用户名: 密码: 验证码:
钢—混凝土组合梁界面特性分析与加劲钢板—混凝土组合板荷载分布宽度试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近20年来,钢-混凝土组合结构在我国发展很快,并展示了广阔的应用前景。但在设计理论体系上,和钢筋混凝土结构相比,组合结构领域仍存在大量尚未解决的问题。本文基于理论分析、试验研究以及数值模拟相结合的研究方法,以国内正在修建的广东佛山东平大桥为工程背景,对钢-混凝土组合梁的界面特性和钢-混凝土组合板的荷载分布宽度两个问题进行了研究,并取得了以下研究成果:
     1.以均布荷载作用下的简支组合梁为对象,研究了由栓钉等柔性连接件发生塑性变形而引起的纵向剪力重分布。根据连接件的实际受力状态,将界面受力全过程划分为3个工作阶段:弹性阶段、弹塑性阶段和破坏阶段,建立了各阶段内界面纵向剪力重分布的简化计算模型,并推导了界面纵向剪力和轴向力的计算公式。这有助于深入研究组合梁的力学性能。
     2.根据组合梁截面曲率的计算原理,利用本文建立的界面纵向剪力重分布简化计算模型,推导了组合梁截面曲率的理论计算公式。然后以截面曲率和由钢梁或混凝土翼板截面承担的轴向力为基础,建立了组合梁在各个工作阶段内界面相对滑移、滑移应变以及挠度变形的计算方法。在整个推导过程中,不仅考虑了滑移效应的影响,同时还考虑了界面纵向水平剪力重分布现象的影响,具有一定的理论意义。
     3.针对一种新型的组合板——加劲钢板-混凝土组合板,精心设计了两决不同结构体系的板,一块为简支体系的单向组合板,一块为悬臂体系的组合板,并开展了足尺模型试验研究,包括静载试验、疲劳试验和破坏试验;分析了弯曲效应控制时计算荷载分布宽度的不同等效标准之间的差别,分析了组合板上、下翼缘荷载分布宽度的差别,动态研究了简支组合板和悬臂组合板在整个受力过程中荷载分布宽度的变化规律。
     4.通过对影响加劲钢板-混凝土组合板荷载分布宽度的各种因素进行的分析,确定了3个主要影响因素:组合板厚度、宽跨刚度比以及材料非线性。然后用非线性有限元法,对3个主要影响因素进行了数值分析,并通过数值计算结果,分析了3个因素的影响程度,建立了简支组合板和悬臂组合板在弹性阶段考虑板厚和宽跨刚度比影响的荷载分布宽度修正计算公式,提出了简支组合板和悬臂组合板在承载能力极限状态下荷载分布宽度的提高系数。
At recent 20 years, steel-concrete composite structure develops quickly in our country, which would have wide application. There are still a lot of issues that need to be solved in field of composite structure, compared with traditional reinforced-concrete structure. Combining theoretical analysis, experimental study, numerical simulation methods, and taking Guangzhou Foshan Dongping Bridge as study background, the two issues, interface behavior of steel-concrete composite beam and load distribution width of steel-concrete composite plate, are studied in this dissertation. The main research achievements are summarized as the following:
    1. The redistribution of longitudinal shear force, which is caused by the plastic deformation of flexible connectors such as studs, is studied for a simply supported composite beam under uniformly distributed load. Based on the actual working behavior of the connectors, the full-range mechanic behavior of interface is divided into three work-stages, including elastic stage, elasto-plastic stage and failure stage. Simplified analytical models for the redistribution of longitudinal shear force are established and a set of formulae for calculating longitudinal shear force and axial force are presented in each stage. It is helpful to study exactly mechanics behavior of composite beam.
    2. The formulae for calculating curvature of composite beam are presented based on the first principles of curvature and the simplified analytical models for the redistribution of longitudinal shear force. Based on the equations of curvature and axial force taken by concrete flange plate, the formulae for calculating slip, slip strain and deflection of composite beam are presented at different work-stage. The consequence considering the influence of slip and redistribution of longitudinal shear force has theoretical value.
    3. Stiffened steel plate and concrete composite plate is a new kind of composite plate. Two different structure-system plates are designed such as simply supported composite plate and cantilever composite plate, and full-scale experiment is carried out. The difference of equivalent standards for calculating load distribution width controlled by bending effect is analyzed. And the
引文
[1] 朱聘儒.钢-混凝土组合梁设计原理[M].北京:中国建筑工业出版社,1989
    [2] 聂建国,刘明,叶列平.钢-混凝土组合梁结构[M].北京:中国建筑工业出版社,2005
    [3] 劳埃·扬[英].钢-混凝土组合结构设计[M].张培信译.上海:同济大学出版社,1991
    [4] 周起敬,姜维山,潘泰华.钢与混凝土组合结构设计施工手册[M].北京:中国建筑工业出版社,1994
    [5] 黄侨,周志祥.桥梁钢-混凝土组合结构设计原理[M].北京:人民交通出版社,2004
    [6] 张建华.钢-混凝土简支组合梁承载力研究[D].河海大学硕士学位论文,2001
    [7] C. Dale Buckner, Ivan M. Viest. Composite construction in steel and concrete[M]. New York: Published by the American Society of Civil Engineers Composite Construction in Steel and Concrete, 1988
    [8] N. M. Newmark, C. P. Siess, I. M. Viest. Test and analysis of composite beams with incomplete interaction[J]. Experimental Stress Analysis, 1951, 9(6): 896-901
    [9] 王连广,刘之洋.钢与轻骨料混凝土组合梁[M].成都:西南交通大学出版社,1998
    [10] R. Ian Gilbert, Mark Andrew Bradford. Time-dependent behavior of continuous composite beams at service loads[J]. ASCE, 1995; 121(2): 319-327
    [11] Luigino Dezi, Graziang Leoni, et al. Time-dependent analysis of prestressed composite beams[J]. ASCE, 1995; 121(4): 621-633
    [12] Deric John Oehlers. Design and assessment of shear connectors in composite bridge beams[J]. ASCE, 1995; 121(2): 214-224
    [13] Tevfik S. Arda, Nermin Mengene. Strength of composite beams with web concrete under negative bending[J]. ASCE, 1995; 121(8): 1170-1174
    [14] Claudio Amadio, Massimo Fragiacomo. Simplified approach to evaluate creep and shrinkage effects in steel-concrete composite beams[J]. Journal of Structural Engineering, 1997, 123(9): 1153-1162
    [15] Jianguo Nie, Yan Xiao, and Lin Chen. Experimental studies on shear strength of steelconcrete composite beams[J]. Journal of Structural Engineering, 2003, 130(8): 1206-1213
    [16] M. Fragiacomo, C. Amadio, L. Macorini. Finite-element model for collapse and long-term analysis of steel-concrete composite beams[J]. Journal of Structural Engineering, 2004, 130(3): 489-497
    [17] Methee Chiewanichakorn, Amjad J. Aref, Stuart S. Chen. Effective flange width definition for steel-concrete composite bridge girder[J], Journal of Structural Engineering, 2004,130(12): 2016-2031
    
    [18] Brian Uy, Mark Andrew Bradford. Ductility of profiled composite beams. Part I : Experimental study[J]. Journal of Structural Engineering, 1995,121(5): 876-882
    [19] Brian Uy, Mark Andrew Bradford. Ductility of profiled composite beams. Part II: Analytical study[J]. Journal of Structural Engineering, 1995,121(5): 883-889
    [20] G Fabbrocino, G Manfredi, E. Cosenza. Analysis of continuous composite beams including partial interaction and bond[J]. Journal of Structural Engineering, 2000, 126(11): 1288-1294
    
    [21] Nabeel Abdulrazzaq Jasim, Abdulamer Atalla. Deflections of partially composite continuous beams: A simple approach[J]. Journal of Constructional Steel Research, 1999, (49): 291-301
    
    [22] V. A. Oven, I.w. Burgess, et al. An analytical model for the analysis of composite beams with partial interaction[J]. Computers & Structures, 1997, 62(3): 493-504
    [23] Y.C.Wang. Deflection of steel-concrete composite beams with partial shear interaction [J]. Journal of Structural Engineering, 1998,124(10): 1159-1165
    
    [24] Nabeel Abdulrazzaq Jasim. Deflections of partially composite beams with linear connector density[J]. Journal of Constructional Steel Research, 1999, (49): 241-254
    [25] H.Y.Loh.B.Uy, M.A.Bradford. The effects of partial shear connection in the hogging moment regions of composite beams. Part I : Experimental study [J]. Journal of Constructional Steel Research, 2004, (60): 897-919
    
    [26] H.Y.Loh.B.Uy, M.A.Bradford. The effects of partial shear connection in the hogging moment regions of composite beams. Part II: Analytical study [J]. Journal of Constructional Steel Research, 2004, (60): 921-962
    
    [27] Gaetano Manfredi, Giovanni Fabbrocino, and Edoardo Cosenza. Modeling of steel- concrete composite beams under negative bending[J]. Journal of Structural Engineering, 1999, 125(6): 654-662
    
    [28] Jianguo Nie, Jiansheng Fan, and C. S. Cai. Stiffness and deflection of steel-concrete composite beams under negative bending [J]. Journal of Structural Engineering, 2004, 130(11): 1842-1851
    
    [29] Tevfik S., Arda and Nermin Mengene. Strength of composite beams with web concrete under negative bending[J]. Journal of Structural Engineering, 1995,121(8): 1170-1174
    [30] Roman Lackner, Herbert A. Mang, F.ASCE. Scale transition in steel-concrete interaction. I: Model[J]. Journal of Structural Engineering, 2003,129(4): 393-402
    
    [31] R. Seracino, D.J. Oehlers, M.F. Yeo. Partial-interaction flexural stresses in composite steel and concrete bridge beams[J]. Engineering Structures, 2001, (23): 1186-1193
    
    [32] N.K. Subedi, N.R. Coyle. Improving the strength of fully composite steel-concrete-steel beam elements by increased surface roughness-an experimental study[J]. Engineering Structures, 2002, (24): 1349-1355
    
    [33] M. Reza Salari1, Enrico Spacone et al. Analysis of steel-concrete composite frames with bond-slip[J]. Journal of Structural Engineering, 2001,127(11): 1243-1250
    
    [34] Omri Rand. Interlaminar shear stresses in solid composite beams using a complete out-of-plane shear deformation model[J]. Computers & Structures, 1998, 66(6): 713-723
    
    [35] Deric J. Oehlers, Ninh T. Nguyen, et al. Partial interaction in composite steel and concrete beams with full shear connection[J]. J. Construct. Steel, 1997, 41(2): 235-248
    
    [36] J.Q. Ye. Interfacial shear transfer of RC beams strengthened by bonded composite plates[J]. Cement & Concrete Composite, 2001, (23): 411-417
    
    [37] G. Fabbrocino, G. Manfredi, E. Cosenza. Modeling of continuous steel-concrete composite beams: computational aspects[J]. Computers and Structures, 2002, (80): 2241-2251
    
    [38] Rudolf Seracino, Chow T. Lee, et al. Partial interaction stresses in continuous composite beams under serviceability loads[J]. Journal of Constructional Steel Research, 2004, (60): 1525-1543
    
    [39] J. Y. Richard Yen, Yiching Lin, and M. T. Lai. Composite beams subjected to static and fatigue loads[J]. Journal of Structural Engineering, 1997,123(6): 765-771
    
    [40] Deric J. Oehlers, Rudolf Seracino. Low-cycle fatigue test on stud shear connectors[J]. Journal of Structural Engineering, 1997,123(2): 599-600
    
    [41] N. Gattesco, E. Giuriani, and A. Gubana. Low-cycle fatigue test on stud shear connectors[J]. Journal of Structural Engineering, 1997,123(2): 145-150
    
    [42] Ciro Faella, Enzo Martinelli, Emidio Nigro. Steel and concrete composite beams with flexible shear connection: "exact" analytical expression of the stiffness matrix and applications[J]. Computers and Structures, 2002, (80): 1001-1009
    
    [43] M. Reza Salari, Enrico Spacone, et al. Nonlinear analysis of composite beams with deformable shear connectors [J]. Journal of Structural Engineering, 1998, 124(10): 1148-1158
    
    [44] Andrea Dall Asta, Alessandro Zona. Slip locking infinite elements for composite beams with deformable shear connection[J]. Finite Elements in Analysis and Design, 2004, (40): 1907-1930
    [45] N. Gattesco. Analytical modeling of nonlinear behavior of composite beams with deformable connection[J]. Journal of Constructional Steel Research, 1999, (52): 195-218
    [46] Zdenek P. Bazant, Jan L. Vtek. Compound size effect in composite beams with softening connectors. I: Energy approach[J]. Journal of Structural Engineering, 1999, 125(11): 1308-1314
    [47] Zdenek P. Baz ant, Jan L. Vtek. Compound size effect in composite beams with softening connectors. Ⅱ: Differential equations and behavior[J]. Journal of Structural Engineering, 1999, 125(11): 1315-1322
    [48] Deric John Oehler, George Sved. Composite beams with limited-slip-capacity shear connectors[J]. Journal of Structural Engineering, 1995, 121(6): 932-938
    [49] A. Dall Asta. Composite beams with weak shear connection[J]. International Journal of Solids and Structures, 2001, (38): 5605-5624
    [50] Deric J. Oehlers, RudoLf Seracino, Michael F. Yeo. Effect of friction on shear connection in composite bridge beams[J]. Journal of Bridge Engineering, 2000, 5(2): 91-98
    [51] Khosrow Ghavami. Ultimate load behavior of flexible and rigid connectors in composite beams[J]. J. Construct. Steel, 1998, 46(3): 208-210
    [52] Deric J. Oehlers. Design and assessment of shear connectors in composite bridge beams[J]. Journal of Structural Engineering, 1995, 121(2): 214-224
    [53] 聂建国,孙国良.钢-混凝土组合梁槽钢剪力连接件的试验研究[J].郑州工学院学报,1985;6(2):10-17
    [54] 钢-混凝土组合结构科研组.钢-混凝土组合梁的试验研究[J].郑州工学院学报,1982;3(2):22-28
    [55] 张少云.栓钉剪力连接件的试验研究[D].郑州工学院硕士学位论文,1988
    [56] 朱聘儒,李铁强,陶懋治.钢与混凝土组合梁弯筋连接件的抗剪性能[J].工业建筑,1985:(10):17-22
    [57] 崔玉萍.部分剪力连接钢-混凝土组合梁强度和变形的试验研究[D].北京市市政工程研究院硕士学位论文,1996
    [58] 宗周红等.预应力钢-混凝土组合梁静动载试验研究专题报告[R].成都:西南交通大学,1997
    [59] 宗周红.预应力钢-混凝土组合梁静动载行为研究[D].西南交通大学博士学位论文,1997
    [60] 宗周红.预应力组合板梁桥的弹塑性分析[J].桥梁建设,1996:(2):50-52
    [61] 宗周红,车惠民.预应力钢-混凝土组合梁有限元非线性分析[J].计算力学学报,1997;14(增刊):45-49
    [62] 宗周红,车惠民,房贞政.预应力钢-混凝土组合梁有限元非线性分析[J].中国公路学报,2000;13(2):48-51
    [63] 毛学明.铁路预弯组合梁力学性能的研究及其设计软件的初步开发[D].西南交通大学硕士学位论文,2002
    [64] 毛学明,万臻,赵人达.预弯组合梁设计及其电算程序[J].四川建筑,2002;22(3):54-55
    [65] 朱聘儒,高向东.钢-混凝土连续组合梁塑性铰特性及内力重分布研究[J].建筑结构学报,1990;11(6):17-22
    [66] 聂建国,沈聚敏,袁彦声.钢-混凝土简支组合梁变形计算的一般公式[J].工程力学,1994:11(1):21-27
    [67] 聂建国,袁彦声.钢-混凝土叠合板组合梁及其应用[J].建筑结构,1995;(8):19-23
    [68] 聂建国,沈聚敏,余志武.考虑滑移效应的钢-混凝土组合梁变形计算的折减刚度法[J].土木工程学报,1995;28(6):11-17
    [69] 聂建国,沈聚敏.钢-混凝土组合梁中剪力连接件实际承载力的研究[J].建筑结构学报,1996:17(2):21-29
    [70] 聂建国,张眉河.钢-混凝土组合梁负弯矩区混凝土板裂缝的研究[J].清华大学学报,1997;37(6):95-99
    [71] 聂建国,沈聚敏.滑移效应对钢-混凝土组合梁抗弯强度的影响及其计算[J].土木工程学报,19971 30(1):31-36
    [72] 聂建国.钢-混凝土组合梁的长期变形及其计算[J].建筑结构,1997;(1):42-45
    [73] 聂建国,王洪全.钢-混凝土组合梁纵向抗剪的试验研究[J].建筑结构学报,1997;18(2):13-19
    [74] 聂建国,沈聚敏,延滨等.冷弯薄壁型钢-混凝土组合梁的试验研究[J].建筑结构,1998:(1):54-56
    [75] 聂建国,崔玉萍.钢-混凝土组合梁在单调荷载下的变形与延性[J].建筑结构学报,1998:19(2):40-46
    [76] 王挺,聂建国,樊健生.钢-压型钢板混凝土组合梁极限抗弯承载力的试验研究[J].建筑结构学报,2001;22(2):61-64
    [77] 聂建国,王挺,樊健生.钢-压型钢板混凝土组合梁计算的修正折减刚度法[J].土木工程学报,2002;35(4):1-11
    [78] 唐琎,叶梅新.钢桁梁-混凝土板结合梁剪力连接件的布置位置[J].长沙铁道学院学报,1998;16(4):11-14,39
    [79] 唐琎,叶梅新.钢-混凝土组合结构中密集型剪力钉群的受力状态[J].长沙铁道学院学报,1999;17(4):68-73
    [80] 侯文崎,叶梅新.桁梁结合梁栓钉疲劳承载力的试验研究[J].长沙铁道学院学报,1999:17(4):46-50
    [81] 叶梅新,张晔芝.桁梁结合梁及其剪力连接件试验研究[J].铁道学报,1999;21(1):68-71
    [82] 曹建安,叶梅新.组合梁栓钉的极限承载力的试验研究[J].长沙铁道学院学报,1999;17(1):17-20
    [83] 罗如登,叶梅新.组合梁钢与混凝土板相对滑移及栓钉受力状态研究[J].铁道学报,2002;24(3):57-61
    [84] 叶梅新,吏林山.混凝土受拉状态下钢-混凝土组合结构中栓钉的承载力的研究[J].长沙铁道学院学报,2003;21(1):9-12
    [85] 叶梅新,郑钧雅.钢-混凝土组合梁剪切变形的研究[J].山西建筑,2004:30(22):26-27
    [86] 李佳,余志武.钢-混凝土组合梁预应力施工阶段受力性能试验研究[J].长沙铁道学院学报,2001;19(2):14-19
    [87] 李佳.钢-混凝土组合梁界面滑移研究[D].中南大学学位论文,2001
    [88] 郭风琪.预应力钢-混凝土连续组合梁负弯矩区抗裂度及裂缝宽度研究[D].中南大学学位论文,2002
    [89] 周凌宇,余志武,蒋丽忠.钢-混凝土连续组合梁非线性有限元分析[J].长沙铁道学院学报,2003;21(2):9-14
    [90] 周凌宇,余志武,蒋丽忠.组合梁滑移和剪切变形双重效应的有限元分析[J].中国铁道科学,2004:25(3):61-66
    [91] 余志武,周凌宇,蒋丽忠.钢-混凝土连续组合梁滑移与挠度耦合分析[J].工程力学,2004;21(2):76-83
    [92] 余志武,郭风琪.部分预应力钢-混凝土连续组合梁负弯矩区裂缝宽度试验研究[J].建筑结构学报,2004:25(4):55-59
    [93] 周凌宇,康习军,余志武等.钢-混凝土组合梁的非线性杆系有限元分析[J].中南大学学报,2004;35(2):316-321
    [94] 周凌宇,余志武,蒋丽忠.钢-混凝土组合梁界面滑移剪切变形的双重效应分析[J].工程力学,2005;22(2):104-109
    [95] GB 50017-2003,钢结构设计规范[S]
    [96] 朱聘儒,国明超,朱起等.钢-混凝土组合梁协同工作的分析及试验[J].建筑结构学报,1987;5:41-51
    [97] Y. C. Wang. Deflection of steel-concrete composite beams with partial shear interaction [J]. Journal of Structural Engineering, 1998, 124(10): 1159-1165
    [98] N. A. Jasim. Deflections of partially composite beams with linear connector density [J]. Journal of Constructional Steel Research, 1999, (49): 241-254
    [99] I. M. Viest. Investigation of stud shear connector for composite Concrete and steel T-beams [J]. Journal of American Concrete Institute, 1956, 27(2): 875-891
    [100] B. Thurliman. Fatigue and static strength of stud shear connectors [J]. Journal of American Concrete Institute, 1959, 30(12): 1287-1302
    [101] R. G. Slutter, G. C. Driscoll. Flexural strength of steel-concrete composite beams [J]. Journal of the Structural Division, ASCE, 1965, 91(2): 71-99
    [102] K. E. Buttry. Behavior of stud shear connectors in lightweight and normal-weight concrete [D]. Mac thesis, University of Missouri, 1965
    [103] J. C. Chapman, S. Balakrishma. Experiments on composite beams [J]. The Structure Engineer, 1964, 42(11): 369-383
    [104] C. Davies. Small-scale push-out tests on welded stud shear connectors [J]. Concrete, 1967, (3): 311-316
    [105] R. P. Johnson, R. D. Greenwood, K. Van Dalen. Stud shear connectors in hogging moment regions of composite beams [J]. The Structure Engineer, 1969, 47(9): 345-350
    [106] H. G. Ollgaard, R. G. Slutter, J. D. Fisher. Shear strength of stud connectors in lightweight and normal-weight concrete [J]. Journal of American Institute of Steel Construction, 1971, 8(2): 55-64
    [107] European Committee for Standardization. Eurocode 4 Design of Composite Steel and Concrete Structures—Part 2: Composite Bridges[S]. Brussels, 1994
    [108] N. G. Thimmhardy, C. Marsh. Nonlinear analysis of steel and concrete bridge composites [J]. Computers & Structures, 1995, 56: 439-459
    [109] 王连广,刘之洋,曹阅.钢-火山渣混凝土组合梁连接件及交界面滑移分析[J].工业建筑,1995:25(3):18-23
    [110] R. P. Johnson, I. M. May. Partial-interaction design of composite beams[J]. Structural engineer, 1975, 53(8)
    [111] 蒋丽忠,余志武,李佳.均布荷载作用下钢-混凝土组合梁滑移及变形的理论计算[J].工程力学,2003:20(2):133-137
    [112] 孙文彬,徐业愚.部分剪力连接钢-混凝土简支组合梁变形计算的积分法[J].吉 林建筑工程学院学报,2002:19(3):29-31
    [113] 孙文彬.部分剪力连接钢-混凝土组合梁的滑移及曲率分析[J].力学与实践,2001;23(6):44-47
    [114] 孙文彬.部分剪力连接钢-混凝土组合梁考虑滑移效应的曲率分析[J].城市道桥与防洪,2001;(4):31-33
    [115] 孙文彬.部分剪力连接钢-混凝土组合梁曲率的理论分析[J].长沙大学学报,2002:16(2):57-59
    [116] 汪心洌.压型钢板与混凝土组合楼板的组合效应[J].工业建筑,1985:(9)
    [117] 袁泉.压型钢板-混凝土的剪力粘结极限强度[D].冶金部建设设计研究院学位论文,1988
    [118] 黄道元.简支压型钢板组合梁在短期静荷载下受弯性能的试验研究[D].郑州工学院硕士学位论文,1988
    [119] 张培卿.压型钢板-混凝土简支组合楼板工作性态研究[D].哈尔滨建筑大学硕士学位论文,1988
    [120] 张培卿,刘文如.压型钢板-混凝土简支组合楼板挠曲变形实用计算方法[J].哈尔滨建筑工程学院学报,1992:25(4)
    [121] 张培卿,刘文如.压型钢板-混凝土组合楼板正截面承载能力的试验研究[J].哈尔滨建筑工程学院学报,1994;27(4):62-68
    [122] 聂建国,樊健生,王挺.钢-压型钢板混凝土组合梁裂缝的试验研究[J].土木工程学报,2002;35(1):15-20
    [123] 王挺.钢-压型钢板混凝土组合梁的试验研究[D].清华大学硕士学位论文,2000
    [124] 陈浩军,尹犟.压型钢板-混凝土组合楼板挠曲变形计算[J].长沙交通学院学报,2003;19(4):41-45
    [125] 黄英.压型钢板-混凝土组合楼板弯曲受力性能试验研究[D].福州大学硕士学位论文,2002
    [126] 陈世鸣.压型钢板-混凝土组合楼板的承载能力研究[J].建筑结构学报,2002:(3)
    [127] 陈世鸣.钢-压型钢板混凝土组合梁的极限负弯矩强度[J].钢结构,2002;17(1):14-17
    [128] 白玲.超静定组合结构桥梁受力特性的3D-FEM模拟分析[D].铁道科学研究院博士学位论文,2003
    [129] 雷昌龙译.钢-混凝土组合桥中新的剪力连接器的发展与试验[J].国外桥梁,1999:(2):64-68
    [130] 刘玉擎,周伟翔.开孔钢板连接件的受力性能及其应用[J].哈尔滨工业大学学报,2005;37(增刊):381-384
    [131] 刘玉擎.组合结构桥梁[M].北京:人民交通出版社,2005
    [132] Hosaka T. et al. Study on shear strength and design method of perfobond strip[J]. J. of Structural Eng., JSCE, 2002, (48A): 1265-1272
    [133] Nishiumi K. et al. Shear strength of perfobond rib shear connector under the confinement[J]. J. of JSCE, 1999, (633): 193-203
    [134] Kadotani T. et al. New shear connectors of PC box girder bridge with corrugated steel webs having a long span[J]. Japanese J. of PC, 2003, 45(3): 79-86
    [135] Hosaka T. et al. Study and practical use of composite structures with concrete filled tubular girders[J]. Japanese Bridge and Foundation Eng., 2002, (1): 35-44
    [136] Mochizuki H. et al. Design and construction of mixed girder bridge[J]. Japanese J. of PC, 2001, 43(1): 82-89
    [137] Nakamura K. et al. Design and construction of Imabeppu river bridge[J]. Japanese Bridge and Foundation Eng., 2000, (12): 2-9
    [138] 山寺德明,伊東昇,森河久.鹤见航路桥设计概要(下)[J].桥梁基礎,1993,2:23-32.
    [139] 杜亚凡译.结合梁桥的混凝土桥面板设计[J].国外桥梁,1998;(2):39-41
    [140] 杨义东,李涛译.钢-混凝土组合结构桥在日本的发展趋势[J].国外桥梁.1998,4:39-42
    [141] 金增洪译.钢-混凝土组合桥梁在日本的发展趋势[J].国外公路.1999,19(6):12~16
    [142] 毛小勇,张耀春,韩林海.肋筋模板钢-混凝土组合板承载力的试验研究[J].工业建筑,2001;31(11):60-63
    [143] 毛小勇,韩林海,郑坚等.肋筋模板钢-混凝土组合板的理论分析与承载力简化计算[J].钢结构,2001;(1):19-22,63
    [144] 项长生,朱彦鹏.钢板-混凝土板组合桥面挠度公式[J].甘肃科技,2005;21(6):138-139
    [145] 毛小勇,张耀春,韩林海.肋筋模板钢-混凝土组合板承载力的试验研究[J].工业建筑,2001;31(1):60-63
    [146] 毛小勇.肋筋模板钢-混凝土组合板的理论分析与试验研究[D].哈尔滨建筑大学硕士学位论文,1999
    [147] 戴龙,刘锐,毛小勇.肋筋模板钢-混凝土组合板的简化计算[J].水利科技与经济,2002:8(2):114-116
    [148] 毛小勇,韩林海.肋筋模板钢-混凝土组合板的理论分析与试验研究[J].哈尔滨建筑大学学报,2000:33(5):47-51
    [149] 毛小勇,韩林海,张耀春.肋筋模板钢-混凝土组合板力学性能的试验研究[J].哈尔滨建筑大学学报,2002:35(1):30-33
    [150] Jan W. P. M. Design recommendation for long span composite slabs with deep profiled steel sheets[J]. Composite Construction, 1997: 661-671
    [151] Arto Tenhovuori, Kimmo Karkkainen, Pekka Kanerva. Parameters and definitions for classifying the behavior of composite slabs[J]. Composite Construction, 1999: 753-765
    [152] 毛小勇,肖岩.一种新型钢-混凝土组合板承载力的试验研究[J].湖南大学学报,2004;31(2):74-78,83
    [153] 韦灼彬,张小鹏,王铁成.带型钢加劲肋的钢板-混凝土组合板的力学性能[J].建筑结构学报,2006;27(1):77-82
    [154] 王铁成,赵领志.钢板型钢-混凝土组合板受力性能分析[J].河北工业大学学报,2005;34(4):104-108
    [155] 王铁成,赵领志,韦灼彬.钢板型钢-混凝土组合板受力性能分析[J].哈尔滨工业大学学报,2005;37(增刊):280-284
    [156] 王铁成,韦灼彬,张小鹏等.新型钢-混凝土组合板的非线性分析[J].哈尔滨工业大学学报,2005:37(增刊):288-290
    [157] 王铁成,韦灼彬,张小鹏等.新型钢-混凝土组合板的变形计算[J].哈尔滨工业大学学报,2005:37(增刊):291-292,349
    [158] 韦灼彬,张小鹏,王铁成等.新型钢-混凝土组合板的试验研究[J].哈尔滨工业大学学报,2005;37(增刊):293-295
    [159] 韦灼彬,张小鹏,王铁成等.新型钢-混凝土组合板的承载力计算[J].哈尔滨工业大学学报,2005:37(增刊):296-298
    [160] 小西一郎[日].钢桥(第一分册)[M].朱立冬等译.北京:人民铁道出版社,1980
    [161] 小西一郎[日].钢桥(第二分册)[M].宋慕兰等译.北京:人民铁道出版社,1980
    [162] 张士铎.结构理论及在桥梁上的应用[M].北京:中国建筑工业出版社,1981
    [163] 张士铎.桥梁设计理论[M].北京:人民交通出版社,1984
    [164] 程翔云.梁桥理论与计算[M].北京;人民交通出版社,1990
    [165] 铁摩辛柯.板壳理论[M].北京:科学出版社,1977
    [166] R.Szilard.板的理论和分析[M].北京:中国铁道出版社,1984
    [167] 吴连元.板壳理论[M].上海:上海交通大学出版社,1989
    [168] 李乔等.混凝土桥[M].成都:西南交通大学出版社,1999
    [169] 姚玲森.桥梁工程[M].北京:人民交通出版社,1996
    [170] 张士铎.悬臂行车道板计算理论综述[J].重庆交通学院学报,1992,11(2):23-25
    [171] JTG D62-2004,公路钢筋混凝土及预应力混凝土桥涵设计规范[S]
    [172] 日本土木学会.混凝土结构设计规范及解说[S].刘全德等译.成都:西南交通大学出版社,1991
    [173] 美国各州公路和运输工作者协会(AASHTO).美国公路桥梁设计规范—荷载与抗力系数设计法[S].辛济平等译.北京:人民交通出版社,1998.
    [174] BS5400, Steel, Concrete and Composite Bridges[S]
    [175] BS5400.钢桥、混凝土桥及结合桥[S].车惠民等译.成都:西南交通大学出版社,1986
    [176] 孙广华.德国关于桥梁翼板计算宽度的规定[J].公路,1997,(3)
    [177] 程翔云.双室箱梁顶板的有效分布宽度[J].公路,1997,(4):13-16
    [178] 程翔云,李立峰.对连续箱梁翼缘有效计算宽度公式的评述[J].公路,2001,(3):7-9
    [179] 程翔云,李立峰,王斌等.关于变厚度悬臂板的有效分布宽度[J].公路,2002,(11):64-69
    [180] 文国华.横向预应力对悬臂翼缘板有效分布宽度的影响[J].中南公路工程,1998,23(4):29-32
    [181] 方志,张志田.钢筋混凝土箱梁横向受力有效分布宽度的试验研究[J].中国公路学报,2001,14(1):35-38
    [182] 方志,张志田.钢筋混凝土变截面箱梁横向受力有效分布宽度分析[J].湖南大学学报(自然科学版),2003,30(6):82-85
    [183] 方志,张志田.钢筋混凝土箱梁横向受力有效分布宽度的弹性分析[J].公路,2001,(11):70-73
    [184] 张辉,宋士忠.桥梁施工方法对主梁有效宽度分布的影响[J].辽宁省交通高等专科学校学报,2005,7(2):1-3
    [185] 魏红一.斜拉桥施工全过程主梁有效宽度分布模式研究[D].同济大学博士学位论文,2004.
    [186] Shitohchang, et al. Analysis of cantilever decks of thin-walled box girder bridges[J]. The Structure Engineering, 1990, 116(9): 2410-2419
    [187] X. Wang, F. G. Rammerstorfer. Determination of effective breadth and effective width of stiffened plates by finite strip analyses[J]. Thin-Walled Structures, 1996, 26(4): 261-286
    [188] 项海帆.高等桥梁结构理论[M].北京:人民交通出版社,2001
    [189] Alfred G. Bishara, et al. Wheel load distribution on simply supported skew I-beam composite bridges[J]. Journal of Structural Eng., 1993, 119(2): 399-419
    [190] Nutt R. V., Schamber R. A., Zokaie T. Distribution of wheel loads in highway bridges[J]. Final Report No. 83, IMBSEN & Associates, Inc., Sacramento, Calif.
    [191] Edgar Restrepo, Tommy Cousins, Jack Lesko. Determination of bridge design parameters through field evaluation of the route 601 bridge utilizing fiber-reinforced polymer girders[J]. Journal of Performance of Constructed Facilities, 2005, 19(1): 17-27
    [192] Barr P. J., Eberhard M. O., Stanton J. F. Live-load distribution factors in prestressed concrete girder bridges[J]. J. Bridge Eng., 2001, 6(5): 298-306
    [193] W. Douglas Neely, Thoms E. Cousins, John J. Lesko. Evaluation of in-service performance of Tom's Creek Bridge fiber-reinforced polymer superstructure[J]. Journal of Performance of Constructed Facilities, 2004, 18(3): 147-158
    [194] Thoms E. Boothby, Richard J. Craig. Experimental load rating study of a historic truss bridge[J]. Journal of Bridge Eng., 1997, 2(1): 18-26
    [195] K. M. Tarhini, G. R. Frederick. Wheel load distribution in I-girder highway bridges[J]. J. Structural Eng., 1992, 118(5): 1285-1294
    [196] Mounir E. Mabsout, Kassim M. Tarhini, et al. Effect of continuity on wheel load distribution in steel girder bridges[J]. J. Bridge Eng., 1998, 3(3): 103-110
    [197] Mounir E. Mabsout, Kassim M. Tarhini, et al. Effect of multilanes on wheel load distribution in steel girder bridges[J]. J. Bridge Eng., 1999, 4(2): 99-106
    [198] Mounir E. Mabsout, Kassim M. Tarhini, et al. Wheel load distribution in simply supported concrete slab bridges[J]. J. Bridge Eng., 2004, 9(2): 147-155
    [199] Mounir E. Mabsout, Kassim M. Tarhini, et al. Influence of sidewalks and railings on wheel load distribution in steel girder bridges[J]. J. Bridge Eng., 1997, 2(3): 88-96
    [200] Mounir E. Mabsout, Kassim M. Tarhini, et al. Finite-element analysis of steel girder highway bridges[J]. J. Bridge Eng., 1997, 2(3): 83-87
    [201] 池田尚治[日].钢-混凝土组合结构设计手册[M].李先瑞,耿花荣译.北京:地震出版社,1992
    [202] European Committee for Standardization. Eurocode 4: Design of Composite Steel and Concrete Structures—Part 2: Composite Bridges[S]. Brussels: Central Secretarial: Rue de Stassart 36, B-1050, 1997.
    [203] 赵鸿铁.钢与混凝土组合结构[M].北京:科学出版社,2001
    [204] 周明杰.钢-混凝土组合结构设计与工程应用[M].北京:中国建材工业出版社,2005
    [205] 林宗凡.钢-混凝土组合结构[M].上海:同济大学出版社,2004
    [206] 陈军刚.钢-混凝土组合桥面板设计方法初探[D].西南交通大学硕士学位论文,2004
    [207] 聂建国,田春雨.钢-混凝土简支组合梁塑性阶段有效宽度分析[J].铁道科学与 工程学报,2004,1(1):39-43
    [208] Yam L. C. P., Chapman J. C. The inelastic behavior of continuous composite beams of steel and concrete[C]. Proc. Institution of Civil Eng. 1972, 2(53): 487-501
    [209] 胡夏闽,史东峰.组合梁的物理非线性分析[J].南京建筑工程学院学报,1995,33(2):12-19
    [210] D. J. Oehlers, and G. Sved. Composite beams with limited-slip-capacity shear connectors[J]. Journal of Struct. Eng. 1995, 121(6): 932-938
    [211] 毛小勇,张耀春.钢-混凝土组合梁非线性分析概述[J].哈尔滨建筑大学学报,201,34(5):19-24
    [212] R. Seracino, D. J. Oehlers, M. F. Yeo. Partial-interaction fiexural stresses in composite steel and concrete bridge beams[J]. Engineering Structures, 2001; 23: 1186-1193
    [213] R. Seracino, Chow T. Lee, Tze C. Lim, et al. Partial interaction stresses in continuous composite beams under serviceability loads[J]. Journal of Constructional Steel Research, 2004; 60: 1525-1543
    [214] 余同希.塑性力学[M].北京:高等教育出版社,1989
    [215] 姚振纲.建筑结构试验[M].上海:同济大学出版社,1996
    [216] 赵人达.混凝土及其结构的非线性行为研究[D].成都:西南交通大学博士学位论文,1990
    [217] Liu T. C. Y., et al. Biaxial stress-strain relations for concrete[J]. ASCE, Journal of Structural Division, 1972, 98(5): 1025-1034
    [218] 江见鲸.钢筋混凝土结构非线性有限元分析[M].西安:陕西科学技术出版社,1994

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700