Achnine L, Kota P, et al. The phenylpropanoid pathway Genomies PersPctive[J]. Molecular Plant Pathology,2002,3 (5):371-390.
    [203]Meyer H J, Norris D M. Lignin intermedites and simple phenolics as feeding stimulants for Scolytus multistriatus[J]. Journal Insect physiology,1974,20 (10):2015-2021.
    [204]鲁艺芳,石蕾,严善春.不同光照强度对兴安落叶松几种主要防御蛋白活力的影响[J].生态学报,2012,32(11):3621-3627.
    [205]Wu J Q, Baldwin I T. Herbivory-induced signalling in plants:perception and action[J]. Plant, Cell and Environment,2009,32 (9):1161-1174.
    [206]Li Dongxiao, Li Cundong, Sun Hongchun, et al. Effects of drought on soluble protein content and protective enzyme system in cotton leaves [J]. Frontiers of Agriculture in China, 2010,4 (1):56-62.
    [207]严善春,门丽娜,石蕾,等.杂种落叶松不同子代针叶内抗氧化酶活性的比较[J].林业科学,2011,47(10):111-115.
    [208]Kavitha R, Umesha S. Regulation of defense-related enzymes associated with bacterial spot resistance in tomato[J]. Phytoparasitica,2008,36 (2):144-159.
    [209]王晶英,敖红,张杰,等.植物生理生化实验技术与原理[M].哈尔滨:东北林业大学出版社,2003:82-83,136-138.
    [210]李合生.植物生理生化实验原理和技术[M].北京:高等教育出版社,2000:164-169.
    [211]Zong Na, Wang Chenzhu. Larval feeding induced defensive responses in tobacco: comparison of two sibling species of Helicoverpa with different diet breadths [J]. Planta, 2007,226 (1):215-224.
    [212]Felton G W, Donato K K, Broadway R M, et al. Impact of oxidized plant phenolics on the nutritional quality of dietary protein to a noctuid herbivore, Spodoptera exigua[J]. Journal of Insect Physiology,1992,38(4):277-285.
    [213]刘艳,郝燕燕,刘艳艳,等.机械伤害和茉莉酸对豌豆幼苗膜脂过氧化的影响[J].中国农业科学,2005,38(2):388-393.
    [214]王琪,严善春,王艳军,等.剪叶及昆虫取食对兴安落叶松蛋白酶抑制剂的影响[J].昆虫学报,2008,51(8):798-803.
    [215]Lagrimini L M. Wound-induced deposition of polyphenols in transgenic plants overexpressing peroxidase[J]. Plant Physiology,1991,96 (2):577-583.
    [216]张鹏翀,胡增辉,沈应柏.植物诱导抗性的研究进展[J].现代农业科学,2008,15(9):22-23.
    [217]朱友林,刘纪麟.受玉米大斑病菌侵染后玉米抗感近等位基因系SOD动态变化的研究[J].植物病理学报,1996,26(2):133-137.
    [218]赵艳.黄瓜植株机械损伤效应及防御酶应答的研究[D].内蒙古农业大学硕士学位论文,2009:50.
    [219]徐小明,于芹,徐坤,等.南方根结线虫侵染对茄子砧木幼苗根系活性氧代谢及相关酶活性的影响[J].园艺学报,2008,35(12):1767-1772.
    [220]张宽朝,金青,蔡永萍,等.苯丙氨酸解氨酶与其在重要次生代谢产物调控中的作用研究进展[J].中国农学通报,2008,24(12):59-62.
    [221]王琪,严善春,王艳军,等.叶损伤对兴安落叶松防御酶活性的系统诱导[J].东北林业大学学报,2012,40(9):77-80.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700